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Abstract 

Changes in the normal rhythmicity of the heart may result in different cardiac 

arrhythmias, which may be fatal or cause serious damage to the heart if 

sustained over long periods of time.  Ventricular tachycardia or fibrillation (VT-
VF) as fatal cardiac arrhythmia is the major cause leading to sudden cardiac 

death. It is crucial for the patient to receive immediate medical intervention 

when either VT or VF occurs. In this study, we present a novel, and 

computationally fast method to quantify the rhythmicity of the short-term 

electrocardiogram (ECG) signals based on spectral entropy feature and there by 

discriminate between normal sinus rhythm (NSR) and life threatening 
arrhythmias like, ventricular tachycardia/fibrillation (VT/VF). The receiver 

operating characteristic curve (ROC) analysis confirms the robustness of this 

new approach for a window length of 2 s and exhibits an average sensitivity = 

99.4% (99.4%), specificity = 98.7% (99.0%), positive predictivity = 98.7% 

(99.6%), and accuracy = 98.9% (99.2%), to distinguish between normal and VT 
(VF) subjects. The presented method is simple, highly accurate, 

computationally efficient, and well suited for real time implementation in 

automated external defibrillators (AEDs). 

Keywords: Electrocardiogram, Spectral Entropy, Ventricular fibrillation, 

                  Ventricular tachycardia. 

 
 

1.  Introduction 

Ventricular tachycardia (VT) and ventricular fibrillation (VF) are life threatening 

cardiac arrhythmias as classified in ventricular tachyarrhythmia [1, 2]. It is crucial for 

the patient to receive immediate medical intervention when either VF or VT occurs. 
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Nomenclatures 
 

H Normalized spectral entropy 

pi Normalized probability density function 

S(fi) Magnitude of spectral component at frequency fi, V
2
Hz

-1
 

Appropriate therapy, however, depends upon correct identification of VT and 

VF. Despite numerous recent advances in the field of medicine, Ventricular 

tachycardia/ fibrillation (VT/VF) has been difficult to manage with in clinical 

practice and mortality rate has remained high. As a consequence the development of 

new noninvasive methods and measures of mortality risk in VT/VF, including 

sudden cardiac death, is still a major challenge. The most important determinant in 

the survival of victims who suffer a cardiac arrest is the length of time between 

onset of the event and delivery of the defibrillation shock. The American heart 

association recommends defibrillation response within 5 minutes for out-of-hospital 

events and 3 minutes for in-hospital events [3]. However, the ANSI/AAMI EC13-

1992 standard requires alarms to be activated within 10 s of the onset of abnormal 

ECG signals [4]. Thus rapid detection and correct classification of these lethal 

arrhythmias can bring down the rate of mortality from such cardiac diseases. No 

doubt, appropriate defibrillator discharge at the right time can save the patient. But, 

inappropriate defibrillator discharge or anti-tachycardiac pacing remains an 

important clinical problem in implantable cardioverter-defibrillator therapy as they 

lead to unnecessary pain and sometimes proarrhythmic effects.  

As an implication in real time applications the value for specificity is more 

important than the value for sensitivity or the accuracy (minimal false negative 

and false positive results) must be high. This can be readily determined from the 

area under the curve (AUC) of Receiver operating characteristic (ROC) curve (see 

section 2.3 for details). A wide variety of methods for ECG tachyarrhythmia 

detection are available in the scientific literature [1-6]. Sequential hypothesis 

testing of binary sequences has been employed to detect ventricular fibrillation 

[7]. Though the method shows an improvement over previous methods, the 

accuracy is not high enough for clinical applications. Baodan Bai et al. use 

empirical mode decomposition (EMD) to detect ventricular fibrillation. They 

achieve an accuracy of 99.78%, 99.78% and 100% in separating VT, VF, and 

NSR, respectively using Bayes theory classifier [8]. However, no reference to the 

minimum length of rhythms required to distinguish them is made.  

EMD functions together with mean signal strength have been used to detect life 

threatening cardiac pathologies in a sequential algorithm [9]. The authors claim to 

detect the cardiac abnormalities with good accuracy for episode lengths of 8 s. 

Several attempts have been made in separating NSR and VT/ VF, in frequency 

domain and some are mentioned here. Stewart et al. showed that Fourier transform 

analysis of an 8 s primary (secondary) ventricular fibrillation produced power 

spectra with a narrow band of frequencies concentrated about the dominant 

frequency 6 (4) Hz [10]. In the latter case they found that resuscitation success was 

low compared with the former. The study suggested that higher the frequency of 

fibrillation beyond 5 Hz, the more is the chance of survival. An integrated 

framework to assess life threatening arrhythmia has been proposed by Henriques et 

al. [11]. They use ECG morphology and spectral components as discriminating 

features and achieve an average sensitivity of 89.3% and specificity of 94.1% for 
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episode lengths of 10 s. An algorithm called Diagnosis was developed by Barro et 

al. to classify ECG records into ventricular fibrillation-flutter, ventricular rhythms, 

imitative artifacts and predominant sinus rhythm based on four parameters 

computed in frequency domain [12]. Four ventricular fibrillation (VF) detection 

techniques were compared using recordings of VF to evaluate sensitivity and VF-

like recordings to evaluate specificity by Clayton et al. [13]. The techniques 

included threshold crossing intervals (TCI), autocorrelation function, signal content 

outside the mean frequency, and signal spectrum shape. They found that the TCI 

algorithm performed the best with an overall sensitivity of 93 per cent and 

specificity of 60 per cent. The spectrum, VF filter and ACF algorithms had overall 

sensitivities of 80, 93 and 87 per cent, and overall specificities of 60, 20 and 0 per 

cent, respectively. Rosado et al. combined time and frequency domain parameters in 

their VF detection algorithm to discern between VF and non-VF rhythms with a 

sensitivity of 86% and specificity of 94.3% [14].  

Spectral analysis of life threatening arrhythmias has been carried out by 

applying Fourier transform on 10 s ECG epochs [15]. It was found that spectral 

characteristics together with morphology parameters facilitate separation of 

shockable and non-shockable arrhythmia. Amann et al. studied the reliability of 

old and new ventricular fibrillation detection algorithms for AEDs [16] and 

proposed a better algorithm, signal comparison algorithm (SCA), which has an 

AUC = 0.87 with an overall sensitivity of 72.4 per cent and specificity of 98.0 per 

cent for episode lengths of 8 s. 

Many of the current algorithms, which use classical signal processing 

techniques to differentiate these rhythms, require more than 5 s of data [17]. We 

employ spectral entropy to quantify the information content in the rhythmicity of 

NSR, VT, and VF rhythms. Spectral entropy has been widely used, mostly in 

speech recognition [18, 19]. It is also employed as electroencephalographic measure 

of anaesthetic drug effect [20, 21]. This is the first time spectral entropy is used as a 

feature of rhythmicity to separate NSR from VT/VF. The rationale behind the 

application of spectral entropy feature is that (1) it is suitable for short widowed 

segments (of length 2s) of the ECG signal and (2) NSR, VT, and VF are rhythms 

belonging to different nonlinear physiological processes and hence the probability 

density functions of the power spectra of the three rhythms are characteristically 

different. Receiver operating characteristic (ROC) plots used show the efficacy of 

the spectral entropy feature in discriminating normal from VT/VF subjects. 

 

2.  Methods and Materials  

2.1.  Clinical data 

All the ECG records used are from the benchmark PhysioNet databases [22]. This 

work involved 18 long-term ECG records from normal sinus rhythm (NSR) 

database (nsrdb) and ECG records of 35 subjects who experienced episodes of 

sustained ventricular tachycardia, ventricular flutter and ventricular fibrillation 

(VT/VF) from Creighton University ventricular tachyarrhythmia database (cudb). 

Each VT/VF record contains 127,232 samples (slightly less than 8.5 minutes). 

Further, in these records, the minimum number of non-VF beats prior to the onset of 

a VF episode is 61. The mean time interval from the beginning of the record to the 

onset of VF is 5 minutes and 47 seconds. The NSR database includes 5 men, aged 
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26 to 45 years, and 13 women, aged 20 to 50 years. The age and gender of subjects 

in VT/VF database are not available. In order to arrive at the discriminating 

thresholds and verify their effectiveness in separating into normal and VT/VF the 

complete data set is divided into two subsets, training and testing. The NSR 

database is divided into two groups, first with 9 ECG records (Normal-1) and 

second, also, with 9 ECG records (Normal-2).  Likewise, the VT/VF database is 

divided into two groups, first with 15 ECG records (VT/VF-1) and second also with 

15 ECG records (VT/VF-2). Thus, training database comprises Normal-1 and 

VT/VF-1, while testing database comprises Normal-2 and VT/VF-2.  

From each record the modified limb lead II is only considered for analysis. 

The resolution is 200 samples per mV for nsrdb and 400 samples per mV for 

cudb. The sampling frequency of normal sinus rhythm signal from NSR is 128 Hz 

and that of VT/VF signal from cudb is 250 Hz. Since the sampling frequency 

does influence upon the calculated indices it is necessary to have the same 

sampling frequency for all the records. For this reason ECG signals from NSR 

database are first re-sampled at 250 Hz. Each record is filtered using a 40 Hz low 

pass filter to remove noise from the 50 Hz or 60 Hz mains interference and in 

particular, providing enough wideband to incorporate VF spectral terms. A 

detrending operation is also performed to remove the baseline wandering and a 

zero mean series is obtained. Then each record is divided into segments of equal 

time duration (2 s), with 500 samples/ segment in both normal sinus rhythm and 

VT/VF database. Each segment is windowed using Hanning window before the 

application of Fast Fourier transform (FFT) to reduce edge effects. We use 1024-

point discrete Fourier transform (DFT). A total of 82,650 segments from normal 

sinus rhythm and from VT/VF data base, each, are analysed. 

 

2.2.  Spectral entropy as a measure of rhythmicity 

In order to obtain spectral entropy feature, first the Fourier spectrum and then the 

spectral energy is computed for each segment [18]. Next the probability density 

function for the spectrum is estimated by normalization over all the frequency 

components as below: 

 pi = S(fi) / ∑k S(fk)        for 1 ≤  i  ≤  n and for 1 ≤  k  ≤  n                                    (1) 

where, pi is the probability density corresponding to frequency component fi, 

S(fi) is the spectral energy for the same frequency component, and n is the total 

number of frequency components in the FFT. The corresponding spectral entropy 

is defined as 

 H = - ∑i pi log2 (pi)            for 1 ≤ i ≤ n                                                                (2) 

A perfect sine wave has only one nonzero spectral component centered at its 

fundamental frequency, which is normalized to 1 in the probability density function, 

after the normalization process. This gives the minimal value for the spectral 

entropy of zero. Other similar frequency profiles with the spectral energy at specific 

frequencies, will lead to correspondingly lower values for spectral entropy. By 

contrast, true white noise will have spectral energy distributed over the entire range 

of frequencies, with a flat spectrum. This gives the maximal value for the spectral 

entropy of one. We use spectral entropy as a measure of rhythmicity. A larger value 

of H implies lower rhythmicity and a smaller value implies a higher rhythmicity. 
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2.3.  t-Tests and receiver operating characteristic (ROC) analysis 

The statistical differences between the spectral entropy values of normal and 

VT/VF groups are evaluated using non-paired and pair-wise significance tests 

(Student’s t-tests). In case of significant differences between groups, the 

discriminative performance of the spectral entropy analysis into normal from 

VT/VF subjects is assessed using receiver operating characteristic (ROC) plots in 

terms of the area under ROC curve (AUC). ROC curves are obtained by plotting 

sensitivity values (which represent the proportion of the patients with diagnosis of 

VT/VF who test positive) along the y-axis against the corresponding (1-

specificity) values (which represent the proportion of the correctly identified 

normal subjects) along the x-axis by varying the critical threshold value in the 

decision stage of the algorithm. The ROC curve represents the probability of a 

true positive result against the probability of a false positive result for all possible 

values of threshold. Accuracy is a related parameter that quantifies the total 

number of subjects (both normal and VT/VF) precisely classified.  

The AUC measures this discrimination, that is, the ability of the test to 

correctly classify those with and without the disease and is regarded as an index 

of diagnostic accuracy. The optimum threshold is the cut-off point in which the 

highest accuracy (minimal false negative and false positive results) is obtained. 

This can be determined from the ROC curve as the closet value to the left top 

point (corresponding to 100% sensitivity and 100% specificity). An AUC value of 

0.5 indicates that the test results are better than those obtained by chance, where 

as a value of 1.0 indicates a perfectly sensitive and specific test. With values of 

AUC between 0.90 and 1.0, the precision of the diagnostic test is considered to be 

excellent; with values between 0.8 and 0.89, it is good; with results between 0.70 

and 0.79, it is treated fair; with the values in the range 0.60 to 0.69 the precision is 

poor and for values between 0.50 to 0.59 it is considered as bad. 

 

3.  Results and Discussion 

To test for significance of spectral entropy feature, first we compare the entropy 

features of the ECG data from normal and VT/VF subjects of training database. 

Next, we validate our approach conducting another case study on normal and 

VT/VF subjects from testing database. The ECG records of the NSR and VT/VF 

databases are pre-processed and segmented as mentioned in Sec. 2.1. Spectral 

Entropy is analyzed from segments of 2 s (500 samples) over the entire recording 

period. In this study we did not separate VT and VF, since this decision is not 

required for defibrillators [23].  

The rhythm morphologies of three types of ECG signals, NSR episode, VT 

episode and VF episode are shown in Fig. 1. All the signals are plotted with 

respect to same time scale (in samples). It can be observed that the widths of the 

QRS complexes are different in the three signals. For NSR the QRS width is 

usually in the range 0.06-0.1 sec, and for VT the QRS complex is much wider (> 

0.1 sec). In VF, no QRS complexes are seen. Further, in the case of NSR P waves 

are normal, while in the case of VT/ VF no P waves are seen. Figure 2 shows the 

respective periodograms of the same ECG signals, NSR episode, VT episode and 

VF episode, shown in Fig. 1. All the power spectra are plotted with respect to 

same frequency scale (in Hz). The NSR episode being a broad band signal shows 
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energy concentration up to about 30 Hz, and the VT episode has energy 

concentration up to about 20 Hz. The VF episode has energy concentration only 

in the range 0-10 Hz. It is interesting to see that the spectral energy peaks of NSR 

are much smaller than those of VT and VF and the spectral energy peaks of VT 

are smaller than those of VF. It can be readily observed that all the three power 

spectra are characteristically different.  

 

 

 
Fig. 1. Rhythm Morphologies of Three Types of ECG Signals from 

Training Database. (a) NSR Episode, (b) VT Episode and (c) VF Episode. 
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Fig. 2. Periodograms of the same ECG Signals shown in Fig. 1.                         

(a) NSR Episode, (b) VT Episode and (c) VF Episode. 
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The distribution of spectral entropy values, for the NSR, VT and VF classes 

(training database) are shown using Box-whiskers plots in Fig. 3(a). The boxes 

(inter-quartile range) and also the whiskers of normal and VT/VF subjects are non-

overlapping. But, the boxes of VT and VF classes of training database overlap. This 

implies that spectral entropy can be used to distinguish between normal and VT/VF 

subjects. The results of statistical analysis of non-paired Student’s t-test for normal, 

VT and VF groups of training database are depicted in Table 1. All values are 

expressed as mean ± Standard Deviation (median) [95% Confidence Interval]. For 

normal subjects of training database, we find the following spectral entropy (mean ± 

S.D.): 0.7528 ± 0.0163. For VT subjects we find the following spectral entropy 

(mean ± S.D.): 0.5561 ± 0.0277, different from normal. For VF subjects we find the 

following spectral entropy (mean ± S.D.): 0.5039 ± 0.0252, different from normal. 

These distributions show that spectral entropy is sufficient to distinguish between 

normal and VT/VF subjects of training database. It is found that spectral entropy for 

VT/VF group is always smaller than that of the normal group. This implies an 

increase in the rhythmicity of VT/VF group compared to normal group, the 

rhythmicity of VF being higher than that of VT.  

Table 1. Descriptive Results of Spectral Entropy Analysis for Training 

Group. All Values are Expressed as Mean ± SD (Median) [95% CI].  (Non-

paired Student’s t-test; p < 0.0001) 

Subject spectral entropy 

NSR 

0.7528 ± 0.0163 

(0.752) 

[0.7506    0.7541] 

VT 

0.5561 ± 0.0277 

(0.556) 

[0.5545    0.5596] 

VF 

 

 

0.5039 ± 0.0252 

(0.5031) 

[0.5013    0.5087] 

Comparing paired t-test results (p-value and tstat) from Table 2, it is found 

that spectral entropy discriminates well NSR from VT/VF. This finding is 

substantiated using ROC plots, which are shown in Fig. 3(b), with normal and VT 

(shown by solid line) and normal and VF (shown by dash-dot line). With spectral 

entropy, in Fig. 3(b), it is found that (i) for normal and VT separation, the area 

under the curve (AUC) is 0.9944 with sensitivity = 99.4%, specificity = 98.7%, 

positive predictivity = 98.7%, and accuracy = 98.9% and (ii) for normal and VF 

separation, the area under the curve (AUC) is 0.9972 with sensitivity = 99.4%, 

specificity = 99.0%, positive predictivity = 99.6%, and accuracy = 99.2%. At the 

cut-off point for best sensitivity and specificity, the critical threshold value of 

spectral entropy to separate NSR from VT in the training database is found to be 

0.6843, while that to separate NSR from VF is found to be 0.6603. 

Table 2. p-Values and tstat (Test Statistic ) Values of Paired t-test for Spectral 

Entropy Analysis of Normal and VT/VF Subjects from Training Group. 

Subject VT VF 

NSR 
p= 0; 

tstat= 118.2250 

p= 0; 

tstat= 133.0937 
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Fig. 3. (a) The Distribution of Spectral Entropy Values Using Box-Whiskers 

Plots (without Outliers) for Normal, VT and VF Rhythms from Training 

Database. (b) ROC Curves with Spectral Entropy, for Normal and VT (Solid 

Line), and Normal and VF (Dash-dot Line).  

The diagonal line (dotted line) from 0,0 to 1,1 represents ROC Curve that cannot 

discriminate between normal and VT/VF from training database. 

Figures 4(a) and (b) show, respectively, synthesized ECG signals from 

training database comprising NSR-VT, and NSR-VF rhythms in sequence, each 7 

s (3500 samples) long, together with the corresponding spectral entropy 

variations. The empirically found critical thresholds (at Th1 = 0.6843 and Th2 = 

0.6603 marked by horizontal solid lines in the respective figures) are used for 

separating NSR and VT/ VF rhythms. For NSR rhythm the spectral entropy is 

above Th1 (Th2). But with the onset of VT (VF) rhythm the spectral entropy 

Normal-1 VT-1 VF-1

0.3

0.4

0.5

0.6

0.7

0.8

S
p
e
c
tr
a
l 
E

n
tr
o
p
y

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1-Specificity

S
e
n
s
iti

v
ity

(b)

 

 

Spectral Entropy Normal-VT

Spectral Entropy Normal-VF



Quantification of Electrocardiogram Rhythmicity to Detect Life Threatening     597 

 

 
 
Journal of Engineering Science and Technology           October  2013, Vol. 8(5) 

 

suddenly falls and remains below Th1 (Th2). Thus, spectral entropy can readily 

track onset of VT/VF. 

 

 

Fig. 4. Variation of Spectral Entropy (dotted line) for a Simulated Signal 

(Solid Line) Comprising (a) NSR-VT and (b) NSR-VF Rhythms in Sequence 

from the Training Database.  

The horizontal solid lines mark the respective threshold. 
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Fig. 5. (a) The Distribution of Spectral Entropy Values Using Box-Whiskers 

Plots (without outliers) for Normal, VT and VF Rhythms from Testing 

Database. (b) ROC Curves with Spectral Entropy, for Normal and VT (Solid 

Line), and Normal and VF (Dash-dot Line).  

The diagonal line (dotted line) from 0,0 to 1,1 represents ROC Curve that cannot 

discriminate between normal and VT/VF from training database. 

 

The results of statistical analysis of non-paired Student’s t-test for normal and 

VT/VF groups of testing database are depicted in Table. 3. All values are 

expressed as mean ± Standard Deviation (median) [95% Confidence Interval]. For 

normal subjects, we find the following spectral entropy (mean ± S.D.): 0.7509 ± 
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spectral entropy are shown in Fig. 5(b). It is found that (i) for normal and VT 

separation, the area under the curve (AUC) is 0.96304 with sensitivity = 97.7%, 

specificity = 95.2%, positive predictivity = 97.6%, and accuracy = 96.4% and (ii) 

for normal and VF separation, the area under the curve (AUC) is 0.9805 with 

sensitivity = 99.3%, specificity = 96.9%, positive predictivity = 90.4%, and 

accuracy = 97.5%. At the cut-off point for best sensitivity and specificity, the 

critical threshold value of spectral entropy to separate NSR from VT in the testing 

database is found to be 0.7024, while that to separate NSR from VF is found to be 

0.6712. Both of these values are higher than the corresponding values of the 

training database. If we are to maintain critical threshold values for the testing 

dataset, same as those of training set, then it is found that in either case the 

specificity increases while sensitivity decreases which is exactly what an AED 

algorithm would want. To be specific, the new sensitivity and specificity values to 

separate NSR from VT in the testing database are found to be 95.51% and 

96.59%, respectively. The new sensitivity and specificity values to separate NSR 

from VF are found to be 98.92% and 96.94%, respectively. The above results 

again substantiate our finding that spectral entropy of ECGs discriminates well 

NSR from VT/VF. The difference in accuracy and other measures of testing 

database can be attributed to age differences and differing male-to-female ratios 

between training and testing databases. 

Table 3. Descriptive Results of Spectral Entropy Analysis for Testing Group. 

All Values are Expressed as Mean ± SD (Median) [95% CI].  (Non-paired 

Student’s t-test; p < 0.0001) 

Subject spectral entropy 

NSR 0.7509 ± 0.0077 (0.752) 

[0.7396    0.7437] 

VT 0.6144 ± 0.0245 (0.6171) 

[0.5975    0.6028] 

VF 

 

 

0.4806 ± 0.0292 

(0.4785) 

[0.4804    0.4903] 

 

 

Table 4. p-Values and tstat (Test Statistic) Values of Paired t-Test for Spectral 

Entropy Analysis of Normal and VT/VF Subjects from Testing Group. 

Subject VT VF 

NSR 
p= 0; 

tstat= 81.7002 

p= 0; 

tstat= 108.2952 

 

Synthesized ECG signals from testing database comprising NSR-VT, and NSR-

VF rhythms in sequence, each 7 s (3500 samples) long, together with the 

corresponding spectral entropy variation are depicted in Figs. 6(a) and (b), 

respectively. The empirically found critical thresholds of training database (at Th1 = 

0.6843 and Th2 = 0.6603 marked by horizontal solid lines in the respective figures) 

are retained for discriminating NSR and VT/ VF rhythms from testing database. 

Like in Fig. 4, for NSR rhythm the spectral entropy is always above Th1 (Th2). But 

when VT (VF) rhythm occurs the spectral entropy suddenly falls and remains below 

Th1 (Th2). Thus, spectral entropy can keep track of the onset of VT/VF. 
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Fig. 6. Variation of Spectral Entropy (Dotted Line) for a Simulated Signal 

(Solid Line) Comprising (a) NSR-VT and (b) NSR-VF Rhythms in Sequence 

from Testing Database.  
The horizontal solid lines mark the respective threshold (from training database). 

The results obtained are reproducible and very promising. The presented method 

is simple, computationally efficient, and well suited for real time implementation in 

AEDs. One limitation of the current study is the small sample size. Although we 

have reported spectral entropy to yield excellent results based on the p-value 

generated from the t-statistics, factors like high variance, age differences, and 

differing male-to-female ratios between groups will have an impact on the results 

when statistical analyses are carried out on small sample sizes. Nevertheless, the 

results of this study provide sufficient evidence to warrant the execution of larger 

studies that can provide more statistically robust confirmation of the application of 

symbolic dynamics as a reliable measure of cardiac health. 
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4.  Conclusion 

The spectral entropy analysis was applied on the windowed nonstationary raw ECG 

time series from normal and VT/VF subjects. The quantified spectral entropy is 

found to have potential in discriminating normal and VT/VF subjects and thus can 

significantly add to the prognostic value of traditional cardiac analysis. This entropy 

feature can easily be analysed from the automated AED ECG recordings without 

time consuming pre-processing and hence, are appropriate for practical applications. 

Appropriate defibrillator discharge at the right time can save the patient. At the 

same time, inappropriate defibrillator discharge or anti-tachycardiac pacing remains 

an important clinical problem in therapy as they lead to unnecessary pain and 

sometimes proarrhythmic effects. To circumvent this problem it is essential that the 

accuracy (minimal false negative and false positive results) is high (with our 

algorithm about 99.0%). Many of the current algorithms, which use classical signal 

processing techniques to differentiate the rhythms, require more than 5 s of data. 

Using longer record for this kind of analysis is not amenable. Although the ECG 

data we use contains both 30 minutes and 20 hours duration records, our method 

tests very short segments, of the order of 2 s duration. Hence the method is well 

suited for real time implementation in AEDs. 
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