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Abstract 

An effective stud weld algorithm has been developed using a tensile strength 

response. A multi objectives neural network modeling was used to get higher 

tensile strength with lower variance. A multi-layer perception (MLP) was trained 

by back propagation Levenberg-Marquardt (LM) [8:16:2] algorithm using sample 

testing measures. The result was compared with Taguchi experimental design 

method. The comparison shows that neural network is an effective method to 

represent this multi objective target problem. The verification of results shows 

that the ultimate tensile strength increases by 30.84% and the standard deviation 

around mean reduces by 30.06%.The results prove that neural network is a 

powerful tool to represent the multi level eight input parameters with two 

objectives first is to maximize the ultimate tensile strength and the second is to 

minimize the standard deviation of tensile strength with almost negligible error 

(4.96 ×10-10) for representing data. 

Keywords: Multi-objective neural network, Optimization, Stud arc welding process. 

 

 

1.  Introduction 

A process may be defined as the combination of inputs (such as materials, 

machines, manpower, measurement, and environment) and methods that results in 

various outputs which are measures of performance [1]. The inputs X1, X2…Xn are 

input factors, such as welding time, welding current, types of materials, and other 

process variables are transformed to a finished part that has several quality 

characteristics. It is usually necessary to model the relationship between the 

influential input variables and the output quality characteristic [2, 3].  

     The purpose of this paper is to demonstrate the evaluation of optimizing manu- 
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Nomenclatures 
 

L162
7
1

8
 Design of experiments matrix array of 16 run for 7 parameters 

with two levels and 1 with eight levels 

N Sample size 

OA Orthogonal Array 

R
2
 Sum of square error model 

S Standard deviation of ultimate tensile strength samples  N/mm
2
 

Xn Processes variables or parameters 

x  Mean of ultimate tensile strength samples  N/mm
2 

 

Greek Symbols 

βn Main effects terms in equation 

ε All the random variation that can’t be explained by all other terms. 

facturing process for stud arc welding parameters based on an Artificial Neural 

Network (ANN) which can represent complex input/output relationship. The 

neural networks learn by repeatedly trying to match the set of input data to the 

corresponding output target values. After a sufficient number of learning 

iterations, the network creates an internal modal that can be used to predict for 

new input conditions, in which the natural network recognizes the correlative 

patterns between the inputs and output for the corresponding process [4-11]. 

 

2.  Artificial Neural Network (ANN) 

Multi Layer Perception (MLP) is a popularly used neural network structure. In the 

MLP neural network, the neurons are grouped into layers. The first and the last 

layers are called input and output layers, respectively, and the remaining layers are 

called hidden layers. Typically, an MLP neural network consists of an input layer, 

one or more hidden layers, and an output layer. The inputs are fed into the input 

layer and get multiplied by interconnection weights as they are passed from the 

input layer to the first hidden layer. Within the first hidden layer, they get summed, 

and then processed by a nonlinear function (usually the hyperbolic tangent). As the 

processed data leaves the first hidden layer, again it gets multiplied by 

interconnection weights, then summed and processed by the second hidden layer. 

Finally the data is multiplied by interconnection weights and then processed one last 

time within the output layer to produce the neural network output. Neural networks 

can easily represent non-linear relationships between input data and output data. 

Even if the data is incomplete, neural networks are able to correctly classify the 

different data classes captured from the network or other sources [12]. 

 

The training algorithm 

Levenberg-Marquardt (LM) algorithm supervised learning was used in this study. 

In order to train a neural network to perform some task, we must adjust the 

weights of each unit in such a way that the error between the desired output and 

the actual output is reduced. In other words, it must calculate how the error 
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changes as each weight is increased or decreased slightly, i.e., the neuron in the 

network learns by changing the weights and the bias. 

The following steps take place when each neuron is activated [13]: 

a) Various signals are received from other neurons. 

b) A weighted sum of these signals is calculated. 

c) The calculated sum is transformed by a function (knowing as activation 

function). 

d) The transformed result is send to other neurons. 

 

3.  Experimental Work 

This work employs eight parameters affect ultimate tensile strength of stud welding. 

These parameters are (Welding Time, Sheet Thickness, Sheet Material, Welding 

Current, Stud Design, Stud Material, Preheating, and Surface Cleaning). The levels 

for welding time are shown in Table 1, and the list of seven control parameters and 

their levels are shown in Table 2. The selection of a number of levels depends on 

how the outcome (tensile strength) is affected due to different level settings. 

 

Table 1. Levels of Welding Time Control Parameter. 

 

Table 2. Control Parameters and Levels for the Experiments. 

Parameters Parameter labels Unit Level1 Level 2 

Sheet thickness X2 mm 1.6 3.175 

Sheet material X3 None K52355 K14358 

Welding current X4 Ampere 350 540 

Stud design X5 None Un-flange stud Flange stud 

Stud material X6 None 54NiCrMoS6 40CrMnMoS8-6 

Preheating X7 None Preheating No preheating 

Surface cleaning X8 None Oil  sheet Clean sheet 

 

3.1. Experimental process run  

The experiment was conducted based on the design matrix. The experiments depend 

on the L162
7
1

8
 OA [11]. The value of ultimate tensile strength for each run (from 1-16) 

was measured by the tensile strength test machine. Five samples were taken for each 

run. The mean and standard deviation of measured ultimate tensile strength were 

calculated by equations 1 and 2 respectively, and recorded in Table 3. 

Mean:   Nxx
N

i

i /
1

∑
=

=                                                                     (1) 

Standard deviation: ( ) ( )1/
1

2
−−= ∑

=

NxxS
N

i

i
                                               (2) 

Table 3 explains the eight parameters level for each run of experiments, for 

example row 4, number 2 represents the level two for parameters: welding time      

Parameter 
Parameter 

label 
Unit Level 

Welding 

time (s) 
X1 s 

1 2 3 4 5 6 7 8 

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
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(0.2 s), sheets thickness (3.175 mm), sheet material (K14358), welding current (540 

ampere), and stud design (Flange stud). While number 1 represents level one for 

parameters: stud material (54NiCrMoS6), preheat (Preheating), and surface cleaning 

(oil sheet). At these parameters, the mean of tensile strength for five samples of stud 

welding was (377.310 N/mm²) and standard deviation was (46.790 N/mm²). 

 

Table 3. Design Matrix Array L162
7
1

8
 with Mean                                           

and Standard Deviation of Samples Ultimate Tensile Strength. 

 

4. Surface Response Experimental Design Method 

The general Y=f(X) linear equation with multiple Xn is: 

Y=β0+β1X1+β2X2+β3X3+β4X4+β5X5 +….+ΒnXn+ε                                                (3) 

where Y is the response, Xn are the variables, β0 is the overall effect, β1, β2, β3, 

βn are the main effects terms in equation, and ε is the term that for all the random 

variation that can’t be explained by all other terms.  

An empirical model was derived that extended the experimental results into a 

functional relationship that predicts values at all points in the experimental space 

with accuracy. Ordinary least-squares regression was used to create empirical 

models for each of the two-performance measurement (mean and standard 

deviation). Multiple linear regression models based on the data given in Table 3 

were obtained from Minitab 14 package software. These models approximately 

predict the mean function of tensile strength, Y1, as shown in Table 4, and 

standard deviation, Y2, as shown in Table 5. 

 

Table 4. Tensile Strength Linear Regression Equation, R
2
 = 43.5%. 

Predictor Coefficient of Parameter T P 

Constant 79.6 0.45 0.667 

X1 -5.198 -0.55 0.598 

X2 27.87 0.65 0.539 

X3 58.49 1.36 0.217 

X4 10.98 0.25 0.806 

X5 15.78 0.37 0.725 

X6 57.22 1.33 0.226 

X7 -47.70 -1.11 0.305 

X8 29.34 0.68 0.518 
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Table 5. Standard Division Regression Equation, R
2
 = 47.0%. 

Predictor Coefficient of Parameter T P 

Constant 12.81 0.28 0.786 

X1 1.874 0.78 0.463 

X2 -5.36 -0.48 0.643 

X3 0.05 0.00 0.997 

X4 7.49 0.68 0.520 

X5 8.99 0.81 0.443 

X6 16.59 1.50 0.177 

X7 5.09 0.46 0.659 

X8 -10.81 -0.98 0.361 

 

The regression equations for the mean tensile strength and standard deviation 

are as follows: 

Tensile strength: 

Y1=80-5.20X1+27.9X2+58.5X3+11.0X4+15.8X5+57.2X6-47.7X7+29.3X8                      (4) 

Standard deviation: 

Y2=12.8+1.87X1-5.4X2+0.0X3+7.5X4+9.0X5+16.6X6+5.1X7-10.8X8                      (5) 

where X1 is welding time, X2 is sheet thickness, X3 is sheet material, X4 is 

welding current, X5 is stud design, X6 is stud material, X7 is preheat sheet and X8 is 

surface cleaning.  

The significant factor is the square error root R² of the response data from the 

entire solution space. The value of R² of the model must be 80 percent or higher that 

can be confident to represent the data, while the unexplained variation ε accounts 

for the remaining 20 percent or less. The 1
st
 and 2

nd
 model to response data were 

evaluated the values of R². The R² for the two models are low (47.0% for the mean 

model and 43.5% for the standard deviation model, respectively). This problem may 

be solved by many ways; the first one is to take the higher order of model 

representation. However this will make the model very complex as there are many 

coefficients for the factors. The second method is by eliminating some factors that 

have a small effect on the process by stepwise, but this method will loose some 

parameters in the model. Other method is neural networks which has learning 

model characteristics. These characteristics support the neural networks as a 

competitive tool in processing multivariable input-output implementation. 

 

5.  Neural Network Model Development 

The first step toward developing a neural model is the identification of inputs (x) 

and outputs (y). Artificial neural networks are employed commonly in the 

prediction of output parameters by training the network with the experimental 

results obtained [14].The output parameters are determined based on the purpose 

of the neural-network model. The flow chart of program is shown in Fig. 1 and 

the input variables, output variables, number of nodes and exciting function are 
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shown in Table 6. Non-linear Artificial Neural Network architecture of developed 

program is shown in Fig. 2. 

 

Fig. 1. Flowchart Demonstrating Neural-Network Training Neural Model 

Use of Training Data Sets in ANN Model Approach. 

 

Table 6. Parameter Optimization Settings for Artificial Neural Network. 

Input variables welding time, sheet thickness, sheet material, welding 

current, stud design, stud material, preheat sheet and 

surface cleaning 

Output variables mean tensile strength value, standard deviation value 

Testing data 16 sets experimental data 

Input nodes 8 

Output nodes 2 

Hiding nodes 16 

Exciting function sigmoid activation function hyperbolic tangent 

  

Levenberg-Marquardt method (LM) 
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Fig. 2. Non-Linear Artificial Neural Network Architecture Program. 

 

Neural-Network Model Training 

The neural-network weight parameters, w, are initialized so as to provide a good 

starting point for training (optimization). The artificial neural network program input 

and output are shown in Table 7. The initialization of the weights is performed with 

small random value (0.01) and then by changing the number of hidden nodes (the 

initial assumption number is five), and by trial and error for the number of nodes and 

the value of error, the optimum performance of training is shown in Fig. 3. 

Table 7. Input and Output of Artificial Neural Network Program. 

Input Output 
1 1 1 1 1 1 1 1 
1 2 2 2 2 2 2 2 
2 1 1 1 1 2 2 2 
2 2 2 2 2 1 1 1 
3 1 1 2 2 1 1 2 
3 2 2 1 1 2 2 1 
4 1 1 2 2 2 2 1 
4 2 2 1 1 1 1 2 
5 1 2 1 2 1 2 1 
5 2 1 2 1 2 1 2 
6 1 2 1 2 2 1 2 
6 2 1 2 1 1 2 1 
7 1 2 2 1 1 2 2 
7 2 1 1 2 2 1 1 
8 1 2 2 1 2 1 1 
8 2 1 1 2 1 2 2 

182.302 
280.315 
249.082 
377.31 
237.453 
331.202 
323.375 
348.828 
297.547 
450.352 
395.933 
172.287 
224.283 
220.052 
252.352 
204.927 

28.86 
36.946 
32.539 
46.79 
52.977 
77.637 
104.318 
36.095 
68.611 
76.343 
62.388 
40.835 
43.258 
47.705 
62.900 
50.651 
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Fig. 3. Neural-Network Data Training. 

 

The output is calculated by determining the difference between given output 

and the demand output. After finding the relationship between the input and the 

output, the error between experimental data and the ANN output data for each of 

the eight parameters is shown in Table 8. The neural network method shows an 

almost negligible error (4.96 ×10
-10

). 

 

Table 8. Represents the Error Value of Each Parameter                                   

in Neural Network Function. 

Sample 

Tensile 
1 2 3 4 5 6 7 8 9 10 

Strength 

N/mm2 
418.6 441.7 381.2 372.9 462.9 491.8 3835 482.5 368.5 354.5 

 

6.  Result Verification 

The parameters setting based on ANN are: X1 level 6: welding time = 0.32 second, 

X2 level 2: sheet thickness = 2.93 mm, X3 level 2: sheet material = non- 

galvanized (K14358steel) sheet, X4 level 1: welding current = 430 Ampere, X5 

level 1: stud design = un-flange stud, X6 level 2: stud material = 40 CrMnMoS8-6 

steel stud, X7 level 1: Preheating, X8 level 2: Surface cleaning = Clean sheet. 

Under these parameters, the sheet thickness of (3.175 mm) and welding 

current is (540 Ampere), ten samples were produced and the results are shown in 

Table 9. The mean tensile strength from the confirmation run was 415.87 N/mm
2
; 

and the standard deviation is 50.748 N/mm
2
. 

Table 9. Tensile Strength of Ten Samples for Stud                                          

Welding Input Parameters Based on Neural Network Results. 

Parameters X1 X2 X3 X4 X5 X6 X7 X8 

Percent of 

error(×10
-10

) 
-0.2 -2 0.5 0.4 0.5 2.3 2.1 -3.2 
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7.  Comparison between Artificial Neural Network and Taguchi 

Experimental Design Solution 

The experimental results from neural network and statistical Taguchi approach was 

compared and plotted in Fig. 4. Taguchi experimental design is a statistical 

technique that allows running the minimum number of experiments to optimize the 

process. Experimental design offers a method of getting the maximum information 

from the minimum number of tests. In addition, valuable information can be gained 

on interactions between variables-interactions are often very important, and may be 

missed when investigations are carried out changing one variable at a time.  

The Taguchi technique places a deal of importance on the reduction in 

variability of products and processes; in other words to make products and 

processes more robust and less susceptible to changes due to outside influences 

such as raw material variation, temperature, and changes to machines and operators. 

Improved robustness can often be achieved without major capital expenditure 

through the use of these techniques. This figure shows confirm the further 

improvements with stable quality output when neural network was applied. 

 
Fig. 4. Comparison between Neural Networks                                               

with Taguchi Experimental Design for Tensile Strength Data. 

 

8.  Conclusions 

The study has shown a significant improvement (approximately 30.84%) in stud 

joint strength increase and (approximately 30.06 per cent) decrease in stud joint 

strength variation. The relationships between multiple level eight input parameters 

with response of mean tensile strength and standard deviation was conducted, but 

the sum of square error (R
2
) was calculated and found to have a minimum value 

(47% for mean and 43.5% for standard deviation), while it  should be at least 80% 

for good representation of data. On the other hand the neural network method shows 

an almost negligible error (4.96×10
-10

) for representing data. The study proves that 

effective relation as the table of error values was shown. The paper shows that 

neural network is effective tool for solving non-linear relation between input 

parameters and multi output of stud arc welding process. 
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