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Abstract 

The response of a simply-supported beam on elastic foundation to repeated 

moving concentrated loads is obtained by means of the Fourier sine 

transformation. The cases of the response of the beam to loads of different 

and equal magnitude are studied. Numerical examples are given in order to 

determine the effects of various parameters on the response of the beam. 

Keywords: Simply supported beam, Elastic Foundation, Repeated rolling 

                   concentrated loads. 

 

1.  Introduction 

The group of problems on beams carrying moving loads has a long history in 

the literature of engineering mechanics, which have been reviewed by a number 

of authors. However, some discrepancies exist among existing papers, and 

some of the results are less than conclusive. 

Volterra [1] describes a method for analyzing the response of railroad tracks 

to a moving concentrated load, and determines the maximum dynamic 

deflection and theoretical critical speed (1168 mph) which is more than ten 

times the critical speed determined experimentally by Inglis [2].  

Inglis [2] studied the dynamic effects on railway bridges, produced by the 

action of locomotives and other moving loads. Inglis’s study includes oscillations 

produced by stationary but alternating distributed loads, moving loads of constant 

magnitude, moving alternating force, moving alternating force associated with 

concentrated moving mass, the spring movement of a locomotive, and vector 

methods for computing oscillations due to alternating forces.  
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Nomenclatures 
 

Aj,Bj,Cj,Dj Constant coefficients of the series representation of           

the beam deflection  

d Distance between repeated moving concentrated loads 

d  Dimensionless distance parameter, ldd /=  

E Young’s modulus  

fj Frequency of the forcing function, f = v/2 

fj Fundamental frequency of the simple-supported beam  

g Acceleration of gravity  

I Area moment of inertia of a beam  

j Index 1, 2, 3, … 

ke Elastic foundation modulus 

l Beam length  

m Mass of the beam per unit length  

P(x,t)  Moving concentrated load  

Pi Constant magnitude of moving concentrated load, i = 0, 1 

P  Dimensionless parameter, mgPP i /=  

t Time  

X  Dimensionless parameter, lxX /=   

0X  Dimensionless load location parameter, lxX /00 =  

x Spatial coordinate along the beam 

x0 Initial location of the load  

Y(j,t)  Fourier sine finite integral transformation of function y(x,t) 

y(x,t) Beam deflection 

ys(x)  Static deflection produced by load Pi 
y  Dimensionless beam deflection, ( ) ( )

max/, etxyy δ=  

 

Greek Symbols 

αe Dimensionless elastic foundation parameter, αe=kel
4/EI  

(δe)max Maximum static deflection of simple-supported beam         

on an elastic foundation due to load Pi 

ν Constant speed of the moving concentrated load  

(νcr)j Critical speed  

v  Dimensionless speed parameter, ( ) vvv cr /1=  

φ Angle, φ = jπd/l  

φ D Dynamic amplifications 

ω  Circular frequency of the forcing function  

ωj Fundamental circular frequency of the simple-           

supported beam  

Nelson and Conover [3] have studied the stability of a simply supported 

beam on an elastic foundation carving a continuous series of equally spaced 

mass particles. The results were obtained using Floquet theory and stability 

curves are presented for one, five and ten mass particles.  
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The most notable experimental results in the area of moving loads are those 

presented by Ayre et al. [4]. The authors used an apparatus capable of moving 

loads of various weights with different velocities across both single-span and 

double–span beams. The single–span results were compared with the 

theoretical results of Schallenkamp [5] and found to be in very close agreement.  

And also, Lee [6] studied the dynamic behaviour of an Euler beam traversed 

by a moving concentrated mass, he analyzed for the general case of a mass 

moving with a varying speed. The equation of motion in a matrix form was 

formulated using the Lagrangian approach and the assumed mode method. 

Moreover, Seong-Min Kim [7] studied the vibration and stability of an 

infinite Bernoulli–Euler beam resting on a Winkler-type elastic foundation when 

the system is subjected to a static axial force and a moving load with either 

constant or harmonic amplitude variations. Formulations were developed in the 

transformed field domains of time and moving space. 

The object of this study is to obtain the response of a simply – supported 

beam on an elastic foundation to repeated moving concentrated load by means 

of the finite Fourier sine transformation. 

 

2.  Formulation of the Governing Equations  

Now, to illustrate how one would obtain the response of a simply–supported 

beam on an elastic foundation to repeated moving concentrated loads, the beam 

shown in Fig. 1 is considered. As indicated in Fig. 1, the loads are d distance 

apart, ld <≤0 , and move with constant speed v  from left to right. 

 

 

Fig. 1. Simply-Supported Beam on a Elastic Foundation                      

Carrying Repeated Moving Concentrated Loads. 

The response and its time rate of change of a simply–supported beam on an 

elastic foundation to a moving concentrated load have been given as [8,9]: 
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respectively. 

The instant that the first load 0P is d distance from the left support, the Eqs. 

(1) and (2) become  
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If the time t is measured from this instant, the differential equation 

governing the transverse motion of the beam may be written in the form of  
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with the boundary and initial conditions respectively becoming  

( ) ;0, =txy  
( )

0
,

2

2

=
∂

∂

t

txy
at 0=x and lx =                                                       (6) 

and  

( )
( )

( ) l

xj

jff

v

d
ffjf

v

d
jf

ml

P
txy

j j

jj

t

πππ

π
sin

2sin/2sin

2
,

1
222

0
0

∑



















−

−
=

∞

=
=

(7)

( )
( ) l

xj

jff

v

d
f

v

d
jfjf

ml

P

t

txy

j j

j

t

π
πππ

π
sin

2cos2cos2

2

,

1
222

0

0

∑



















−









−

=
∂

∂ ∞

==

                     (8) 

Equation (5) together with conditions (6), (7) and (8) will be solved by the 

method of finite Fourier transformation. A knowledge of even–order 

derivatives at the boundaries calls for a finite sine transform defined by [9] 
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where ( )tjY ,  is the transform of the original ( )txy , .  
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Multiplying each term of Eq. (5) by 
l

xjπ
sin  and then integrating with 

respect to x  between 0 and l, and taking into account the boundary conditions 

(6), one obtains the finite sine transform of Eq. (5) as 
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Now, denote the circular frequencies of the beam by  
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and the circular frequencies of the forcing function by  

.
l

vjπ
ω =                                                                                                          (14) 

Using above notation Eq. (11) becomes  
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where  

.
l

djπ
φ =                                                                                                        (17) 

The homogenous solution of Eq. (16) is given by  

( ) tBtAtjY jjjjH ωω cossin, +=                                                                     (18) 

Assume a particular solution of the form  

( ) tDtCtjY jjP ωω cossin, +=                                                                         (19) 

Substituting Eq. (19) into (16) equating coefficients of tωsin  and tωcos  

yield 

( ) ,
cos
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C ,...3,2,1=j                                                                         (20) 
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and 

( ),
sin
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Hence, the complete solution of Eq. (16) becomes 
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The response ( )txy ,  is obtained by writing the inverse transform of Eq. (22),  
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Coefficients jA  and jB  are to be determined from initial conditions (7) 

and (8).  

From solution (23) 
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Using Eqs. (7), (8), (24) and (25) one obtains the coefficients jA  and jB  as 
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Introducing Eqs. (26) and (27) in Eq. (23) and using Eqs. (12), (13), (14), 

and (17), the response of the beam takes the form  
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Substitution of 
v

x
t 0=  and 0=v  into Eq. (18) yield corresponding static 

solution as  
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For the loads of equal magnitude, 10 PP = , the dynamic and static response 

given by Eqs. (28) and (29) become  
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respectively. 

When the distance between the two loads is zero, 0=d , solutions (30) and 

(31) respectively reduce to  
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which corresponds to the case of a simply-supported beam on an elastic 

foundation carrying a moving concentrated load whose magnitude is double 

that of the one given in [9].  

For the case when the distance between the loads is equal to the beam 

length, that is one load is leaving the beam as the other begins to travel onto the 

beam at the left end and if the time t is remeasured from this instant, the 

differential equation governing the transverse motion of the beam may be 

written in the form 
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with the boundary and initial conditions becoming  
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respectively. 

 

Transforming (34) in accordance with (9) and using (12), (13), (14) and 

boundary conditions (35) give  
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The homogeneous solution of Eq. (38) is given by  
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The response ( )txy ,  is obtained by writing the inverse transform of (42),  
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Coefficients jA  and jB  are to be determined from initial conditions (36) 

and (37).  From Eq. (43)  
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Using Eqs. (36), (37), (44), and (45) one obtains the coefficients jA  and 

jB as  
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Introducing (46) and (47) into (43) and recalling (12) and (13) the response 

of the beam takes the form  
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For the loads of equal magnitude, 10 PP = , the response given by Eq. (48) 

becomes  
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3.  Results and Discussion 

In this section numerical examples are treated to illustrate the procedure, and the 

effects of some parameters are investigated.  

For the purpose of further discussion it is convenient to introduce the 

dimensionless parameters as: 
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where eα  is the elastic foundation parameter, v is the speed parameter, 0x is 

the load parameter, and d  is the distance parameter.  

To validate the method, a simply supported beam without an elastic 

foundation 0=eα  subjected to a concentrated force 0=d  moving with 

constant velocity, is analyzed and the results are compared with those from the 

existing finite element analysis of Lin and Trethewey [10].  

Results for the dynamic amplification factors Dφ , defined as the ratio of the 

maximum dynamic and static deflections at the centre of the beam, are 

computed and compare in Table 1, for different values of τ
t , where τ denotes 

the travelling time of the force moving from the left end of the beam to the 

right end, while t  denotes the time after the moving load enters the beam from 

the left end.  

Table 1. Dynamic Amplifications, nφ . 

τ
t  This study Lin and Trethewey [10] 

0.1 1.040 1.053 

0.5 1.250 1.252 

1.0 1.710 1.705 

1.234 1.740 1.730 

1.5 1.710 1.704 

2.0 1.550 1.550 

  

 

It is seen that present results have quit well agreement with the results of the 

others and thereby confirm the validity of the proposed procedure. 

Then, in order to investigate the dependence of the beam response on elastic 

foundation, speed, load location, and distance parameters, two concentrated 

loads of 0.9=P  are moved at various speeds over a beam of 30’ in length for 

different values of the elastic foundation and distance parameters.  

Figures 2 through 10 show the dependence of the beam response on the 

distance parameter, d , for the values of  αe= 0.0, 100, 1000, =v 2.0, 4.0 and 256.  

It can be seen from the present results that within the range of values that 

have been considered, an increase in speed parameter results in the increase of 

dynamic deflections, and also a decrease in distance parameter also results in 

the increase of dynamic deflections. Furthermore, by increasing elastic 

foundation parameter both the fundamental frequencies and the critical speeds 

of the beam increase.  
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Fig. 2. The Dependence of the Beam Response on Distance.  

Parameters: 75.0,50.0,25.0,8/1&4/1,0.2,0.0 0 ==== xdveα . 

 

Fig. 3. The Dependence of the Beam Response on Distance. 

Parameters: 75.0,50.0,25.0,8/1&4/1,0.4,0.0 0 ==== xdveα . 

 

 Fig. 4. The Dependence of the Beam Response on Distance. 

 Parameters: 75.0,50.0,25.0,8/1&4/1,0.256,0.0 0 ==== xdveα . 
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 Fig. 5. The Dependence of the Beam Response on Distance. 

Parameters: 75.0,50.0,25.0,8/1&4/1,0.2,0.100 0 ==== xdveα . 

 
Fig. 6. The Dependence of the Beam Response on Distance. 

Parameters: 75.0,50.0,25.0,8/1&4/1,0.4,0.100 0 ==== xdveα . 

 

Fig. 7. The Dependence of the Beam Response on Distance.  

Parameters: 75.0,50.0,25.0,8/1&4/1,0.256,0.100 0 ==== xdveα . 
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Fig. 8. The Dependence of the Beam Response on Distance.  

Parameters: 75.0,50.0,25.0,8/1&4/1,0.2,0.1000 0 ==== xdveα . 

 

 
Fig. 9. The Dependence of the Beam Response on Distance. 

Parameters: 75.0,50.0,25.0,8/1&4/1,0.4,0.1000 0 ==== xdveα . 

 
Fig. 10. The Dependence of the Beam Response on Distance. 

Parameters: 75.0,50.0,25.0,8/1&4/1,0.256,0.1000 0 ==== xdveα . 
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4.  Conclusions 

The response of a simply-supported beam on elastic foundation to repeated 

moving concentrated load by means of the Fourier sine transformation has been 

presented in this paper. This technique will be attractive for treating beams on 

an elastic foundation under moving loads, and it can be extended to treat 

railway track structures. The effects of some important parameters, such as the 

foundation stiffness, distance parameter, the travelling speed and also the cases 

of the response of the beam to loads of different and equal magnitude have 

been studied. Numerical examples are given in order to determine the effects of 

various parameters on the response of the beam and the major results have been 

taken in this study can be expressed as: 

• Within the range of values considered an increase in speed parameter 

results in the increase in dynamic deflections. 

• Given all other parameters, a decrease in distance parameter also 

results the increase in dynamic deflections. 

• A comparison of Figs. 2 through 10 reveals that, as the speed 

parameter increases, the dynamic deflections approach those for the 

corresponding static ones and become symmetric for ;25.00 =x  

50.00 =x when 4/1=d  as expected. 

• It is readily apparent that the effect of increasing elastic foundation 

parameter is an increase to both the fundamental frequencies and the 

critical speeds of the beam. 

 

This study contains useful contributions to the literature on moving loads 

problems particularly relation to transportation systems; therefore, the technique 

and the findings can be useful in practical applications such as railway track design. 

 

5.  Future Work 

Future work will be aimed to investigate of unbounded beam response to a 

moving body on elastic foundation. 
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