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Abstract 

In this paper, an analytical solution of unsteady laminar flow is derived in terms 

of Hartmann and Womersley numbers with the aim of representing the flow 

behavior in a magnetic environment. Periodic disturbance growth is assessed 

using the quasi-steady approach, by which different transition onsets are 

determined with and without the effect of magnetic field. The new stability curve 

of the current theory is combined with other significant counterparts from the 

literature to reach a satisfied prediction. The theoretical results are also verified 

by the numerical solution of the linearized Navier-Stokes equations showing a 

good agreement even at relatively high Reynolds and Womersley numbers. They 

indicate that flow stability can only be improved at low-frequency flow 

oscillation by increasing the magnetic effect. The flow appears to be undisturbed 

in the magnetized medium at one neutral point if the Womersley number remains 

constant. In addition, two-dimensional direct numerical simulations (DNS) for 

smooth and rough pipe flows are performed. The computational data confirms 

the linear stability results and shows that area reduction and roughness along the 

flow path, as well as magnetization at high Womersley numbers, have the greatest 

influence on flow. 

Keywords: Constricted pipe, Linear stability theory (quasi-steady), Magnetic 

field effect, Transition onsets, Two-dimensional simulation (2D), 

Unsteady pulsatile flow, Wall roughness. 
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1.  Introduction 

Pulsatile flows are natural phenomena and common in fluid dynamics, where the 

oscillatory component is superimposed on a steady base. This kind of flow has been 

mostly analysed for its transition to turbulence in different geometries. However, 

since the velocity measurement in pulsating flows is more difficult than that in 

steady flows [1] and all other setup conditions of conducting an experiment, the 

transition process is not fully covered, and still to be in the presence of external 

factors such as the magnetic field. 

The pulsatile pressure gradient causes wall shear stress to oscillate with time 

[2]. Misra and Shit [2] and Parida [3] introduced an investigation for the effect of 

a uniform magnetic field on the distribution of velocity and other quantities. A 

theoretical study carried out by Sharma et al. [5] was implemented on the 

constricted flow domain only and found that the wall shear stress increases as the 

magnetic field increases. The study of Khechiba et al. [6] reached an analytical 

solution to express the relation among Hartmann number, Darcy number (the 

relation between the permeability of the medium and its cross-sectional area) and 

the stress coefficient for the pulsating pipe flow with porous medium. The 

Hartmann number is the ratio of electromagnetic force to the viscous force, or 

𝐻𝑎 = 𝐵∗𝑅∗√𝜎∗ ∕ 𝜇∗ . The magnetic field is 𝐵∗ , the pipe radius is 𝑅∗, electrical 

conductivity is 𝜎∗, and 𝜇∗is the dynamic viscosity. The findings showed that the 

permeability parameter of medium and the Hartmann number (Ha) significantly 

influence the flow behavior. 

Camobreco et al. [7] introduced an investigation on liquid metal coolant ducts 

subjected to transverse magnetic field. A steady pressure gradient and simultaneous 

oscillation of the lateral walls drive the flow. Near the hydrodynamic limit at 𝐻 =
 10−7, a nearly 70% drop in the critical Reynolds number was obtained, compared 

to that for the steady base flow, while 𝐻 = 10 yielded slightly over a 90% reduction, 

where 𝐻 = 𝐺 𝐻𝑎 is the friction parameter, and 𝐺 is the characteristic parameter. 

Two-dimensional analysis (stream function-vorticity formulation) was used in 

Bandyopadhyay and Layek [8]’s study for locally constricted channel flow in the 

presence of an external transverse uniform magnetic field. The flow separation 

region shrinks as the magnetic intensity is enhanced, according to their study. When 

the strength of the magnetic field increases, the axial velocity flattens out. The 

temporal variations in wall shear stress rise with increasing the magnetic parameter 

as shown for both steady and pulsatile flow conditions. Kiran et al. [9] evaluated 

pulsatile flow of dusty fluid through a constricted channel in the presence of a 

magnetic field. As the magnetic strength becomes higher, the shear stress of the 

fluid acting on the wall increases, but the pressure drops. 

Regarding the linear stability without considering the magnetism, the Floquet 

theory was employed by Thomas et al. [10] to find the critical Reynolds numbers 

(𝑅𝑒 = 𝑢̂ ∗𝑅∗ ∕ 𝜈∗), wavenumbers and pulsation ratios between the oscillating and 

steady flow amplitudes at a wide range (1×10−4<A <1×104), where A is the 

pulsation ratio or 𝑢̂ 𝑜
∗ ∕ 𝑢̂ 𝑠

∗
. The results deviate from those of previous experiments 

in terms of critical Reynolds numbers, which were unpredictable when the 

pulsation ratio reached unity due to the large number of harmonics needed by the 

Floquet method for the disturbances representation. The same approach was also 

used by Sadrizadeh [11] to investigate the modal and non-modal modes for the 
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Newtonian and non-Newtonian fluids. Based on their linear stability analysis, the 

flow is asymptotically stable in either configuration, or the pulsatile flow is 

marginally more stable than the steady flow. 

Instead of the Chebyshev basis, the numerical study of Fedele et al. [12] used 

the Galerkin method to solve the linear stability equation. The results showed that 

the pulsatile flow is somewhat more stable than the steady flow at wavenumber = 

1, the pulsation ratio = 2 and different Womersely numbers (𝑅∗√Ω∗ ∕ 𝜈∗), while 

the maximum real parts of the eigenvalues were taken. The perturbation energy of 

disturbances was calculated for a pulsatile channel flow at different flow conditions 

by Pier and Schmid [13]. The results were consistent with those of the Floquet 

method for linear stability analysis, albeit the pulsation ratio was crucial in 

determining the transition thresholds. The direct numerical simulations of Xu and 

Avila [14] showed that the length of the pipe, disturbance amplitude and the 

Womersley and Reynolds numbers are behind the discrepancies referring to the 

correct transition curve in the literature. 

Direct numerical simulations of flow stability affected by 75%  stenosis 

(constricted path) were performed by Varghese et al. [15]. The asymmetry was the 

factor of destabilization the flow. Direct numerical simulations of Sherwin and 

Blackburn [16] for axisymmetric perturbations with a reduction area of 75% were 

also performed for steady and pulsatile flows. The same investigators, Sherwin and 

Blackburn [16], carried out three-dimensional Floquet analysis for a single-

harmonic case, and the critical Reynolds numbers were 389, 417 and 500 while the 

critical Womersley numbers were 15.6, 11.4 and 10.2, respectively, with a 

pulsation ratio of one. 

The transition-turbulence stages were identified experimentally by Xu et al. 

[17] and categorized according to the Womersely number (𝛼). When 𝛼 < 2.5, the 

first stage can be predicted by the quasi-steady assumption (same terminology but 

stands for a different meaning than the principle of the current theory). The second 

stage is at 𝛼 ≥12, at which the flow pulsation does not affect the transition onsets. 

More details were demonstrated in the study Lee and Abdulrasool [18] when the 

accuracy of the given quasi-steady approach was found valid for all 𝛼 values. For 

approximately similar axisymmetric geometries presented in this paper, Griffith et 

al. [19] had experimentally noticed a vortex ring in the post-stenotic areas varying 

with the stenosis degree. Also, Griffith et al. [19] observed a higher wall shear stress 

at a lower pulse time and higher stenosis degree, and the flow was less stable than 

what the numerical analysis of the Floquet method indicated. 

The main purpose of this study resembles that of Xu et al. [17]’s experiment, 

which demonstrated the stability map of pulsating pipe flows but had no magnetic 

effect. This includes the domain size, Reynolds and Womersley number ranges, and 

even the concept of the qausi-steady theory that predicts the transition to turbulence 

at certain stages throughout one oscillation cycle. The stability of pulsatile pipe flow 

is investigated below by taking into account a variety of factors such as the 

magnetism, which has not been considered previously. This analysis for Newtonian 

incompressible fluid flow undergoing a uniform magnetic field is carried out using 

the quasi-steady method when the pulsation ratio (A) is one, i.e. 𝑢̂ 𝑜
∗ = 𝑢̂ 𝑠

∗
. This 

technique deals with the laminar base flow by obtaining the cycle-averaged growth 

rate of disturbance regardless of the axial location, whereas Xu et al. [17] used the 

survival probability principle, explained in their study. The validity of the current 



1542       A. K. Abbas  et al. 

 
 
Journal of Engineering Science and Technology               June 2023, Vol. 18(3) 

 

results is tested by a direct solution to the time-dependent linearized Navier-Stokes 

equations and other relevant experiments. In the case of non-linear disturbances, 2D 

direct numerical simulations are performed for the flow transition following the 

Abdulrasool [20] ’s paradigm. The wall imperfections represented by waviness are 

introduced to analyse the flow mainly via the behavior of wall shear stress. 

2. Governing Equations 

For the current analyses, a two-dimensional domain of 𝑥 and 𝑟 axes subjected to a 

time-varying pressure gradient is considered. The flow is laminar inside a flat 

smooth pipe, while the obstruction and wall irregularity will be incorporated in the 

transition regime. The flow is exposed to a transverse magnetic field of constant 

flux density ( 𝐵∗ ) and electrical conductivity ( 𝜎∗ ) according to the 

magnetohydrodynamic (MHD) principle [21]. Thus, the governing equations for 

such flow with constant physical properties are 

1

𝑟∗

𝜕

𝜕𝑟∗ (𝑟
∗𝜐∗) +

𝜕𝑢∗

𝜕𝑥∗ = 0,                                                                                  (1) 

𝜕𝑢∗

𝜕𝑡∗ + 𝜐∗ 𝜕𝑢∗

𝜕𝑟∗ + 𝑢̂∗ 𝜕𝑢∗

𝜕𝑥∗ = −
1

𝜌∗

𝜕𝑝∗

𝜕𝑥∗ −
𝜎∗𝐵∗2

𝜌∗ 𝑢̂∗ + 𝜈∗ {
1

𝑟∗

𝜕

𝜕𝑟∗ (𝑟
∗ 𝜕𝑢∗

𝜕𝑟∗) +
𝜕2𝑢∗

𝜕(𝑥∗)2
},         (2) 

𝜕𝜐∗

𝜕𝑡∗ + 𝜐∗ 𝜕𝜐∗

𝜕𝑟∗ + 𝑢̂∗ 𝜕𝜐∗

𝜕𝑥∗ = −
1

𝜌∗

𝜕𝑝∗

𝜕𝑟∗ + 𝜈∗ {
1

𝑟∗

𝜕

𝜕𝑟∗ (𝑟
∗ 𝜕𝜐∗

𝜕𝑟∗) +
𝜕2𝜐∗

𝜕(𝑥∗)2
−

𝜐∗

(𝑟∗)2
},            (3) 

where the velocity components of 𝑢̂∗ and 𝜐∗ are in the axial and radial directions, 

respectively. The maximum velocity ( �̂�̂∗ ) representing the amplitude of the 

combined parts (�̂�̂∗ = �̂�̂𝑠𝑡𝑒𝑎𝑑𝑦
∗ + �̂�̂𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟𝑦

∗ ) is selected as a main characteristic 

parameter, and the following non-dimensional variables: 𝑥 = 𝑥∗/𝑅∗, 𝑟 = 𝑟∗/𝑅∗, 

𝑢̂ = 𝑢̂∗/�̂�̂∗ , 𝑝 = 𝑝∗/𝜌�̂�̂∗2 , 𝑡 = 𝑡∗/(𝑅∗/�̂�̂∗) , �̃�∗ = �̃�∗/(�̂�̂∗(𝑅∗)2)  are employed 

accordingly. For a fully developed axisymmetric laminar flow with magnetic field 

being considered, the nondimensionalized form of Eq. (2) yields to 

𝜕𝑢

𝜕𝑡
= −

𝜕𝑝

𝜕𝑥
−

Ha2

Re
𝑢̂ +

1

Re
(
𝜕2𝑢

𝜕𝑟2 +
1

𝑟

𝜕𝑢

𝜕𝑟
).                                                       (4) 

Equation (4) can be solved analytically, and the solution when 𝐻𝑎= 0 as first 

introduced by Womersley [22] is 

𝑈(𝑟, 𝑡) = 1 − 𝑟2 + |
𝐽0(𝛼⋅𝑖3/2)

𝐽0(𝛼⋅𝑖3/2)−1
| ⋅ ℝ [(1 −

𝐽0(𝛼⋅𝑖3/2⋅𝑟)

𝐽0(𝛼⋅𝑖3/2)
) ⋅

𝑒𝑖Ω𝑡

𝑖
],                          (5) 

which clearly depends on 𝛼 (Womersely number or 𝑅∗√Ω∗/𝜈∗), and 𝑈(𝑟, 𝑡) is 𝑢̂∗ 

normalized by �̂�̂∗  for laminar flow. Herein, the same procedure can be used to 

convert the linear partial differential equation (Eq. (4)) into a modified Bessel 

differential equation when > 0 , and the solution can be written as 

𝑈(𝑟, 𝑡) = |
𝐼0(𝐻𝑎)

𝐼0(𝐻𝑎)−1
| (1 −

𝐼0(𝐻𝑎⋅𝑟)

𝐼0(𝐻𝑎)
) + |

𝐼0(𝛾)

𝐼0(𝛾)−1
| ⋅ ℝ [(1 −

𝐼0(𝛾⋅𝑟)

𝐼0(𝛾)
) ⋅

𝑒𝑖Ω𝑡

𝑖
],                (6) 

where the complex number 𝛾 is equivalent to √𝐻𝑎2 + 𝑖𝛼2. The derivation of Eq. 

(6) is given in Appendix A. Note that both derived solutions are obtained depending 

on the fact that the pressure gradient driving the flow is periodic with time or 
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−𝜕𝑝∗/𝜕𝑥∗ = ∑𝑀
𝑛=0 𝛬𝑛

∗ 𝑒iΩ∗𝑛𝑡∗
, at which 𝑛 represents the number of harmonics, and 

𝑀 is theoretically infinite. Equations (2) and (3) can be coupled into one equation 

by adopting the principle of stream function, where the two velocities, 𝑢̂∗ ≡
1

𝑟∗

𝜕�̃�∗

𝜕𝑟∗  

and 𝜐∗ ≡  −
1

𝑟∗

𝜕�̃�∗

𝜕𝑥∗ , satisfy the continuity equation (Eq. (1)). The final form of the 

combined Eqs. (2) and (3) will be 

𝜕

𝜕𝑡
(Δ�̃�) −

1

𝑟

𝜕�̃�

𝜕𝑥

𝜕

𝜕𝑟
(Δ�̃�) +

1

𝑟

𝜕�̃�

𝜕𝑟

𝜕

𝜕𝑥
(Δ�̃�) +

2

𝑟2

𝜕�̃�

𝜕𝑥
(Δ�̃�) =

1

𝑅𝑒
Δ(Δ�̃�) +

Ha2

Re
(
𝜕2�̃�

𝜕𝑟2 −
1

𝑟

𝜕�̃�

𝜕𝑟
).                                                                                                  (7) 

The linear operator, which is the same as the Laplace operator except the 

negative sign in the second term, is 

Δ ≡
𝜕2

𝜕(𝑟)2
−

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕(𝑥)2
. 

The velocity profiles should be precisely represented when the overshot 

phenomenon appears, and the pressure gradient can be expressed by the Fourier 

series. Experimentally, for mass-flow-rate driven flows, where the pressure 

gradient has to be assumed first and then the derivations are performed, the 

measurements of pressure gradient are not feasible and reliable, especially in 

shrinking regions [23]. Thus, some estimations for the pressure drop are often made 

as done in the study of Ha et al. [24]. It should be noted that these experimental 

adjustments may have contributed to the disparities in transition onsets, shown later 

in a figure. 

3.  Linear Stability 

The stability studies devoted for the pulsating flows are noticed to be less than those 

of the purely oscillating flows. Even the predictions of their transition onsets are not 

consistent, since in cases where the mean flow contains oscillations, various factors 

bring extra discrepancies [25]. However, the linear analysis will be revisited here, and 

their results will be evaluated against those of the most rigorous experiments. To 

begin with, the decomposition of the stream function which is �̃�(𝑡, 𝑟, 𝑥) = Ψ(𝑡, 𝑟) +
𝜓(𝑡, 𝑟, 𝑥)  can be substituted into the Eq. (7), and the non-linear terms can be 

terminated. Also, the base flow of 𝑈 can be incorporated in Eq. (7) via 

𝑈 ≡
1

𝑟

𝜕Ψ

𝜕𝑟
,    

𝜕𝑈

𝜕𝑟
=

1

𝑟
ΔΨ,    

𝜕2𝑈

𝜕𝑟2
=

1

𝑟
[
𝜕

𝜕𝑟
(ΔΨ) −

1

𝑟
ΔΨ], 

where ΔΨ ≡
𝜕2Ψ

𝜕𝑟2 −
1

𝑟

𝜕Ψ

𝜕𝑟
, and the linearized equation is then written as 

𝜕

𝜕𝑡
(Δ𝜓) = −𝑈

𝜕

𝜕𝑥
(Δ𝜓) − (

1

𝑟

𝜕𝑈

𝜕𝑟
−

𝜕2𝑈

𝜕𝑟2)
𝜕𝜓

𝜕𝑥
+

1

𝑅𝑒
Δ(Δ𝜓) +

Ha2

Re
(
𝜕2𝜓

𝜕𝑟2 −
1

𝑟

𝜕𝜓

𝜕𝑟
).          (8) 

The traveling-wave disturbance is considered, and the stream function for 2D 

disturbances in the terms of the amplitude (휂) and the wavenumber (𝑘) in the axial 

direction only is assumed with 𝜓(𝑡, 𝑟, 𝑥) = 휂(𝑡, 𝑟)ei𝑘𝑥. If this later form is plugged 

into the Eq. (8), the linearized equation for disturbances becomes 

𝜕

𝜕𝑡
𝐿(휂) = −i𝑘 {𝑈𝐿(휂) + (

1

𝑟

𝜕𝑈

𝜕𝑟
−

𝜕2𝑈

𝜕𝑟2) 휂} +
1

𝑅𝑒
𝐿2(휂) +

Ha2

Re
(
𝜕2𝜂

𝜕𝑟2 −
1

𝑟

𝜕𝜂

𝜕𝑟
),            (9) 
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where 𝐿 ≡
𝜕2

𝜕𝑟2 −
1

𝑟

𝜕

𝜕𝑟
− 𝑘2. The boundary conditions are no-slip at the wall (휂 = 0) 

and bounded velocity at r =0, or
𝜕𝜂

𝜕𝑟
= 0. 

3.1. Quasi-Steady Method 

The assumption of quasi-steady is applied to the current flow with non-zero mean 

velocity. It is based on the frozen profiles to the temporal changes of the laminar 

base flow velocity, as previously tested by Lee and Abdulrasool [18] for purely 

oscillating flows. Therefore, the amplitude of disturbance function in Eq. (9) is 

assumed to be 

휂(𝑡, 𝑟) = 𝜙(𝑟) exp [−i ∫
𝑡

0
𝜔(𝑠) d𝑠],                                                      (10) 

in terms of the current theory, where 𝜙 and 𝜔 are complex functions. The modified 

eigenvalue problem can be written as 

1

𝑅𝑒
𝐿2(𝜙) − i 𝑘 {𝑈 𝐿(𝜙) + (

1

𝑟

𝜕𝑈

𝜕𝑟
−

𝜕2𝑈

𝜕𝑟2)𝜙} +
Ha2

Re
(
𝜕2𝜙

𝜕𝑟2 −
1

𝑟

𝜕𝜙

𝜕𝑟
) = 𝜆𝐿(𝜙),          (11) 

where 𝜆 = −i𝜔  and 𝑐 ≡ 𝜔/𝑘 . The parameter 𝑐  is a complex eigenvalue and 

represents the wave velocity scaled by �̂�̂∗ , and 𝜙  is a complex eigenfunction 

nondimensionalized by �̂�̂∗ ⋅ (𝑅∗)2 . This type of linear stability is temporal, 

involving the evolution of disturbances with time. The pulsation ratio (𝐴) was taken 

unity, so that the peak of the oscillating velocity component is equal to that of the 

steady flow. The symmetric eigenvalue problem of Eq. (11) was solved by a built-

in Matlab routine, and the maximum eigenvalues and eigenfunctions were 

considered only for the analyses. For spatial discretization, Chebyshev collocation 

derivatives of [ 0 , R] domain were used. The numerical accuracy of these 

derivatives were verified at different numbers of collocation points, where 

eventually the total of 61 points was determined to be adequate. 

3.2. Linearized Navier-Stokes equations 

To validate the findings of the present theory (quasi-steady method), Eq. (9) was 

solved numerically. This initial value equation was formed using Chebyshev 

collocation derivatives, the same as those used for Eq. (11), and the 4th-order 

Runge-Kutta method was chosen for the time advancement. It is known that the 

global accuracy of the spectral method can be maintained if the time step is 

sufficiently small. Herein, the choice of Δ𝑡 = 𝜋 ∗ 10−5 was found to be sufficient 

for Eq. (9). The linearized equation was rearranged as a matrix, 

𝑑𝜂

𝑑𝑡
= 𝑀(𝑡)휂,                                                                                                 (12) 

where 

𝑀(𝑡) = 𝐿−1 [−i𝑘 (𝑈𝐿 +
1

𝑟

𝜕𝑈

𝜕𝑟
−

𝜕2𝑈

𝜕𝑟2)] + 𝐿−1 [
1

𝑅𝑒
𝐿2 +

Ha2

Re
(
𝜕2𝜂

𝜕𝑟2 −
1

𝑟

𝜕𝜂

𝜕𝑟
)].          (13) 

The singularity in Eq. (13) disappeared by applying the boundary conditions of 

휂, which are homogeneous at r = [0, 1]. The first and last rows of matrices in the 

system of Eq. (12) were replaced by zeros since they are multiplied by the values 

of 휂 at the boundaries. The solution of Eq. (12) is 

휂(𝑚 + 1) = 휂(𝑚) + Δ𝑡 ∑𝑠
𝑖=1 𝑏𝑖ℎ𝑖 ,                                                                    (14) 
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where ℎ𝑖 = 𝑓(𝑡𝑚 + 𝑤𝑖Δ𝑡, 휂𝑚 + Δ𝑡 ∑𝑠
𝑗=1 𝑎𝑖𝑗ℎ𝑗), which is a series function (𝑓) of a 

number of iterations (𝑚) for the solution 휂 with a time step (Δ𝑡). Equation (14) is 

shown as in Hairer et al. [26], but it can be written in different forms. The parameter 

𝑠  stands for the number of Runge-Kutta stages. Constants 𝑏𝑖  and 𝑎𝑖𝑗  are real 

numbers whereas 𝑤𝑖 = ∑𝑠
𝑗=1 𝑎𝑖𝑗 . The norm of the solution is taken to Eq. (12) at 

different time steps. The growth rates of disturbance were calculated using the 

following equation, as reported by Singer et al. [27]: 

𝐺𝑅 =
1

𝜂(𝑟,𝑡)

𝑑𝜂(𝑟,𝑡)

𝑑𝑡
.                                                                                          (15) 

4. DNS of Transitional Flows 

4.1. Blockage and wall roughness 

Based on the spectral element approach (SEM), Nek5000 was utilized to accurately 

represent the flow undergoing the magnetic field and wall roughness. Several 

researchers have employed this code for both transitional and turbulent flows such 

as Fischer et al. [28]. The numerical scheme is a Lagrange polynomial of the order 

5 ≤ 𝑁 ≤ 15 based on Gauss-Lobatto-Legendre (GLL) points for the velocity and 

Gauss-Legendre quadrature points for the pressure. The temporal discretization of 

Eq. (2) is divided into viscous terms treated implicitly by a third-order backward 

differentiation (BDF3) and non-linear terms solved explicitly by a third-order 

extrapolation (EXT3). A corrugated surface was built according to the following 

equation along the 𝑥-direction parallel to the wall: 

𝑓1(𝑟, 𝑥) = 𝑟 [1 + 휀sin(
2𝜋𝑥

𝜄
)].                                                                    (16) 

Despite the fact that the domain is 2D and overset meshes are not required, the 

roughness representation is deemed appropriate according to Abdulrasool and Lee 

[29]. The axisymmetric throat equation at 𝑥 = 0 with a reduced area of 75% is 

𝑓2(𝑟, 𝑥) = 𝑟[1 − 𝛿(1 + cos(𝜋𝑥))],                                                                    (17) 

which is slightly different than that shown in the study of Varghese et al. [15]. The 

parameter 휀  is equal to 휀∗/𝑅∗ , and 𝛿  is the blockage amplitude non-

dimensionalized by 𝑅∗. Equations (16) and (17) were executed in the user-defined 

routine provided by NEK5000 modifying the shape of the outer mesh as a wavy 

wall, which has smooth peaks and variable lengths depending on GLL point 

distributions along the 𝑥-coordinate. The 휀, 𝜄 and 𝛿 values are 1%, 50% and 25%, 

respectively, resulting in 36  roughness elements throughout the pipe. This 

blockage is located at a distance of 6𝑅 apart from the inlet. The non-slip boundary 

conditions are taken at the wall and axisymmetry in the center. The exact velocity 

solution represented by either Eq. (5) or Eq. (6) is used at the computational inlet 

condition. The outflow is identified to be a static pressure, and a special treatment 

to prevent the negative artificial outflow flux from occurring at the end of the pipe 

is applied [15]. 

4.2. Mesh convergence 

The adequacy of meshing density was evaluated for the current computational 

domain with a diameter 𝐷 and length 18D via changing the Lagrange polynomial 

degree (𝑁) only. This was relied on a prior study of Abdulrasool and Lee [29], 



1546       A. K. Abbas  et al. 

 
 
Journal of Engineering Science and Technology               June 2023, Vol. 18(3) 

 

where the number of elements was assessed and determined to be suitable for the 

transition regime. The root-mean-square (RMS) velocities were taken into 

account for the grid convergence in addition to the velocity residuals in terms of 

time step as shown in Fig. 1. The mesh independence was examined at 𝑁 = 8,10 

and 12 (95.3% and 73% increase, respectively) for a number of elements, or 𝐸 

= 300 , at the highest 𝑅𝑒  presented in the DNS work. The total number of 

elements (𝐸) of 25 × 12 × 𝑁2  for the 𝑥-axis, 𝑦-axis and polynomial degree, 

respectively, with clustered mesh cells near the wall was then doubled. The 

results encountered a maximum relative error of around 8% between the RMS 

velocities. The normalized residual of the velocity vector, or ℜ(𝑢̂) = 𝑓(𝑢̂) −

𝑓(𝑢̂) where ℜ is defined as a local measure of error between the solution 𝑓 and 

the exact solution (𝑓) for the entire domain, was approximately between 2.2 to 

2.4 × 10−4 over each time step for the two highest resolutions. The time step was 

chosen to be variable and was initialized at 10−3 sec, while the CFL number was 

fixed at 0.05. DNS results were recorded at every 100 time steps for two 

consecutive oscillation cycles. 

 

Fig. 1. Mesh independence tests for a 2D-flat smooth  

pipe with 𝑬 =  𝟑𝟎𝟎 at 𝑹𝒆 =  𝟐𝟓𝟎𝟎 and 𝜶 =  𝟒𝟐. 𝟓 as per:  

(a) RMS velocity and (b) normalized residual. 

5. Results and Discussion 

5.1. Axial velocity distribution 

The normalized axial velocities obtained from Eq. (6) are shown in Fig. 2 for four 

Hartmann numbers (0, 2.5, 5  and 7). The figure demonstrates 𝑡/𝑇 = 0 and 1/4 

velocity fields for 𝐻𝑎 less than 7 with 𝑅𝑒 = 1200 and 𝛼 = 28.29. When 𝐻𝑎 = 0, 

the flow behaves exactly like the velocity of Womersley (Eq. (5)). The 

Richardson’s annular effect may be seen clearly in the area adjacent to the wall. 
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This phenomenon becomes more apparent as 𝛼 increases; in contrast, if 𝛼= 0, the 

velocity profile resembles that of Poiseuille flow. The flow is influenced by the 

magnetic field in a similar way to how Lorentz force velocimetry works. When a 

conducting fluid passes through a magnetic field, the flow is dampened and flattens 

at the center. 

 
       U 

Fig. 2. Normalized axial velocity (𝑼) in the middle of 2D-flat smooth pipe at 

various Hartmann numbers with Reynolds number (𝐑𝐞)  =  𝟏𝟐𝟎𝟎, 

Womersley number (𝜶)  =  𝟐𝟖. 𝟐𝟗, and pulsation ratio (𝑨)  =  𝟏. 

5.2. Wall shear stress (𝐖𝐒𝐒) 

In oscillating pipe flow with irregular internal surfaces, there are different 

techniques for measuring the wall shear stress (𝜏𝑤).  The experimental 

measurements of Bauer et al. [30] showed that the Magnetic Resonance 

Velocimetry (MRV) can be properly used to predict the wall shear stress for 

both laminar and disturbed flows, whether triggered by the wall irregularity or 

entrance effects. The amount of WSS is critical because it is higher in the pipe 

with constricted area than in the pipe without it. The wall shear stress of 𝜏𝑤 =

𝜇
𝜕𝑢

𝜕𝑦
 was used in Fig. 3 to show some magnetic influences, since the fluid was 

treated Newtonian. 

The centreline velocity is plotted in Fig. 3(a) to illustrate the phase change 

against the wall shear stress. Without the magnetic effect, the figure confirms that 

𝜏𝑤 is directly proportional to the frequency of pulses with a big change from 𝛼 = 

7.5 to 42.5, as in the occasions of rapid oscillations. On the other hand, Fig. 3(b) 

shows a small increase in the wall shear stress at constant Reynolds number 

(Re)  =  1200 and Womersley number (𝛼)  =  28.29 . The wall shear stress is 

enhanced because the velocity gradient at the wall grows due to the magnetic 

influence. As a result, the magnetic field adds to the already high wall shear stresses 

that occur when the flow area changes, as in a throat. Note that the current study 

declares that the flow to be laminar at (𝑅𝑒) =1200, Womersley number (𝛼)  =
 28.29 and Hartmann number (𝐻𝑎)  =  0, but higher 𝐻𝑎 changes the flow regime 

if the other two numbers stay the same. 
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Fig. 3. Analytical solutions of wall shear stress scaled by 0.1 during two 

oscillation cycles for Reynolds number (𝐑𝐞)  =  𝟏𝟐𝟎𝟎 and pulsation ratio 

(𝑨)  = 𝟏 with: (a) Womersley numbers at 𝑯𝒂 =  𝟎 and (b) Hartmann 

numbers at α = 28.29.  

5.3. Disturbance growth rates 

Disturbance growth rates were estimated using the quasi-steady method, 

considering the maximum imaginary parts of eigenvalue alone (Im[ω]). Their 

corresponding eigenfunctions were entered as initial conditions for Eq. (12). For 

verification purposes, the growth rates (𝐺𝑅) were also obtained using Eq. (12). As 

shown in Fig. 4, the relation between the two methods was evaluated at 𝛼 =  28.29 

and three separate Reynolds numbers (1265, 2500 and 5000). The patterns of 

Figs. 4(a) and (b) are qualitatively close, implying similar stability predictions 

under these flow conditions. The growth rate values are all negative at 𝑅𝑒 =  1265 

for long-term oscillation, indicating that the flow is stable. Other flow conditions 

at 𝑅𝑒  = 2500  and 5000  cause positive growth rates representing the process 

leading to turbulence when the flow reverses at three parts of the cycle. Note that 

𝑡/𝑇 in the figure is the phase time of the loop and does not represent the initial time 

at 𝑡 = 0. The small discrepancies between the two solutions are due to certain 

numerical errors created by the ordinary differential equation solver (MATLAB 

code, used for the temporal discretization of Eq. (14)). 
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Fig. 4. Growth rates of disturbance calculated by the: (a) presented quasi-

steady method and (b) Eq. (15) of linearized Navier-Stokes equations 

solution scaled by 0.1. The flow conditions are 𝑯𝒂 =  𝟎, 𝜶 =  𝟐𝟖. 𝟐𝟗, 𝒌 =
 𝟖 𝒂𝒏𝒅 𝑹𝒆 =  𝟏𝟐𝟔𝟓 (green line), 2500 (blue line) and 5000 (red line).  

Moreover, since the definition of the growth rate in Eq. (15) varies from that of 

the quasi-steady method (Im[ω]), the values shown in Fig. 4(b) have been rescaled 

so that the growth rate amplitudes at the highest Reynolds numbers become 

compatible. In the study of Lee and Abdulrasool [18], where the accuracy of quasi-

steady method increases with the Reynolds number and Stokes number, or 𝛼/√2, the 

results of Im[ω] are sufficient to find the critical Reynolds number for a variety of 

flow conditions. The neutral stability curves were also produced in terms of critical 

Reynolds number, Womersley number and wavenumber in the same study of Lee 

and Abdulrasool [18]. The most unstable wave number (𝑘) is discovered to be around 

8 at 𝛼 = 28.29 and1265 ≤ 𝑅𝑒 ≤ 2500. It was found by Abdulrasool [20] that the 

flow in 2D and 3D domains begins to destabilize at very similar minimum critical 

Reynolds numbers, verifying the current results for 2D analysis too. 

5.4. Critical Reynolds number (𝐑𝐞𝐜) 

According to the literature, there are various aspects involved in estimating the 

transition thresholds, as well as contradictions in prior studies addressing the 

transition process for pulsatile flows. In the current case, the onset of transition is 

thus defined by two regimes, laminar and turbulent, rather than four [31]. The most 

common data in the literature are included in Fig. 5 with respect to the stability map 
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of the pulsating flows and shown by different symbols along with those generated 

with the aid of the current theory. 

 
                   α 

Fig. 5. Critical Reynolds number with Womersley number curves are 

obtained from the current results (green) predicted by the quasi-steady 

method, the Floquet theory (brown) by Thomas et al. [10], and others 

belonging to the famous experiments in the literature. 

It can be seen from the figure that the pulsation ratio (𝐴) plays a crucial role as 

the importance of the Womersley number (𝛼). Increasing the wave-dominated 

flow, or  ≥ 1, will stabilize the flow if the oscillatory component is in the laminar 

regime, as stated in the analysis of Lodahal et al. [32]. Also, it seems there is a vital 

zone between 𝛼  = 5  and 10 , where the flow changes its reaction to the 

disturbances. Since that zone and 𝐴 < 1, the critical Reynolds numbers tend to be 

constant. In comparison, the stability curves take another trend under other 

conditions, such as those related to the quasi-steady approach (current study), 

Floquet theory of Thomas et al. [10] and the experiment of Lodahal et al. [32]. The 

definition of stability is the most evident cause of these significant differences in 

stability curves. Since the transition from the laminar to the turbulence regime 

occurs in stages, some define the first stage as the onset of turbulence while others 

do not. More details may be found in Das and Arakeri [33]. 

There is uncertainty about the exact 𝛼 at which the inflection point of stability 

curves occurs, although those of Sarpkaya [34] and Stettler and Hussain [35] have 

almost a similar turn at 𝛼 = 6 to 7. It seems there is another inflection stability 

point at higher 𝛼 if 𝐴 ≥ 1. Due to the lack of available data on experimental 

results, it is not clear where the peak of the critical curve is at high pulsation 

ratios. The experimental results of [32] appear to be close to those of the current 

theory, although they were achieved with different Womersely numbers. There 

is a major gap in the predictions of all results and those of Floquet theory, which 

was found difficult to apply at higher pulsation ratios [10]. By utilizing the quasi-

steady approach, the effect of Hartmann (𝐻𝑎) and Womersley (𝛼) numbers on 

the flow transition is determined via exact numbers of 𝑅𝑒𝑐 as shown in Fig. 6. 

The flow tends to be stable if 𝛼 < 19 under the magnetic field effect, mostly due 

to the Richardson’s annular effect, where the boundary layer thickness is 

relatively big to that of high oscillation ([18]). That means the stability can be 

improved by increasing the Hartmann number if 𝛼 < 19. All flow conditions 
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show the same critical Reynolds number at 𝛼 = 19 regardless of the Hartmann 

number (Ha). That indicates the deflection point is located here when the 

magnetic environment is available. On the contrary, when 𝛼 > 19 , the flow 

seems to be unstable, and the 𝑅𝑒𝑐 decreases with Ha. While previous related data 

have not been found, several numerical results obtained from the current direct 

numerical simulations presented next, confirm this flow behavior under the 

magnetic field influence. 

 

Fig. 6. Critical Reynolds numbers predicted by the quasi-steady method 

under the influence of magnetic field for different Hartmann numbers. 

5.5. Wall effect 

The wall effect on flow stability was investigated using two-dimensional 

simulations with 𝑅𝑒  =1500 , 𝛼  = 28.29  and Ha = 0 , at which the flow was 

predicted to be unstable theoretically. However, the flow appears to be laminar 

when no disturbances are promoted in the smooth pipe. The flow becomes unstable 

when an external influence is applied, and this is in some way compatible with the 

results of the current linear theory. The stability was examined for some scenarios 

that may the pulsatile flow commonly undergoes. The waviness of the wall with 휀 

= 0.001 was incorporated as well as 75% reduction area. The flow instability can 

be declared according to some fluctuations appear in the pathlines of the axial 

velocity. These flow patterns can interpret some aspects of vortex and turbulence 

that are usually formed at some distance from the throat. 

The velocity profiles at three radial positions (𝑟 = 0, 0.3 and 0.49) in Fig. 7(a) 

and (b) for the smooth and 0.001-휀 rough pipe, respectively, seem to be identical 

at 𝑥 = 14, the farthest location post the blockage in the domain. Figures 7(c) and 

(d) show the wall shear stresses in the pipe at 𝑥 = 2, 5, and 14, which correspond 

to the velocities in Figs. 7(a) and (b). Figure 7(c) depicts a smooth pulsatile flow, 

as opposed to Fig. 7 (d), where the values are higher, and the flow is more disturbed. 

It is known that the nonlinear disturbances created by the wall roughness can drive 

the flow to unstable zone at lower flow conditions than what those imposed for the 

smooth pipe. 
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Fig. 7. Axial velocities and wall shear stresses at various  

radial and axial positions for a flat domain that is: (a)  

and (c) smooth, (b) and (d) rough with a height of 0.001. 

5.6. Magnetic field effect 

The transverse magnetic field with a flux 𝐵∗ was applied on the entire pipe at flow 

conditions of 𝑅𝑒 and Rem = 2500 and 200, respectively, where 𝑅𝑒𝑚is the magnetic 

Reynolds number, or 𝑅𝑒𝑚 = �̂�̂∗𝑅∗/휁∗ , where 휁∗  is the magnetic diffusivity. 

Increasing the Hartmann number from 0 to 7 suppressed the fluctuations at 𝛼 = 

14.14, which was considered relatively small with respect to the deflection point 

seen in Fig. 6. To illustrate further the effect of Ha, the wall shear stress profiles 

are shown in the left corner of Fig. 8. The results of 𝜏𝑤 were taken at the distance 

from 𝑥 = 5.8 to 6 of the rough pipe flow. 

Velocity overshoots with some fluctuations highly occur near the wall in the 

case of 𝛼 = 42.5, see Figs. 8(c) and (d). The velocity profiles change everywhere in 

the pipe, and the wall shear stress encounters sudden increases. Turbulence is 

anticipated to develop at some distance following the pipe reduction zone when the 

Reynolds number is rather higher. As the Hartmann number rises, the velocity 

gradients increase, as previously noted, and the flow becomes unstable as a result 

of the produced perturbations. The flow tends to be more sensitive to disturbances 

at these flow conditions, so that it becomes unstable at lower Reynolds numbers as 

shown in Fig. 6 when the Hartmann number is high. 

As the Womersley number changes from 14.14 to 42.5, the flow experiences 

overshooting event near the walls, as indicated in Fig. 9. Likewise, the influence of 

magnetic field at a fixed Womersley number steers the flow towards the walls. With 

𝛼 having a value of 19 or less, the flow becomes more stable and wall clustered as 

the magnetic field increases. This phenomena resembles the idea of impedance in 

some ways, where the flow, periodic pressure gradient, viscosity, and magnetic 

field can be viewed as the system's mass, cyclic spring force, and dampers. The 

equation of Lee et al. [36] for impedance may have been used if the walls were 

thought of as elastic in this context. For computational analysis, Fig. 10 

demonstrates the influence of magnetic environment surrounding the entire pipe in 

terms of Womersley number at 𝑅𝑒  = 2500  and Rem  = 200 . The boundary 

conditions for the magnetic field are the same type (Dirichlet) as for the velocity 
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field at the pipe ends. As an inlet condition, the analytical solution described in Eq. 

(6) was employed, where the magnetic field does not change across the flat pipe. 

At 𝛼 = 14.14 and 42.5, the relation of Womersley and Hartmann numbers with 

magnetic field flux is shown for 𝐻𝑎 =  0 and 7. If the 𝛼 is significant compared to 

small oscillations, the magnetism has a big influence. The contour depicts the 

magnetic effect varying with the area reduction. The magnetic effect (𝐵∗ ) is 

intensified at the throttle zone while 𝐻𝑎 and other fluid parameters are maintained. 

 

Fig. 8. Effect of magnetic field on a pipe flow of 75% constricted area with 

roughness height of 0.001. The wall shear stresses and the contour plots of 

axial velocity are examined at Re = 2500, Re𝑚 = 200 and 𝒕/𝑻= 3∕8 with Ha = 0 

and 7 for: (a) and (b) 𝜶 = 14.14, (c) and (d) 𝜶 = 42.5. 

 
Fig. 9. Streamlines of a pipe flow of 75% constricted area with  

roughness height of 0.001 are examined at Re = 2500, Re𝑚 = 200 and 𝒕/𝑻= 3∕8 

with Ha = 0 and 7 for: (a) and (b) 𝜶 = 14.14, (c) and (d) 𝜶 = 42.5. 
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Fig. 10. Contour plots of magnetic field (Tesla), applied on a pipe  

flow of 75% constricted area with roughness height of 0.001, are examined  

at Re = 2500, Re𝑚 = 200 and 𝒕/𝑻= 3∕8 with Ha = 0 and 7 for: (a) and 

(b) 𝜶 = 14.14, (c) and (d) 𝜶 = 42.5. 

6.  Conclusions 

The induced force dampens unsteady velocity profiles inside a magnetic 

environment, whereas velocity derivatives at the wall and reduced area are enhanced. 

Two-dimensional disturbances for this type of flow can be triggered by the 

configuration of wall and operating conditions. The assumptions of the quasi-steady 

technique described herein seem to be effective in identifying transition thresholds. 

This is confirmed by the numerical solution of the initial value problem and other 

data from prior studies, although the pulsation ratio is taken one only and the precise 

exact transition zones cannot be identified from the literature. Nevertheless, applying 

a transverse magnetic field has a stabilized effect on the pulsatile flow when the 

Womersley number is ≤ 19 while the opposite is true for higher oscillations. If the 

perturbations are axisymmetric, the flow will be laminar and not fluctuated anywhere 

downstream the flow, as noticed in other studies, but some fluctuations can grow if 

Hartmann and Womersley numbers are significantly high. Also, the influence of wall 

roughness should be considered whether or not the flow passes through a throat. Since 

the evaluated eigenvalues are the highest growth rate at each instant of time, where 

the base flow is considered frozen, it is anticipated that the current theory will hold 

true for a variety of pulsing flow types with high Womersley numbers. 

Nomenclatures 

 

𝐴 Pulsation ratio, 𝑢̂ 𝑜
∗ ∕ 𝑢̂ 𝑠

∗
 

𝐵∗ Dimensional Magnetic field flux, Tesla (T) 

𝑐 Dimensionless velocity of disturbance waves 

𝐷∗ Dimensional pipe diameter, m 

𝐸 Number of elements 

𝑓1, 𝑓2 Functions used for wall modifications 

𝐼0 Modified Bessel function of the first kind 
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𝐼𝑚[𝜔] Imaginary part of eigenvalues, disturbance growth rate 

𝐽0 Bessel function of the first kind 

𝑘 Dimensionless wave number 

𝑁 Lagrange polynomial degree 

𝑝 ∗ Dimensional static pressure, N/m2 

𝑅∗ Dimensional pipe radius, m 

ℝ Real part 

𝑟 Radial coordinate nondimensionalized by 𝑅∗ 

𝑇 Dimensionless period of flow oscillation 

𝑡 Dimensionless time 

𝑈 Axial laminar velocity normalized by 𝑢̂ ∗ 

𝑢̂ Instantaneous axial velocity normalized by 𝑢̂ ∗ 

𝑢̂ ∗ Dimensional axial velocity amplitude at 𝑟 = 0, 𝑢̂ ∗ = 𝑢̂ 𝑠
∗
+ 𝑢̂ 𝑜

∗
, m 

   𝑢̂𝑟𝑚𝑠 Root-mean-square velocity nondimensionalized by 𝑢̂ ∗ 

 

Greek Symbols 

υ Dimensional radial velocity normalized by 𝑢̂ ∗ 

𝜓 ∗ Dimensional stream function, kg/m s 

x Dimensionless axial coordinate nondimensionalized by 𝑅∗ 

휂 Disturbance amplitude function. 

𝛿 Dimensionless throat amplitude 

𝜙 Dimensionless function 

𝜄 Roughness parameter normalized by 𝑅∗ 

𝜎∗ Electrical conductivity, S/m (siemens per meter) 

휀 Dimensionless roughness amplitude defined as 휀∗∕𝑅∗ 

𝜈∗ Kinematic viscosity, m2 s−1 

𝜇∗ Dynamic viscosity,  Pa s 

Ω Angular frequency nondimensionalized by 𝑢̂ ∗∕𝑅∗ 

Ψ Stream function for the base flow nondimensionalized by 𝑢̂ ∗∕𝑅∗ 

𝜓 Stream function for the disturbances nondimensionalized by 

𝑢̂ ∗∕𝑅∗ 

𝜌∗ Fluid density, kg/m3 

𝜏𝑤 Dimensionless wall shear stress nondimensionalized by 𝜌∗𝑢̂ ∗2 

𝜔 Eigenvalue indicating growth rate of disturbance 

휁∗ Magnetic diffusivity, m²/s 

ℜ(𝒖) Normalized residual of the vector velocity (u) 

 

Dimensionless numbers 

Ha Hartmann number, Ha = 𝐵∗𝑅∗√𝜎∗ ∕ 𝜇∗ 

Re Reynolds number based on 𝑢̂ ∗and 𝑅∗, Re = 𝑢̂ ∗𝑅∗ ∕ 𝜈∗ 

Rec Critical Reynolds number based on 𝑢̂ ∗and 𝑅∗∗ 

Rem Magnetic Reynolds number, �̂�̂∗𝑅∗/휁∗ 

α Womersley number, 𝑅∗√Ω∗ ∕ 𝜈∗ 
 



1556       A. K. Abbas  et al. 

 
 
Journal of Engineering Science and Technology               June 2023, Vol. 18(3) 

 

References 

1. Nabavi, M.; and Siddiqui, K. (2010). A critical review on advanced velocity 

measurement techniques in pulsating flows. Measurement Science and 

Technology, 21(4), 04200. 

2. Misra, J.; and Shit, G.C. (2007). Effect of magnetic field on blood flow through 

an artery: A numerical model. Journal of Computational Technologies, 12(4), 

3-16. 

3. Parida, M. (2017). Study of MHD flow of blood with heat transfer in an arterial 

segment under the effect of periodic body acceleration. International Journal 

of Applied Mathematics, 30(4). 

4. Rashidi, S.; Esfahani, J.A.; and Maskaniyan, M. (2017). Applications of 

magnetohydrodynamics in biological systems-a review on the numerical 

studies. Journal of Magnetism and Magnetic Materials, 439, 358-372. 

5. Sharma, M.K.; Bansal, K.; and Bansal, S. (2012). Pulsatile unsteady flow of 

blood through porous medium in a stenotic artery under the influence of 

transverse magnetic field. Korea-Australia Rheology Journal, 24(3), 181-189. 

6. Khechiba, A.; Benakcha, Y.; Ghezal, A.; and Spetiri, P. (2018). Combined 

MHD and pulsatile flow on porous medium. Fluid Dynamics & Materials 

Processing, 14(2), 137-154. 

7. Camobreco, C.J.; Pothérat, A.; and Sheard, G.J. (2021). Stability of pulsatile 

quasi-two-dimensional duct flows under a transverse magnetic field. Physical 

Review Fluids, 6(5), 053903. 

8. Bandyopadhyay, S.; and Layek, G.C. (2012). Study of magnetohydrodynamic 

pulsatile flow in a constricted channel. Communications in Nonlinear Science 

and Numerical Simulation, 17(6), 2434-2446. 

9. Kiran, G.R.; Murthy, V.R.; and  Krishnamacharya, G.R. (2019). Pulsatile flow 

of a dusty fluid thorough a constricted channel in the presence of magnetic 

field. Materials Today: Proceedings, 19, 2645-2649. 

10. Thomas, C.; Bassom, A.P.; Blennerhassett, P.J.; and Davies, C. (2011). The 

linear stability of oscillatory Poiseuille flow in channels and pipes. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Sciences, 467(2133), 2643-2662. 

11. Sadrizadeh, S. (2012). Instabilities in pulsating pipe flow of shear-thinning and 

shear-thickening fluids. Degree Project. Department of Management and 

Engineering  Linköping University, Sweden. 

12. Fedele, F.; Hitt, D.L.; and Prabhu, R.D. (2005). Revisiting the stability of 

pulsatile pipe flow. European Journal of Mechanics - B/Fluids, 24(2), 237-254. 

13. Pier, B.; and Schmid, P.J. (2017). Linear and nonlinear dynamics of pulsatile 

channel flow. Journal of Fluid Mechanics, 815, 435-480. 

14. Xu, D.; and Avila, M. (2018). The effect of pulsation frequency on transition 

in pulsatile pipe flow. Journal of Fluid Mechanics, 857, 937-951. 

15. Varghese, S.; Frankel, S.; and Fischer, P. (2007). Direct numerical simulation of 

stenotic flows. Part 2. pulsatile flow. Journal of Fluid Mechanics, 582, 281-318. 

16. Sherwin, S.J.; and Blackburn, H.M. (2005). Three-dimensional instabilities 

and transition of steady and pulsatile axisymmetric stenotic flows. Journal of 

Fluid Mechanics, 533. 



On the Stability of Pulsatile Flow in the Presence of a Transverse . . . . 1557 

 
 
Journal of Engineering Science and Technology               June 2023, Vol. 18(3) 

 

17. Xu, D.; Warnecke, S.; Song, B.; Ma, X.; and Hof, B. (2017). Transition to 

turbulence in pulsating pipe flow. Journal of Fluid Mechanics, 831, 418-432. 

18. Lee, Y; and Abdulrasool, A.A. (2018). Comparison between theories and 

experiments in transition of purely oscillating pipe flow. Proceedings of the 

2018 Fluid Dynamics Conference. American Institute of Aeronautics and 

Astronautics, Atlanta, Georgia. 

19. Griffith, M.D.; Leweke, T.; Thompson, M.C.; and Hourigan, K. (2009). 

Pulsatile flow in stenotic geometries: flow behaviour and stability. Journal of 

Fluid Mechanics, 622, 291-320. 

20. Abdulrasool, A.A. (2020). Theoretical and computational analyses on 

transition and turbulence in purely oscillating pipe flow. Doctoral 

Dissertations and Master's Theses. 511. Mechanical Engineering Department, 

Embry-Riddle Aeronautical University, Florida-32114, USA. 

21. Farrokhi, H.; Otuya, D.O.; Khimchenko, A.; and Dong, J. (2020). 

Magnetohydrodynamics in biomedical applications. Nanofluid Flow in Porous 

Media. IntechOpen. 

22. Womersley, J.R. (1955). Method for the calculation of velocity, rate of flow 

and viscous drag in arteries when the pressure gradient is known. The Journal 

of Physiology, 127(3), 553-563. 

23. Ray, S.; Ünsal, B.; Durst, F.; Ertunc, Ö.; and Bayoumi, O.A. (2005). Mass flow 

rate controlled fully developed laminar pulsating pipe flows.  Journal of Fluids 

Engineering, 127(3), 405-418. 

24. Ha, H.; Lantz, J.; Ziegler, M.; Casas, B.; Karlsson, M.; Dyverfeldt, P.; and 

Ebbers, T. (2017). Estimating the irreversible pressure drop across a stenosis 

by quantifying turbulence production using 4D flow MRI. Scientific Reports, 

7(1), 46618. 

25. ÇarpinlioÇğlu, M.Ö.; and GündoÇğdu, M.Y. (2001). A critical review on 

pulsatile pipe flow studies directing towards future research topics. Flow 

Measurement and Instrumentation, 12(3),163-174. 

26. Hairer, E.; Wanner, G.; and Lubich, C. (2006). Geometric numerical integration. 

Springer Series in Computational Mathematics (SSCM, volume 31). 

27. Singer, B.A.; Ferziger, J.H.; and Reed, H.L. (1989). Numerical simulations of 

transition in oscillatory plane channel flow. Journal of Fluid Mechanics, 208, 

45-66. 

28. Fischer, P.F.; Kruse, G.W.; and Loth, F. (2002). Spectral element methods for 

transitional flows in complex geometries. Journal of Scientific Computing, 

17(1/4), 81-98. 

29. Abdulrasool, A.A.; and Lee, Y. (2019). A DNS study on roughness-induced 

transition in oscillating pipe flow by employing overset methodology. 

Proceedings of the ASME 2019 International Mechanical Engineering 

Congress and Exposition, Salt Lake City, Utah, USA, V007T08A022. 

30. Bauer, A.; Wegt, S.; Bopp, M.; Jakirlic, S.; Tropea, C.; Krafft, A.J.; Shokina, 

N.; Hennig, J.; Teschner, G.; and Egger, H. (2019). Comparison of wall shear 

stress estimates obtained by laser doppler velocimetry, magnetic resonance 

imaging and numerical simulations. Experiments in Fluids, 60(7), 112. 



1558       A. K. Abbas  et al. 

 
 
Journal of Engineering Science and Technology               June 2023, Vol. 18(3) 

 

31. Çarpinlioǧlu, M.Ö.; and GündoÇğdu, M.Y. (2001). A critical review on 

pulsatile pipe flow studies directing towards future research topics. Flow 

Measurement and Instrumentation, 12(3),163-174. 

32. Lodahal, C.R.; Sumer, B.M.; and FredsØe, J. (1998). Turbulent combined 

oscillatory flow and current in a pipe. Journal of Fluid Mechanics, 373, 313-

348. 

33. Das, D.; and Arakeri, J.H. (1998). Transition of unsteady velocity profiles with 

reverse flow. Journal of Fluid Mechanics, 374, 251-283.  

34. Sarpkaya, T. (1966). Experimental determination of the critical Reynolds 

number for pulsating Poiseuille flow. Journal of Basic Engineering, 88(3), 

589-598.  

35. Stettler, J.C.; and Hussain, A.K.M.F. (1986). On transition of the pulsatile pipe 

flow. Journal of Fluid Mechanics, 170,169-197. 

36. Lee, V.C.; Abakr, Y.A.; and Woo, K.C. (2015). Dynamics of fluid in 

oscillatory flow: The Z-component. Journal of Engineering Science and 

Technology, 10(10),1361-1371. 

Appendix A 

A. Derivation of the Analytical Solution (Eq. 6) 

When a magnetic field (�⃗� ∗) is imposed on a moving conductive fluid, electrical 

currents with intensity 𝐽 ∗ can be induced. Electromagnetic force, or Lorentz force 

(𝐹 𝑚
∗ ), will be created due to the interaction of the current lines with the magnetic 

field flux. This force is perpendicular on both �⃗� ∗ and 𝐽 ∗ according to the right-hand 

rule. Mathematically, if the current density is considered as 

𝐽 ∗ = 𝜎∗(�⃗� ∗ + �⃗�̂ ∗ × �⃗� ∗), 

where 𝜎∗ is the electrical conductivity, 𝐸∗ is the electrical field (neglected in this 

study), 𝑢̂∗ is the axial fluid velocity, the electromagnetic force in the axial direction 

will be 

𝐹 𝑚
∗ = 𝐽 ∗ × �⃗� ∗ = 𝜎∗(�⃗�̂ ∗ × �⃗� ∗) × �⃗� ∗. 

Note that the uniform magnetic field, �⃗� ∗ = 𝐵𝑥∗
∗ 𝑒 𝑥∗ + 𝐵𝑟∗

∗ 𝑒 𝑟∗  of a constant 

magnitude 𝐵∗, is considered in this study, where 𝑒 𝑥∗  and 𝑒 𝑟∗  are unit vectors in 

cylindrical coordinates. The magnetic field is in a transverse direction to both the 

𝐹 𝑚
∗  and �⃗�̂ ∗, which are in turn opposite to each other. The �⃗� ∗ is constant over the 

entire pipe but still changes with the pipe radius (𝑅∗) if there is a throat. Thus, the 

momentum equation involving 𝐹 𝑚
∗  for a fully developed laminar flow of 

incompressible fluid inside a flat pipe is 

𝜕𝑢∗

𝜕𝑡∗ = −
1

𝜌∗

𝜕𝑝∗

𝜕𝑥∗ −
𝜎∗𝐵∗2

𝜌∗ 𝑢̂∗ +
𝜇∗

𝜌∗ (
𝜕2𝑢∗

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝑢∗

𝜕𝑟∗),                                             (18) 

where −𝜕𝑝∗/𝜕𝑥∗ = ∑𝑀
𝑛=0 𝛬𝑛

∗ 𝑒𝑖Ω∗𝑛𝑡∗
 at which 𝑛  represents the number of 

harmonics and 𝑀  is theoretically infinite. The boundary conditions are 

axisymmetry at the centre and no-slip condition on the wall. An analytical solution 

for this non-homogeneous second order partial differential equation is obtained via 
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decomposing the flow into steady ( 𝑢̂𝑠
∗ ) and unsteady (or oscillatory 𝑢̂𝑜

∗ ) 

components, i.e., 

𝑢̂∗ = 𝑢̂𝑠
∗ + 𝑢̂𝑜

∗ . 

A.1. Steady Component 

In the steady case, where −𝜕𝑝∗/𝜕𝑥∗ = 𝛬0
∗  , the governing equation turns into non-

homogeneous second order ordinary differential equation, or 

𝜕2𝑢∗

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝑢∗

𝜕𝑟∗ −
𝜎∗𝐵∗2

𝜇∗ 𝑢̂∗ = −
𝛬0

∗

𝜇∗,                                                                    (19) 

and the general solution consists of two superposition solution parts 

(homogeneous and non-homogeneous), i.e., 

𝑢̂𝑠
∗ = 𝐶1𝐼0 (√

𝜎∗𝐵∗2

𝜇∗ 𝑟∗) + 𝐶2𝐾0 (√
𝜎∗𝐵∗2

𝜇∗ 𝑟∗) +
𝛬0

∗

𝜎∗𝐵∗2.                                       (20) 

The boundary condition at the axis of symmetry forces 𝐶2 = 0, so the solution 

for steady flow is 

𝑢̂𝑠
∗ =

𝛬0
∗

𝜎∗𝐵∗2 (1 −
𝐼0(𝐻𝑎⋅𝑟)

𝐼0(𝐻𝑎)
),                                                                                  (21) 

where 𝐻𝑎 = 𝐵∗𝑅∗√𝜎∗/𝜇∗. 

A.2. Unsteady Component 

If −𝜕𝑝∗/𝜕𝑥∗ = 𝛬1
∗𝑒𝑖Ω∗𝑡∗

 drives the flow, the axial velocity and its derivatives turn 

into 

𝑢̂𝑜
∗ = 𝑓∗𝑒𝑖Ω∗𝑡∗

, 

𝑑𝑢̂𝑜
∗

𝑑𝑟∗
=

𝑑𝑓∗

𝑑𝑟∗
𝑒𝑖Ω∗𝑡∗

, 

𝑑2𝑢̂𝑜
∗

𝑑𝑟∗2
=

𝑑2𝑓∗

𝑑𝑟∗2
𝑒𝑖Ω∗𝑡∗

, 

𝑑𝑢̂𝑜
∗

𝑑𝑡∗
= 𝑖Ω∗𝑓∗𝑒𝑖Ω∗𝑡∗

, 

that Eq. (18) can be converted to 

𝜕2𝑓∗

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝑓∗

𝜕𝑟∗ − (
𝜎∗𝐵∗2

𝜇∗ + 𝑖
Ω∗

𝜈∗) 𝑓∗ = −
𝛬1

∗

𝜇∗ , or                                                      (22) 

𝜕2𝑓∗

𝜕𝑟∗2 +
1

𝑟∗

𝜕𝑓∗

𝜕𝑟∗ − 𝛾∗𝑓∗ = −
𝛬1

∗

𝜇∗.                                                                    (23) 

The general solution of such equation can be sought by 

𝑓∗ = 𝐶3𝐼0(√𝛾∗ ⋅ 𝑟∗) + 𝐶4𝐾0(√𝛾∗ ⋅ 𝑟∗) +
𝛬1

∗

𝛾∗𝜇∗,                                       (24) 
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where 𝛾∗ =
𝜎∗𝐵∗2

𝜇∗ + 𝑖
Ω∗

𝜈∗ , 𝛾 = √𝛾∗𝑅∗ , 𝛾 = √𝐻𝑎2 + 𝑖𝛼2  and 𝛼 = 𝑅∗√Ω∗/𝜈∗ . 

Based on these changes and the boundary condition at the axis of symmetry, where 

𝐶4 = 0, the solution is 

𝑢̂𝑜
∗ = 𝑓∗𝑒𝑖Ω∗𝑡∗

=
𝛬1

∗

𝛾∗𝜇∗ (1 −
𝐼0(𝛾⋅𝑟)

𝐼0(𝛾)
) 𝑒𝑖Ω∗𝑡∗

.                                                      (25) 

The pulsatile flow velocity is obtained by combining the two component 

solutions as follows: 

𝑢̂∗ =
𝛬0

∗

𝜎∗𝐵∗2 (1 −
𝐼0(𝐻𝑎⋅𝑟)

𝐼0(𝐻𝑎)
) +

𝛬1
∗

𝛾∗𝜇∗ (1 −
𝐼0(𝛾⋅𝑟)

𝐼0(𝛾)
) 𝑒𝑖Ω∗𝑡∗

.                                       (26) 

Finally, the normalized velocity for the current analysis, 𝑈(𝑟, 𝑡) with respect to 

�̂�̂∗, is 

𝑈(𝑟, 𝑡) = |
𝐼0(𝐻𝑎)

𝐼0(𝐻𝑎)−1
| (1 −

𝐼0(𝐻𝑎⋅𝑟)

𝐼0(𝐻𝑎)
) + |

𝐼0(𝛾)

𝐼0(𝛾)−1
| ⋅ ℝ [(1 −

𝐼0(𝛾⋅𝑟)

𝐼0(𝛾)
) ⋅

𝑒𝑖Ω𝑡

𝑖
],              (27) 

where the amplitudes for each component are 

|
𝐼0(𝐻𝑎)

𝐼0(𝐻𝑎) − 1
| ≡

𝑅𝑒

𝐻𝑎2
𝛬0, and 

|
𝐼0(𝛾)

𝐼0(𝛾) − 1
| ≡

𝑅𝑒

𝑖𝛾2
𝛬1. 


