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Abstract 

This paper presents an artificial neural network (ANN) method applied to a 

multistage re-entrant line system. Generally, queuing networks adopt analytical 
methods or use simulation packages to determine their performance measure. 

The contribution of this paper is the development of an alternate solution 

method using ANN approach to determine performance measure namely the 

total cycle time for a Reflow Screening (RS) operation in a semiconductor 
assembly plant. Performance measure of an operation is an important aspect in 

management decision making. In order to validate the proposed method, 

comparison results were made using the analytical method based on mean value 

analysis (MVA) technique for the re-entrant line and with some historical data 
collected from the operation. In this paper, Back Propagation Network (BPN) 

learning algorithm is proposed for the computation of the total cycle time with 

respect to the number of lots circulating in the system. Extensive training and 

testing of the proposed ANN method is performed which enables the BPN 
model to be used to determine the required total cycle time. 

Keywords: Mean value analysis, Artificial neural network, Reflow screening. 
 

 

1.  Introduction 

The Reflow Screening (RS) is a process in the semiconductor back end 

manufacturing industry. The RS operation is not part of the main production line, 

but performed separately in a reliability laboratory environment. The purpose of 

the reflow operation is to mount chips on printed circuit board, in the electronic 

assembly plants.  However,  in  the semiconductor  industry,  the reflow operation  
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becomes a screening process to remove defective units residing in the lots. This is 

known as reflow screening [1,2]. 

The RS operation is a 5 stage operation with feedback (re-entrant) and the re-
entrant happens at the second stage where lots that need subsequent round of 

screening are re-routed from the fifth stage. However, to facilitate this study, the 

operation is conditioned such that it has either single re-entrant line or without re-

entrant line. For illustration purpose, if k number of lots enter the system, they will 

either go for one cycle of screening (without re-entrant) or two cycles of screening 

(single reentrant). The block diagram of the operation is depicted in Fig. 1. 

The motivation of this research is to develop a solution method using artificial 
neural network (ANN) on a queueing network system to compute the total cycle 

time for a given number of lots which circulates in the system. The validity of this 

approach is verified using the analytical computation based on mean value 

analysis (MVA) which is widely used in the queuing network applications. The 

total cycle time (makespan) is defined as the time taken to complete the entire 

process sequence for a given number of lots.  

Artificial neural networks (ANNs) apply a different way from traditional 

computing methods to solve problems. Basically, conventional computers use 

algorithmic approach which means that specific steps have to be defined for the 
computer in order to solve a specific problem. That means, traditional computing 

methods can only solve the problems that we have already understood and knew 

how to solve. Due to ANNs ability to adapt, learn, generalize, cluster or organise 

data, it has in some way become powerful tool to solve problems that we do not 

exactly know how to solve.  There are so many structures of ANNs including, 

percepton, adaline, madaline, kohonen, back propagation and many others.  Back 

propagation network (BPN) is the most commonly used, as it is relatively very 

simple to implement and effective. In this work, BPN approach is adopted to 

develop the proposed solution method.   

The remainder of this paper is organized as follows. Section 2 deals with the 

analytical model formulation for the RS operation. Section 3 briefly introduces 

the back propagation network (BPN), its architecture, training algorithm and 
recognition phase. The implementation of BPN to determine the total cycle time 

is also included. Section 4 presents computation and comparative results of the 

system being studied by the proposed method and section 5 concludes this paper. 

Nomenclatures 
 

bil Buffers at stage i for l th cycle 

i Index of stage, i = 1,…, M 

j Index of the previous stage where the lots are arriving from 

k Number of lots in the system, k =1,…, N 

l                 Number of screening cycles  l = 1, …, P 

Lil(k)         Mean number of lots waiting at bil with k number lots in the system 
Wil (k)       Mean waiting time of  a lot in bil when the system has k number of  lots 

WT (k) Total cycle time of k number of lots going through all buffers 
 

Greek Symbols 

(k)           Throughput rate when the system has k lots  

il             Mean processing rate of a lot at buffer bil  
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2. Analytical Model Formulation  

The RS operation has five stages serially connected with buffers at every stage. 

Figure 1 illustrates the block diagram of the RS operation. When lots arrive at any 

stage from the previous one, the lots will queue in their respective buffer before 

they are processed. 

 Buffers are temporary waiting place before the lots are processed. In this case 

the lots are processed on a first come first serve basis. Every stage acts as a single 

server system with its own service rate. After the last stage, lots are fed back into 

the second stage and will undergo repeated cycles of reflow screening as required 

by the lots. 

 

 

Fig. 1. Block Diagram of the Reflow Screening Operation. 
 

 

2.1.  System assumption 

In order to facilitate the development of the proposed method for both analytical 

and BPN approach, the RS operation is described as a queuing system. However, 

to avoid mathematical complexity, several assumptions are considered as follows: 

 In order to utilize the MVA equations, the RS operation is considered as a 

closed network system where there is no continuous external arrival. The 

number of lots in the system (WIP) is kept constant. Consequently, the 

operation can be described as a closed and product form queuing system. 
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Once the adaptation is done, the performance measure of the total cycle 

time is computed. 

 All stages have their own constant mean process time. Any small changes 

in the lot size does not affect the process time. If the changes are large 

enough, then the entire lot is removed from the operation and immediately 

replaced by a similar lot. The lots have standard size too.  

It is also assumed that the operation is free from disturbances, interruptions or 

additional setup time which can add to the total cycle time. 

 

2.2.  MVA equations 

MVA equations are based on the arrival theorem and Little’s Law [3]. Arrival 

theorem defined by Reiser and Lavenberg and Gross and Harris [4,5] states that 

the queue length observed by an arriving lot to a workstation is the same as the 

overall queue length seen by an outside lot when system’s lot population is less 
by one. Little’s Law gives a relationship between mean queue length with the 

arrival rate and mean waiting time [6,7]. Thus the mean waiting time of lots in 

buffer bil is  

ilil
il

kL
kW il



1)1(
)( 


                                                                         (1) 

The total cycle time for k number of lots in the system having P number of re-

entrant lines is derived as 

 
 

M

i

P

l
il kWkTW

1 1

)()(                                                                             (2)  

Equation (2) indicates that all k lots will go through all the buffers in its 

route. Applying little’s law for the population of lots in the system; the throughput 

rate is obtained as 

)(
)(

kTW

k
kλ                                                                                     (3)    

                                                                                                   

The mean queue length at every buffer is 

 

Lil(k) = k) Wil(k)                                                                                                 (4) 

                                                              
The initial conditions for the iterations are 

Lil(0) = 0 ,  Wil(0) = 0 ,  (0) = 0                                                                          (5) 

 

The total cycle time is computed by an iterative method with the given initial 
conditions. The analytical model shown above indicates that all k number of lots 

will pass through every buffer before exiting from the system. In this study the 

nature of the re-entrant is purely deterministic [8].  

For experimenting with the re-entrant model, the input parameters are the 

service time of each stage, obtained from a real reflow screening operation [8,9]. 

The time taken by each stage to process the lots is measured over period of time 

and averaged. For computation purpose, the values are considered as follow. 
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3.  ANN Model Formulation 

3.1.  BPN architecture 

The most common BPN architecture is presented in Fig. 2 [10]. The architecture 

has three layers, namely, input, hidden and output layers. Other implementations 

may have several hidden layers. Back Propagation Network contains one or more 

layers each of which are linked to the next layer. The first layer is called input 

layer which meets the initial input and so do the last one output layer which holds 

input's identifier. The layers between input and output layers are called hidden 

layer(s) which only propagates previous layer's outputs to the next layer and back 

propagates the following layer's error to the previous layer. Actually, these are the 

main operations of training BPN which follows a few steps.  

 

 Fig. 2. Basic BPN Architecture. 
 

Training such a network involves two phases [11]. In the first phase, the 

inputs are propagated forward to compute the outputs for each output node. Then, 

each of these outputs is subtracted from its desired output, causing an error. In the 

second phase, each of these output errors is passed backward and the weights are 

fixed. These two phases is continued until sum of square of output errors reaches 

to an acceptable value. During the training, several sets of the input and their 

corresponding output vectors are considered. The training phase is used to 

determine the weights between the input, hidden and output layers. The neurons 

used in the study utilize the sigmoid activation function defined by the following 

Eq. (6) 
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                                                                                (6) 

 

where  is the abruptness of the sigmoid function and the range is 0-1 and the 
v is the total input to the neuron. Let the vector X represent an input to the input 

layer as shown in the Fig. 2. The net input at the hidden layers is computed by the 
matrix in Eq. (7). 

 

VH = [WHji]X                                                                                                          (7) 

 

where WHji denotes the weight between i
th

 input layer node and j
th

 hidden 

layer node. 

The output of the hidden layer nodes are given by Eq. (8) 

 

YH  =  (VH)                                                                                                           (8) 
 

where  is the appropriate sigmoid activation function. In a similar manner, 
the total input at the output layer is given by Eq. (9). 

 

VO = [WO] VH                                                                                       (9) 

 
WO is a random weight selection at the initial stage (starting of the iteration). 

Vo is compared with the actual output and if there is any difference the weight WO 

is adjusted according to the error during the successive iteration. This process 

(adjustment) continues until the error (difference between the calculated output Vo 

and the actual output) is zero or less than the specified tolerance. The output of 

the output layer node is given by 

Y =  (VO)                                                                                                           (10) 

 The steps of the well-established training algorithm based upon Newton’s 

steepest descent technique are given below: 

 

Step 1. Read in the training set and randomly initialize the weights. Set iteration 

index n=1. 

Step 2. Set training set index p=1. 

Step 3. Propagate X
p
 through the network. 

Step 4. Determine the error vector of the p
th
 training set E

p 
= O

p 
- Y

p
 where O

P
 is 

the vector of expected output. 

Step 5. Correct the weights using Newton's steepest descent technique. 

Step 6. If p < number training sets P, set p = p+1 and go to step 3. 

Step 7. 
If 



P

p

p

1

2
E > tolerance  increment the iteration index n and go to step 2. 

The above method works well and has been well documented. It requires 

input and output from a continuous domain. Furthermore, it also requires that the 

input and output set of vectors are non-contradictory for a successful training and 
operational function. 
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3.2. Implementation of BPN to compute the total cycle time, WT 

The input vector for the BPN is the number of lots circulating in the system. Thus  

X = [k1, k2, k3, ... kN]                                                                                            (11) 

where kN is the number of lots circulating for a given  period of time.   

Several sets of lots were created by the following scheme: 

(a) Varying the number of lots of a system without re-entrant. 

(b) Varying the number of lots for a system with a single re-entrant line. 

The k
th

 such lots generated is referred to by the vector X
K
. Similarly the 

corresponding output vector for this k
th

 input is referred to by O
K
. The output 

vector refers to the total cycle time for a given number of lots.    

Summarizing, several of these input and output vector pairs are generated by 

the analytical method explained in Section 2 and are stored for the BPN training. 

After the successful training of the BPN model, it should able to produce the total 

cycle time for any number of lots with minimum time and maximum accuracy. 

 

4.  Computational Experience and Results 

A 5 stage re-entrant system is tested using the proposed method. Two situations 

are applied which are the single re-entrant and without re-entrant. In order to 

achieve a broad representation of the re-entrant system in the Back Propagation 

Network, approximately 100 input-output vector pairs are generated for the 

considered RS operation. The training is done in two fold. Firstly, a system 

without any re-entrant is attempted and secondly, the system with a single re-

entrant is tested.  The BPN was trained in MATLAB® environment [12] and 

results of this training for both cases are shown in Figs. 3 and 4 respectively. For 

these cases, the training seemed to require 162 and 196 iterations in order to 

achieve the goal which is relatively fast. 
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Fig. 3.  BPN Training Results for System without Re-entrant. 
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Once the training is complete, the BPN model is ready for use. Several sets of 

inputs were tested and documented. However, some of the results are reported 

and presented. The results from the analytical MVA method and from the trained 

BPN for both cases of re-entrant are tabulated in Tables 1 and 2. Comparative 

results indicate that there is a close agreement between both methods. To support 

further on the finding, historical data (actual data) were gathered from the RS 

operation. Comparison result with the actual data shows slight variation due 

handling issues during the operation which tend to be stochastic in nature. 

However the differences are insignificant because it is not the natural 
characteristic of the operation. The proposed BPN method seems to work well 

and provides fast and reliable results and can be used as an alternate method to 

determine WT. 
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Fig. 4.  BPN Training Results for System with a Single Re-entrant. 
 

5. Conclusions 

This paper presents a well defined BPN approach to determine the total cycle 

time, WT for a 5 stage re-entrant line system which is utilized in a Reflow 

Screening operation. Several sets of lots are considered and their solutions are 

assessed using the analytical method. Then using these sets of input and output 

vector pairs, the Back Propagation Network is trained. Thereafter, the BPN is 

ready for use wherein, given number of lots, it gives out the total cycle time as a 

solution with minimum time and maximum accuracy. The contribution of this 

work is the development of a BPN method to determine the total cycle time for an 

RS operation. However, the considered system is treated in a purely deterministic 

way. This can be used as an alternate method apart for the conventional analytical 

approach. The benefit of this approach is that it provides a fast and reliable 

solution after a good set of training being done. For future work, systems having 

probabilistic re-entrant lines can be attempted and use the BPN architecture to 
develop the performance measure. 
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Table 1. Comparative Results (BPN, MVA and Actual)                                         

for a System without Re-entrant Line.                                                       

Number 

of Lots (k) 

Total Cycle Time, WT 

Analytical 

(MVA) 

(Hours) 

BPN 

(Hours) 

Actual 

(Hours) 
% Accuracy 

81 20.250 20.2475 20.3 99.75 

82 20.500 20.5 20.58 100 

83 20.750 20.75 20.89 100 

84 21.000 21 21.1 100 

85 21.250 21.25 21.5 100 

86 21.500 21.4975 21.55 99.75 

87 21.750 21.7475 21.9 99.75 

88 22.000 21.9975 22.4 99.75 

89 22.250 22.25 22.58 100 

90 22.500 22.5 22.89 100 

91 22.750 22.7475 22.95 99.75 

92 23.000 23 23.4 100 

93 23.250 23.245 23.45 99.5 

94 23.500 23.505 23.59 99.5 

95 23.750 23.755 23.98 99.5 

96 24.000 24.01 24.2 99 

97 24.250 24.2725 24.6 97.7 

98 24.500 24.5075 24.89 99.2 

99 24.750 24.71 25.3 96 

100 25.000 25 2.54 100 

Table 2. Comparative Results ( MVA, BPN and Actual)                                              

for a  System with a Single Re-entrant Line. 

Number 

of Lots (k) 

Total Cycle Time, WT 

Analytical 

(MVA) 

(Hours) 

BPN 

(Hours) 

Actual 

(Hours) 
% Accuracy 

81 20.512 20.513 20.59 99.9 

82 20.762 20.763 20.9 99.9 

83 21.011 21.013 21.3 99.8 

84 21.261 21.261 21.51 99.9 

85 21.511 21.511 21.78 99.9 

86 21.761 21.761 21.8 100 

87 22.011 22.013 22.18 99.8 

88 22.261 22.261 22.35 100 

89 22.511 22.508 22.78 99.8 

90 22.760 22.763 22.8 99.7 

91 23.010 23.013 23.4 99.7 

92 23.260 23.258 23.3 99.8 

93 23.510 23.511 23.78 99.9 

94 23.760 23.764 23.9 99.6 

95 24.010 24.011 24.2 99.9 

96 24.260 24.259 24.39 99.9 

97 24.510 24.529 24.87 98.1 

98 24.760 24.769 24.98 99.1 

99 25.009 24.941 25.05 93.1 

100 25.259 25.259 25.7 100 
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