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Abstract 

An unsteady program based on a turbulence model called Baseline (BSL) k-
omega model was conducted to simulate three turbulent flows with Re numbers 

of 4×103, 8×103 and 1×104, between two initially concentric cylinders. The 

effects of principal flow variables, i.e., mean axial velocity and fluid 

temperature, annular passage configurations, i.e., the gap width and radii of 

cylinders on the pressure and circumferential velocity of a three dimensional 

turbulent flow in the annular passage were investigated. The results were 

validated with the available solutions in the literature and fairly good 

agreements are seen. By increasing the gap of the annular passage and the axial 

flow velocity, smaller values for the unsteady pressure and the circumferential 

velocity amplitudes are produced. For each of the turbulent flows the unsteady 

pressure amplitude increases with the fluid temperature, as well as the 
circumferential velocity amplitude. The results of this investigation are 

favorably used for FIV and FSI calculations in such configurations.   

Keywords: Annular flow, Unsteady pressure and velocity, Oscillatory boundary,  

                   FIV, FSI.  

 

 

1.  Introduction 

Many industrial and engineering structures are associated with internal, external 

or annular flows, especially those involving nuclear reactors, power generation 

and petroleum extraction. One of the geometries that are of great interest among 

scientists and researchers in this field, is the annular flow between two concentric 

cylinders; for instance control rods in guide tubes, feedwater spargers and fuel 

strings  in coolant channels,  in different types of nuclear reactors;  oil conveying  



Pressure and Velocity Amplitudes of the Incompressible Fluid     221 

 

 
 
Journal of Engineering Science and Technology                 April 2014, Vol. 9(2) 

 

Nomenclature  
 

 

C Damping coefficient, N.s/m 

D Diameter, m  

F Force, N  

h Gap width, m  

K Effective stiffness, N/m  

M Mass, kg  

p Pressure, Pa  

r Radial space component, m  

T Absolute temperature, K  

t Time, s  

U Reference velocity, m/s  

u Axial velocity component, m/s  

V Velocity vector  

v Radial velocity component, m/s  

w Circumferential velocity component, m/s  

x Axial coordinate of space, m  

y Vertical coordinate of space, m  

  

Greek Symbols  

ε Initial amplitude of oscillation, m  

θ Circumferential coordinate of space, deg.  

ρ Fluid density, kg/m
3
  

υ Kinematic viscosity, m
2
/s  

ω Frequency, Hz  

∇  Divergence  

  

Abbreviations 

 
 

FIV Flow-Induced Vibration  

FSI  Fluid-Structure Interaction  

MP Mean position  

Re  Reynolds Number 

TDCT Time-dependent coordinate transformation 

  

Subscripts  
 

 

D Diameter  

h Hydraulic  

i Inner  

Int Interaction  

o Outer  

∞  Downstream  

and gas production systems in petroleum sites. A comprehensive list of such 

practical cases of annular flow-induced problems can be found in [1, 2].  

The first explanation for the mechanism underlying annular-flow-induced 

instabilities is given by Miller [3] and the problem was studied further by 

Mulcahy [4] calculating the fluid forces exerted on rods vibrating in annular 
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regions. The first attempts to generate an analytical viscous model for the 

cylindrical geometry are due to Hobson [5] and Spurr and Hobson [6]. Several 

approaches have been used by different researchers to obtain theoretical or 

experimental studies on fluid-structure interactions in annular and leakage flows 

among them are Ashurts and Durst [7], Parkin and Watson [8], Mulcahy [9], 

Perotin [10] and Karagiozis et al. [11].  

A more rigorous, purely analytical potential flow model was formulated by 

Mateescu & Paidoussis [12] for a rigid centre-body hinged at one point and 

coaxially positioned in a flow-carrying conduit. This rigid-body model was then 

extended to take into account viscous effects [13]. One of the principal findings of 

this work was that viscous effects stabilize the system, and that they become more 

important as the annulus becomes narrower. Further development in this area has 

been achieved by the use of computational models which involve simultaneous 

numerical integration of the Navier-Stokes equations for laminar flow, and the 

equation of motion of the structure [14]. One such attempt was made by Mateescu 

et al. [15,16], who used a computational method to integrate the linearized 

Navier–Stokes equations for small amplitude oscillations of the outer cylinder. A 

new formulation for unsteady annular flows based on a time-dependent 

coordinate transformation (TDCT), capable of solving accurately both cases of 

large and small amplitude oscillations of the solid boundaries was presented by 

Mateescu et al. [17]. A series of accurate experimental measurements of the 

unsteady pressure in the annulus between two concentric cylinders and the 

solution of the unsteady Navier–Stokes and continuity equations for the same 

annular geometry were conducted by Mekanik and Paidoussis to compare the 

experimental results with the theoretical ones [18].  

Although a large number of studies have been carried out on the turbulent 

flow in annular passages, these works are in minority compared with those done 

on laminar flow. Moreover, the researches interested in turbulent annular flow 

have not taken all the effective variables into account. Hence there is a real need 

for more through studies on turbulent annular flow and its fluctuations due to 

changes in effective variables. The present work has used an unsteady program 

based on a turbulence model called Baseline (BSL) k-omega model to investigate 

the effects of principal flow variables and annular passage configurations on the 

unsteady pressure and circumferential velocity of a three dimensional turbulent 

flow in the annular passage between two initially concentric cylinders.   

 

2. Method of Solution  

2.1. Problem definition and theory  

The annular passage conducting incompressible flow is formed of two initially 

concentric cylinders, one of which is mounted flexibly and free to experience 

transverse translational oscillations. In this study it is the outer cylinder which 

executes transverse vibrations, while the center body is fixed without any 

movement and the configuration of such system can be seen in Fig. 1.  

The purpose of this work is to examine the effects of principal flow variables 

such as the axial velocity and fluid temperature and the annular configurations like 

gap width and radii of cylinders, on the unsteady pressure and the circumferential 
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velocity of flowing fluid in the three dimensional annular passage. An accurate 

analysis of the unsteady flows in the case of larger amplitudes of oscillation is 

important for the study of the dynamics of fluid-elastic systems beyond the first loss 

of stability, which is not only of academic, but also of practical interest. The results 

of the present work provide the engineers with raw material for designing a secure 

and robust structure based on the knowledge of pressure, circumferential velocity 

and consequently the amplitude of oscillations of the outer cylinder, which is the 

key indicator of threshold of fluid-elastic instabilities. 

 
Fig. 1. Geometrical Representation of the Annular Passage. 

As the first step to begin with, the outer cylinder is replaced from its initial 

position by a small magnitude, ε, and the problem is solved in steady state 

condition to obtain the flow field. Afterward, the outer cylinder is released to 

execute transverse vibrations and the fluid forces are generated which interact 

with the structure; the generated steady solution in the previous step is used as the 

initial conditions for the pressure and velocity throughout the fluid domain. An 

unsteady program was employed to simulate the three dimensional flow through 

annular passage and to predict the dynamical behavior of the oscillating tube in 

order to examine the course at which the flow quantities such as the unsteady 

pressure and unsteady circumferential velocity are produced.  

In this study, the quantities with an asterisk are dimensional and according to 

Eq. (1) they are associated with their plain dimensionless counterparts, e.g. ri
*
 and 

ri; U, h and T which respectively represent mean axial velocity, gap width of 

annular space and fluid temperature are exceptionally dimensional. The radius of 

the inner cylinder is ri
*
=hri; thus the outer cylinder radius is ro

*
=hro=hri+h.  
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where ε
*
 is the initial amplitude of oscillation, p

*
 the pressure, ρ

*
 the fluid 

density, ω* the frequency of vibration, and u*, v* and w* represent the velocity 

components in the axial, radial, and circumferential directions respectively.  

In this investigation, the viscosity and density are assumed to remain constant 

unless stated otherwise. Thus, the continuity and Navier–Stokes equations, 

without body forces, are expressed in non-dimensional form as  

0. =∇V                                                                                                                  (2) 
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where the Reynolds number in annular flow is defined in the following 

equation based on the hydraulic diameter of Dh =2h,  

*2Re υhU
h

D
=                                                                                                   (4) 

The program expanded to take the turbulence effects into account and 

examine the three dimensional turbulent flow in the annular passage, which is the 

main objective of the present fluid–structure interaction problem. To this end, a 

rigorous turbulence model called Baseline (BSL) k-Omega Model is used which 

is a combination between the k-ω model near the surface and the k-ε model in the 

outer region of the flow. The blending will take place in the wake region of the 

boundary layer. This model consists of a transformation of the k-ε model to a k-ω 

formulation and a subsequent addition of the corresponding equations. The 

difference between this formulation and the original k-ω model is that an 

additional cross-diffusion term appears in the ω-equation and that the modeling 

constants are different [20]. A second order backward Euler scheme is used to 

solve equations in transient simulations.  

After solving the Navier-Stokes and continuity equations simultaneously and 

evaluating the unsteady fluid force exerted on the oscillating outer cylinder, the 

equation of motion of the outer cylinder, Eq. (5), is solved to determine the 

unsteady displacement of the outer tube;  

IntFKyyCyM =++ &&&                                                                                            (5) 

where M is the mass, K the effective stiffness, C the damping coefficient of the 

structure and FInt the unsteady fluid force. All the flow field variables change 

periodically due to harmonic motion of outer cylinder; hence they possess a 

periodic nature and consist of the steady plus the complex unsteady component. A 

Fourier transform has been used to extract the amplitude and phase angle of 

unsteady the flow quantities with respect to the displacement of the outer cylinder.  

 

2.2. Boundary conditions and mesh survey  

Based on what mentioned earlier one can deduce that the flow characteristics, 

annular passage configurations and the outer cylinder motion are symmetric with 

respect to the vertical plane positioned at θ=0, as shown in Fig. 1; therefore it is 

possible to simulate the problem for the half of the geometry without losing the 

accuracy of the solution while saving the time of computation. In this case the 

problem contains five boundary conditions including inlet, outlet, inner tube, 

outer tube and symmetry. The inner tube is fixed but the outer cylinder is flexibly 

supported and its translational motion takes place in the given plane of symmetry. 

Hence the harmonic motion of the outer tube is defined by a numerical code 

derived from Eq. (5), i.e., the equation of motion of an object under forced 

vibration. However for the purpose of studying the effect of fluid damping on the 

structure, the structural damping C is neglected.  

One of the most important steps is to generate a satisfactory grid which is fairly 

fine in mesh. In addition, in order to consider energy dissipation within the 

boundary layers adjacent to the walls, the mesh needs to be stretched near the 

cylinders. A comparative study between four meshes with different refinement was 

carried out to gain the solution independent of mesh refinement. Finally a structured 



Pressure and Velocity Amplitudes of the Incompressible Fluid     225 

 

 
 
Journal of Engineering Science and Technology                 April 2014, Vol. 9(2) 

 

and near wall stretched mesh with 324800 elements was chosen which consists of 

140 grid points in the x, 80 grid points in the θ and 29 grid points in the r direction.  

 

2.3. Method validation  

The comparison has been made between present results and an experimentally 

confirmed set of numerical results of Ref. [19]. Figures 2(a) and (b) show the 

amplitudes of non-dimensional unsteady pressure p and the corresponding phase 

angles with respect to the translational displacement of the outer cylinder versus 

axial coordinate of the cylinder in a uniform annular geometry for two sets of 

results. In reference [19] two different methods were used by the authors, MP 

(Mean Position) and TDCT (Time-dependent Coordinate Transformation) 

methods. TDCT results are more reliable for problems with larger oscillation 

amplitude. Figures 3(a) and (b) compare the present results with those of Ref. [19] 

for the unsteady amplitude of non-dimensional circumferential velocities w, and 

the corresponding phase angles. Although the outcome of the present simulation 

doesn’t coincide exactly with the referred results, good almost agreement between 

the two groups of results indicates the precise simulation of the present work.  

 

(a)  (b)   

Fig. 2. (a) The Non-Dimensional Unsteady Pressure and                                   

(b) the Corresponding Phase Angle for =
hDRe  250,                                          

=ω 0.2, =ir 9, =or 10, =ε 0.2 at =r 9.965, =θ 7.5°.  

(a) (b)  

Fig. 3. (a) The Non-Dimensional Circumferential Velocity and                             

(b) the Corresponding Phase Angle for =
hDRe  250,                                    

=ω 0.2, =ir 9, =or 10, =ε 0.2 at =x 50, =θ 45°.  
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In this study three turbulent Reynolds numbers were selected to imply a 

proper collation of the flow quantities and to obtain an adequate perspective of 

turbulent annular flow. The chosen Reynolds numbers consist of 4× 10
3
, 8× 10

3
 

and 1×104 which have been calculated using Eq. (4).  

 

3. Results and Discussion  

The 3D turbulent flow through annular passage with oscillating outer cylinder and 

fixed center body was simulated and the following results were obtained. First the 

effect of mean axial velocity, U, which is one of the important variables and 

determines the flow pattern, on the flow quantities was investigated and the 

results are presented in Figs. 4 and 5. As the axial flow velocity and subsequently 

the Reynolds number increases, the amplitude of the unsteady pressure decreases. 

Figure 4(a) shows that the amplitude of unsteady pressure in the first turbulent 

flow with Re = 4000 is considerably higher than the amplitudes of other turbulent 

flows. Figure 4(b) shows that the phase angles of the unsteady pressure at three 

investigated turbulent flows almost take negative values and decrease as the mean 

axial velocity increases. This trend shows that an increase in the reference 

velocity, U, will result in lower added damping which means that the solution of 

the present problem approaches to the potential flow solution, which is in 

agreement with the physics of the fluid mechanics problem.  

 

(a)  (b)  

Fig. 4. (a) The Non-Dimensional Unsteady Pressure and                                       

(b) the Corresponding Phase Angle at =r 9.965, =θ 7.5° for =ω 0.1, =ir 9, 

=or 10, =ε 0.1; 
 

 Re=4× 10
3
;  Re=8× 10

3
;  Re=1× 10

4
.  

 

In Fig. 5 the amplitude of circumferential velocity in annular space and its 

phase angle with respect to the displacement of the outer cylinder is depicted. It 

can be seen that the amplitude of circumferential velocity decreases as the mean 

axial velocity increases. There is a sharp decline in the amplitude of the 

circumferential velocity while the mean axial velocity and subsequently the 

Reynolds number increases from 4000 to 8000 and then the circumferential 

velocity almost remains constant. As mentioned for the amplitude, the magnitude 

of the phase angle decreases as the Reynolds number increases from 4000 to 8000 

and after that it doesn’t experience any significant change.  

Fluid hydrodynamic characteristics are intensely dependent on temperature 

and it is expected that the fluid dynamic behavior changes as its temperature 

varies. For a particular gas, a rise in temperature results in higher degree of 
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molecular movements and a larger dynamic viscosity; unlike the liquids that their 

viscosities decrease with an increase in temperature. In this case for each of 

turbulent flows, mean axial velocity remains constant when increasing the fluid 

temperature; thus according to Eq. (4) Reynolds numbers reduce to lower values 

in comparison to the earlier values. Figure 6(a) shows that for each turbulent flow 

the unsteady pressure amplitude increases with the fluid temperature. The 

increment of the pressure amplitude is not the same for three turbulent flows; the 

first turbulent flow with initial Reynolds number of 4000 gained the highest value 

of growth in the pressure amplitude, i.e., 16%, while the second flow has the 

lowest value, i.e., 9%. In Fig. 6(b) it is noticed that the magnitude of the phase 

angle of unsteady pressure increases as the fluid temperature goes up. 

 

(a)  (b)  

Fig. 5. (a) The Non-Dimensional Circumferential Velocity and                          

(b) the Corresponding Phase Angle at =x 50, =θ 45° for =ω 0.1, =ir 9, 

=or 10, =ε 0.1;  Re=4× 10
3
;  Re=8× 10

3
;  Re=1× 10

4
.  

 (a)  (b)  

Fig. 6. (a) The Non-Dimensional Unsteady Pressure and                                  

(b) the Corresponding Phase Angle at  =r 9.965, =θ 7.5° for =ω 0.1, =ir 9, 

=or 10, =ε 0.1;  Re=4× 103, T=300 K;  Re=2386, T=400 K;                

 Re=8× 10
3
, T=300 K;  Re=4773, T=400 K;                                    

 Re=1× 104, T=300 K,  Re=5966, T=400 K.   

In Fig. 7(a) it can be seen that the value of the circumferential velocity 

amplitude increases with the fluid temperature. However, the change in the 

amplitude of circumferential velocity in the second turbulent flow doesn’t seem to 

be noticeable. The third turbulent flow shows a substantial increase in 

circumferential velocity amplitude. According to Fig. 7(b), although the rise in 

fluid temperature of the first and second flows doesn’t change the magnitude of 
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the circumferential velocity phase angle considerably, the magnitude of the phase 

angle in the third turbulent flow increases with the fluid temperature.  

 

(a) (b)  

Fig. 7. (a) The Non-Dimensional Circumferential Velocity and                         

(b) the Corresponding Phase Angle at =x 50, =θ 45° for =ω 0.1, =ir 9, 

=or 10, =ε 0.1;  Re=4×10
3
, T=300 K;  Re=2386, T=400 K;                  

 Re=8×10
3
, T=300 K;  Re=4773, T =400 K;                                              

 Re=1×10
4
, T=300 K; Re=5966, T=400 K.  

The gap width of the annular passage, h, plays an important role in the 

dynamics of the fluid flow through annuli. Two distinctive values designated for 

the annular passage gap width to investigate its effect on the unsteady pressure 

and the circumferential velocity of fluid, i.e., h = 1 and h = 2 cm. It can be seen in 

Fig. 8(a) that by increasing the gap of the annular passage, lower value for the 

unsteady pressure amplitude is produced. A set of calculations for the results 

obtained by the authors demonstrated that the mean unsteady pressure amplitudes 

of the new geometry are 21%, 46% and 51% smaller than those of the basic 

geometry for respectively the first, second and third Reynolds number. Figure 

8(b) also shows a substantial increase in the magnitude of the phase angle of three 

turbulent flows as the gap width of the annular passage increases. The phase 

angles increments of the unsteady pressure approaches -90°, -50° and -41° for the 

first, second and third turbulent flows respectively. It is worthwhile noting that in 

the new geometry with larger annular space the structure gets larger added 

damping vis-à-vis the flow through basic geometry.  

 

(a)  (b)  

Fig. 8. (a) The Non-Dimensional Unsteady Pressure and                                       

(b) the Corresponding Phase Angle at =r 9.965, =θ 7.5° for =ω 0.1, =or 10, 

=ε 0.1;  Re=4×10
3
, h=1 cm;  Re=2386, h=2 cm;  Re=8×10

3
, h=1 

cm;  Re=4773, h=2 cm;  Re=1×10
4
, h=1 cm;  Re=5966, h=2 cm.  
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Figures 9(a) and (b) represent the amplitude of the circumferential velocity 

and its phase angle with respect to the displacement of the outer cylinder versus 

two distinctive values of gap width. It is clearly seen in Fig. 9(a) that when the 

gap width doubles, the amplitude of circumferential velocity reduces. The present 

computational analysis shows that when the gap with, h, increases the maximum 

amplitudes of the circumferential velocity for the first, second and third turbulent 

flows decrease by 50, 41 and 36 percent respectively. The increase in the annular 

space also results in a larger phase angle for the circumferential velocity.  

 

(a)   (b)  

Fig. 9. (a) The Non-Dimensional Circumferential Velocity and                   

(b) the Corresponding Phase angle at =x 50, =θ 45° for =ω 0.1, =or 10, 

=ε 0.1;  Re=4×10
3
, h=1 cm;  Re=2386, h=2 cm;                                 

 Re=8×10
3
,  h=1 cm;  Re=4773, h=2 cm;                                                

 Re=1×10
4
, h=1 cm; Re=5966, h=2cm.  

 

The effect of changing the radii of cylinders on the unsteady pressure and the 

circumferential velocity is investigated in this section. The values used for radii 

here are based on the non-dimensional radii used by Mekanik et al. [18]; hence 

the non-dimensional radii of the inner and outer cylinders changed to 4.785 and 

5.785 respectively. The gap width of the annulus remains constant and one can 

conclude that the observed changes in flow behavior are purely due to the 

reduction of radii of cylinders. The amplitude of unsteady pressure and the 

corresponding phase angle with respect to the displacement of the outer cylinder 

is depicted in Figs. 10(a) and (b) for turbulent flows and two distinct geometries. 

The amplitudes of the unsteady pressure in the new geometry with smaller radii 

are clearly lower in comparison to those of the previous geometry. In the first 

turbulent flow with Reynolds number 4×103, the ratio of the mean unsteady 

pressure amplitude in the geometry with smaller radii to that of the previous 

geometry with larger radii is about 0.4 while this ratio decreases to 0.3 for the last 

turbulent flow with Reynolds number 1×10
4
. In the new geometry, the phase 

angles of the unsteady pressure for turbulent flows are of larger magnitude with 

respect to the phase angles of basic geometry and as the Reynolds number 

increases the phase angles tend to zero, the same conclusion mentioned before 

with regards to approaching the potential flow when Reynolds number increases.  

Figure 11 represents the amplitude of circumferential velocity and its phase 

angel with respect to the displacement of outer cylinder versus two different sets 

of radii of cylinders. It is clearly seen in Fig. 11(a) that the amplitude of 

circumferential velocity decreases with changes made in the radii of annulus. 
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More precisely the maximum value of the circumferential velocity in the three 

examined turbulent flows with Reynolds number 4×10
3
, 8×10

3
 and 1×10

4
 

decreases by 39%, 34% and 29% respectively as the radii of cylinders reduce. 

Figure 11(b) shows that larger magnitudes of phase angle are obtained in the new 

geometry with smaller radii. 

 

(a)  (b)  

Fig. 10. (a) The Non-Dimensional Unsteady Pressure and                                 

(b) the Corresponding Phase Angle at =r 9.965 and 5.75, =θ 7.5° for =ω
0.1, =ε 0.1;  Re=4×10

3
, =ir 9, =or 10;  Re=4×10

3
, =ir 4.785, =or

5.785;  Re=8×10
3
, =ir 9, =or 10;  Re=8×10

3
, =ir 4.785, =or 5.785; 

 Re=1×10
4
, =ir 9, =or 10;  Re=1×10

4
, =ir 4.785, =or 5.785.  

 

(a) (b)  

Fig. 11. (a) The Non-Dimensional Circumferential Velocity and                            

(b) the Corresponding Phase Angle at =x 50, =θ 45° for =ω 0.1, =ε 0.1; 

 Re=4×10
3
, =ir 9, =or 10;  Re=4×10

3
, =ir 4.785, =or 5.785;             

 Re=8×10
3
, =ir 9, =or 10;  Re=8×10

3
, =ir 4.785, =or 5.785;            

 Re=1×10
4
, =ir 9, =or 10;  Re=1×10

4
, =ir 4.785, =or 5.785. 

 

4. Conclusions  

In the present work the effects of principal flow variables, as well as the annular 

configurations, on the circumferential velocity and the unsteady pressure of an 

incompressible fluid in the three dimensional annular passages were studied. It is 

concluded that as the axial flow velocity increases, the amplitudes of unsteady 

pressure, the circumferential velocity and the corresponding phase angles with 

respect to the displacement of the outer cylinder decrease. An increase in the 

reference velocity, U, results in lower added damping which means that the 

solution of the present problem tends to that of the potential flow. For each 
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turbulent flow the unsteady pressure amplitude increases with the fluid 

temperature, as well as the circumferential velocity amplitude. It is also noticed 

that the magnitude of the phase angle of the unsteady pressure increases as the 

fluid temperature goes up. By increasing the gap of the annular passage, lower 

values for the unsteady pressure and the circumferential velocity amplitudes are 

obtained. It is also noticed that a considerably higher added damping is achieved 

as the gap width between the two cylinders doubled. A new geometry built of 

cylinders with smaller radii was considered by the authors. The ratio of the mean 

unsteady pressure amplitude in the geometry with smaller radii to that of the 

previous geometry for the first turbulent flow with Reynolds number 4×10
3 

is 

about 0.4 while this ratio decreases to 0.3 for the last turbulent flow with 

Reynolds number 1×104. The corresponding figures also illustrated that the 

amplitude of circumferential velocity decreases with the radii of annulus. Larger 

magnitudes of phase angles were obtained in the new geometry with smaller radii. 
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