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Abstract 

A low complex algorithm of channel estimation in presence of phase locked loop 
phase noise (PLL PHN) for iterative orthogonal frequency division multiplexing 

(OFDM) receiver is addressed in this article. A maximum a posteriori (MAP) 
cost function for the joint estimation of channel transfer function (CTF) and PLL 
PHN is derived. The proposed joint estimation relaxes the restriction of small 
PLL PHN assumption and utilizes the prior statistical knowledge of PLL PHN 
spectral components to produce statistically optimal solution. The frequency 
domain estimation of unknown frequency selective fading makes the method 
simpler, compared with the estimation of channel impulse response (CIR) in time 
domain. Further a cyclic gradient descent optimization algorithm is proposed to 

minimize the joint MAP cost function. Simulation results are compared with 
Cramer-Rao lower bound (CRLB) to demonstrate that the proposed joint MAP 
estimation achieves near optimum performance.  

Keywords: Channel transfer function, Maximum a posteriori, Orthogonal frequency 
division multiplexing, Phase locked loop phase noise 
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1. Introduction 

OFDM system working for high spectral efficiency and data rates, necessitates the 

estimation of time varying channel in presence of receiver non idealities such as 
PHN, carrier frequency offset (CFO) and IQ (in and quadrature phase) imbalance 

effect. PHN is random fluctuation in the phase of the signal produced by the 

practical oscillator [1-3] whereas CFO and IQ imbalance are deterministic. Either 

the isolated or joint approach of the channel and PHN estimation has been used [4-

12] for a reliable performance. While the isolated approach [4-6] results in poor 

estimation, the joint approach [7-14] produces the optimal estimates with increase 

in computation complexity. 

A new frequency domain low complex approach for the estimation of CTF and 

PHN in joint is introduced in this paper. This paper focuses on more enhanced time 

varying PHN model as Ornstein-Uhlenbeck (O-U) process [15] without the 

assumption of small PHN. The derived joint MAP cost function is further 
minimized with proposed cyclic gradient descent optimization algorithm. The 

mean square error (MSE) of the proposed joint MAP algorithm is compared with 

the CRLB for an OFDM channel estimator without PHN. 

The paper is organized in following manner. In Section 2 the PLL PHN 

modelling is presented which is further used in Section 3 to derive the PLL PHN 

corrupted OFDM signal. In Section 4 the proposed joint MAP cost function is 

derived which is further optimized globally with respect to CTF and PLL PHN by 

using proposed iterative cyclic gradient descent optimization algorithm in section 

5. Section 6 is presenting the simulation results and Section 7 concludes the paper. 

2. Phase Noise Modelling 

In general, time varying PHN process (θ(t)), can be written as following stochastic 

differential equation [15]: 

𝑑𝜃(𝑡) = 𝜑(𝜇 − 𝜃(𝑡))𝑑𝑡 + 𝜎𝑑𝐵(𝑡)                                                                      (1) 

where𝜃(𝑡) and 𝐵(𝑡) are continues time Ornstein- Uhlenbeck (O-U) process and 

Brownian process respectively. 𝜇 is asymptotic mean, 𝜑 is the drift and 𝜎2 is the 

variance of the noise present in the system which is white noise in our case.  

Solution for Eq. (1) with the initial condition 𝜃(0)is [15]: 

𝜃(𝑡) =  𝜃(0)𝑒−𝜑𝑡 + 𝜇(1 − 𝑒−𝜑𝑡) + 𝜎 ∫ 𝑒−𝜑(𝑡−𝑠)𝑑𝐵𝑠
𝑡

0
                                       (2) 

If 𝜃(𝑡) is sampled with the sampling interval Ts/N, means 𝜃𝑛 = 𝜃(𝑛𝑇𝑠/𝑁 ) 

where 𝑛 = 0, 1, 2, … , 𝑁 − 1 then: 

𝜃𝑛+1 = 𝜃𝑛𝑒−𝜑
𝑇𝑠
𝑁 + 𝜇 (1 − 𝑒−𝜑

𝑇𝑠
𝑁 ) + 𝜙𝑛 .                                                              (3) 

Equation (3) represents the autoregressive process of order one (AR (1)) where 

𝜙𝑛 is a sequence of identically and independently distributed (iid) random variables 

with mean zero and variance 𝜎𝜙𝑛
2 , such that: 

𝜙𝑛 = 𝜎𝜙𝑛
𝜖𝑛                                                                                                              (4) 

where 𝜖𝑛~𝑖𝑖𝑑𝒩(0, 1) and 𝜙𝑛~𝑖𝑖𝑑𝒩(0, 𝜎𝜙𝑛
2). In this case, Eq. (3) is known as 

discrete time regular O-U process with: 
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𝜎𝜙𝑛
2 =

𝜎2

2𝜑
(1 − 𝑒−2𝜑

𝑇𝑠
𝑁 ).                                                                                          (5) 

Though PHN from the PLL voltage controlled oscillator (VCO) follows the 

regular O-U process, but for wide sense stationary output from the PLL, asymptotic 

mean should be zero and with that Eq. (1) results in [15]: 

𝑑𝜃(𝑡) = −𝜑𝜃(𝑡)𝑑𝑡 + 𝜎𝑑𝐵(𝑡)                                                                                  (6) 

with the solution [15]: 

𝜃(𝑡) = 𝜃(0)𝑒−𝜑𝑡 + 𝜎 ∫ 𝑒−𝜑(𝑡−𝑠)𝑑𝐵𝑠
𝑡

0
                                                                          (7) 

which is celebrated O-U process[15]. The discrete time sampled version of Eq. (7) is: 

𝜃𝑛+1 = 𝜃𝑛𝑒−𝜑
𝑇𝑠
𝑁 + 𝜙𝑃𝐿𝐿𝑛

                                                                                                (8) 

where 𝜙𝑃𝐿𝐿𝑛
 is a sequence of identically and independently distributed (iid) 

random variables with mean zero and variance: 

𝜎𝜙𝑃𝐿𝐿𝑛

2 =
𝜎2

𝜑
(1 − 𝑒−𝜑

𝑇𝑠
𝑁 )                                                                                              (9) 

Mehrotra [16] solved Eq. (7) for the PLL VCO with loop filter of order one 

(Fig. 1) resulting in zero mean and variance: 

 

Fig. 1. Principal PLL block diagram. 

𝜎𝜙𝑃𝐿𝐿𝑛

2 = 4𝜋2𝑓𝑐
2 (𝐶𝑖𝑛

𝑇𝑠

𝑁
+ 2∑ (𝜉𝑖 + 𝜁𝑖)(1 − 𝑒−𝜆𝑖

𝑇𝑠
𝑁 )2

𝑖=1 )                                             (10) 

where: 

𝜆1,2 =
𝜔𝑙𝑝𝑓 ± √(𝜔𝑙𝑝𝑓

2 − 4𝜔𝑙𝑝𝑓√𝐶𝑃𝐿𝐿)

2
, 

𝜉1 =
𝐶𝑖𝑛𝜆2

(𝜆1 − 𝜆2)𝜆1

, 𝜉2 =
−𝐶𝑖𝑛𝜆1

(𝜆1 − 𝜆2)𝜆2

, 

𝜁1 =
𝐶𝑖𝑛 + 𝐶𝑉𝐶𝑂

(𝜆1 − 𝜆2)
2
(
𝜆2

2

2𝜆1

−
𝜆1𝜆2

2(𝜆1 + 𝜆2)
), 

and 

𝜁2 =
𝐶𝑖𝑛 + 𝐶𝑉𝐶𝑂

(𝜆1 − 𝜆2)
2
(
𝜆1

2

2𝜆2

−
𝜆1𝜆2

2(𝜆1 + 𝜆2)
) 

where 𝑓𝑐  is the centre frequency of VCO in Hz , 𝜔𝑙𝑝𝑓 is the angular corner 

frequency of the low pass filter in rad/sec and √𝐶𝑃𝐿𝐿  is the PLL bandwidth in Hz. 

𝐶𝑖𝑛and 𝐶𝑉𝐶𝑂are diffusion rates of the reference oscillator and VCO respectively. 
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If 𝜃𝑚 = [𝜃0
𝑚 , 𝜃1

𝑚 , …𝜃𝑁−1
𝑚 ]𝑇 is the PHN vector for the 𝑚𝑡ℎ OFDM symbol, then: 

𝑃𝑚 = [𝑝
−

𝑁

2

𝑚 , 𝑝
−

𝑁

2
+1

𝑚 , … , 𝑝0
𝑚 , … , 𝑝𝑁

2
−2

𝑚 , 𝑝𝑁

2
−1

𝑚 ]𝑇                                                                            (11) 

defines a vector of the DFT (discrete Fourier transform) coefficients of one 

realization of 𝑒𝑗𝜃𝑛  during 𝑚𝑡ℎ OFDM symbol where:  

𝑝𝑘
𝑚 =

1

𝑁
∑ 𝑒𝑗𝜃𝑛

𝑚
𝑒

−𝑗2𝜋𝑛𝑘

𝑁𝑁−1
𝑛=0 ,   −

𝑁

2
≤ 𝑘 ≤

𝑁

2
− 1                                                                    (12) 

and the correlation matrix for PLL VCO is given as [5]: 

𝐑P𝑚(𝑎, 𝑏)𝑃𝐿𝐿 =
1

𝑁2
∑ ∑ 𝑒

−4𝜋2𝑓𝑐
2(𝐶𝑖𝑛

|𝑢−𝑣|𝑇𝑠
𝑁

+2 ∑ (𝜉𝑖+𝜁𝑖)(1−𝑒
−𝜆𝑖

|𝑢−𝑣|𝑇𝑠
𝑁 )2

𝑖=1 )

𝑒
−𝑗2𝜋(𝑎𝑢−𝑏𝑣)

𝑁 ,

𝑁−1
𝑣=0

𝑁−1
𝑢=0 −

𝑁

2
≤ 𝑎, 𝑏 ≤

𝑁

2
−                                                                                                                                      (13) 

=If 𝜃𝑛 is a celebrated O-U process then the cumulative PLL PHN increment in two 

received signals is an asymptotically Gaussian random variable. Thus the P𝑚 is 

complex Gaussian distributed, Pr(P𝑚) = 𝐶𝒩(0,𝚯),  with mean zero and 

covariance matrix, 𝚯 = 𝐑P𝑚(𝑎,𝑏)𝑃𝐿𝐿. Since the power spectral density (PSD) of 

PHN tappers off rapidly beyond the loop bandwidth, PLL PHN process can be 

sufficiently characterized by few lower order spectral components, containing most 

of the energy of a PHN sequence. These lower order spectral components of PLL 

PHN are given by 𝑝0 
𝑚,𝑝1

𝑚,𝑝−1
𝑚,𝑝2

𝑚,𝑝−2
𝑚 etc. Here we define a variable 𝑄, 

as an approximation order for which 2𝑄 + 1  elements of the vector 

𝑃𝑚, i. e. ,   𝑝−𝑄
𝑚 ,… ,𝑝0

𝑚,… ,𝑝𝑄
𝑚  can well approximate the PLL PHN process.  

3. OFDM System Modelling 

We model an OFDM system consisting of 𝑁  subcarriers with sampling instant Ts/N. 

If𝐷𝑘
𝑚 , 𝑘 = 0, 1, … , 𝑁 − 1, is the frequency domain quadrature amplitude modulation 

(QAM) modulated symbol on 𝑘𝑡ℎ  subcarrier of 𝑚𝑡ℎ symbol then,  D𝑚 =
[𝐷0

𝑚 , 𝐷1
𝑚 , … ,𝐷𝑁−1

𝑚 ]𝑇, defines a symbol vector. Let the discrete time composite CIR with 

order𝐿is denoted by ℎ(𝑙) and the CTF on the 𝑘𝑡ℎ subcarrier is denoted by 𝐻𝑘, then: 

𝐻𝑘 = ∑ ℎ(𝑙)𝑒
−𝑗2𝜋𝑘𝑙

𝑁𝐿−1
𝑙=0 .                                                                                       (14) 

The frequency domain received signal on the𝑘𝑡ℎsubcarrier of the 𝑚𝑡ℎsymbol is: 

𝑟𝑘
𝑚 = ∑ 𝐷𝑞

𝑚𝐻𝑞𝑝〈𝑘−𝑞〉
𝑚 + 𝑍𝑘

𝑚 ,𝑁−1
𝑞=0 0 ≤ 𝑘 ≤ 𝑁 − 1                                                              (15) 

where 𝐷𝑞
𝑚 is 𝑞𝑡ℎ element of symbol vector 𝐷𝑚, 𝐻𝑞 is the 𝑞𝑡ℎ element of channel 

vector H = [𝐻0, 𝐻1,𝐻2,… , 𝐻𝑁−1]
𝑇, 𝑍𝑘

𝑚 is additive white Gaussian noise (AWGN) 

in frequency domain and 𝑝〈𝑘−𝑞〉
𝑚  is the (𝑘 − 𝑞)𝑡ℎ spectral component of PLL PHN 

spectral component vector, P𝑚 , which is modulo 𝑁  indexed. For that the lower 

order spectral components of PLL PHN are given by 𝑝0 , 𝑝1, 𝑝𝑁−1, 𝑝2, 𝑝𝑁−2 etc. For 

further analysis we represent the matrix signal model as: 

𝐑𝑚 = 𝓗𝑚𝐏𝑚 + 𝐙𝑚                                                                                    (16) 

where 

𝐑𝑚 = [𝑟0
𝑚 , 𝑟1

𝑚 ,… , 𝑟𝑁−1
𝑚 ]𝑇 , 𝐏𝑚 = [𝑝0

𝑚 , 𝑝1
𝑚 , … , 𝑝𝑁−1

𝑚 ]𝑇 ,𝐇 = [𝐻0, 𝐻1,𝐻2,… , 𝐻𝑁−1]
𝑇, 
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𝐃𝑚 = [𝐷0
𝑚 ,𝐷1

𝑚 , … ,𝐷𝑁−1
𝑚 ]𝑇and 𝓗𝑚 is a column wise circulant matrix whose first 

column is vector [𝐻0𝐷0
𝑚 ,𝐻1𝐷1

𝑚, … , 𝐻𝑁−1𝐷𝑁−1
𝑚 ]𝑇.𝐙𝑚 = [𝑍0

𝑚 , 𝑍1
𝑚 , … , 𝑍𝑁−1

𝑚 ]𝑇, is an 

uncorrelated white noise vector distributed as,Pr(𝐙𝑚) = 𝐶𝒩(0,2𝜎𝜔
2𝐈), with mean 

zero and covariance matrix 2𝜎𝜔
2𝐈, which says: 

Pr(𝐙𝑚) =
1

(2𝜋)𝑁𝜎𝜔
2𝑁 𝑒𝑥𝑝 (

−1

2𝜎𝜔
2 𝐙𝑚𝐻𝐙𝑚)                                                                 (17)  

4. Joint MAP Estimator 

Here we will derive a joint MAP cost function for the CTF (𝐇) and the PLL PHN 

spectral components(𝐏𝑚) estimation, when𝐑𝑚 is observed.  By using Bayes’ rule 

the “complete likelihood function”, Pr(𝐑𝑚 ,𝐇, 𝐏𝑚) which is proportional to a 

posterior distribution, Pr(𝐇, 𝐏𝑚|𝐑𝑚) is given as: 

Pr(𝐑𝑚 , 𝐇, 𝐏𝑚) = Pr(𝐑𝑚|𝐇, 𝐏𝑚) Pr(𝐇)Pr(𝐏𝑚)                                                   (18) 

As 𝐇 is not known in prior, Pr(𝐇)  is constant and with O-UPHN 

model, Pr(𝐏𝑚) = 𝐶𝒩(0,𝚯) which says: 

Pr(𝐏𝑚) =
1

𝜋𝑁|𝚯|
𝑒𝑥𝑝(−𝐏𝑚𝐻𝚯−1𝐏𝑚)                                                                     (19) 

where 𝚯 is known. Minimizing the “complete negative log-likelihood function” 

and maximising the “complete likelihood function” in Eq. (18) is same so: 

�̂�, �̂�𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐇,𝐏𝑚

{− 𝑙𝑜𝑔[Pr(𝐑𝑚|𝐇, 𝐏𝑚)]  − 𝑙𝑜𝑔[Pr(𝐏𝑚)]}                                   (20) 

Considering the signal model of Eq. (16) and the AWGN density of Eq. (17), 

the conditional density can be written as: 

Pr(𝐑𝑚|𝐇, 𝐏𝑚) =
1

(2𝜋)𝑁𝜎𝜔
2𝑁 𝑒𝑥𝑝 {

−1

2𝜎𝜔
2 (𝐑𝑚 − 𝓗𝑚𝐏𝑚)𝐻(𝐑𝑚 − 𝓗𝑚𝐏𝑚)}.            (21) 

Using Eqs. (19), (20) and (21), the joint MAP estimate can be given as: 

�̂�, �̂�𝑚 = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐇,𝐏𝑚

{ℒ(𝐇,𝐏𝑚)}(22) 

where: 

ℒ(𝐇,𝐏𝑚) =
1

2𝜎𝜔
2 (𝐑𝑚 − 𝓗𝑚𝐏𝑚)𝐻(𝐑𝑚 − 𝓗𝑚𝐏𝑚) + 𝐏𝑚𝐻𝚯−1𝐏𝑚(23) 

is the joint MAP cost function, which is simultaneously minimized for statistically 

optimal results of�̂� and�̂�𝑚 with respect to 𝐇 and𝐏𝑚.  

5.  Cost Function Optimization 

A cyclic gradient descent optimization algorithm is proposed in this section to solve 

the critical problem of minimization of cost function. As Eq. (23) is not 

differentiable with respect to𝐇 in frequency selective fading, we minimise the Eq. 

(23) in respect of 𝐇by searching the feasible finite set of CTF while 𝐏𝑚is fixed. 

Further, Eq. (23) is a quadratic function in 𝐏𝑚as 𝚯 is a non-singular covariance 

matrix. To find the solution of Eq. (22) in respect of 𝐏𝑚, Eq. (23) should be analytic 

with respect to 𝐏𝑚. With these two conditions if 𝐇is fixed, we take the conjugate 

gradient of cost function with respect to𝐏𝑚  and equate it to zero to find the 

optimum minimization of Eq. (23) in respect of 𝐏𝑚. We begin the optimization 
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with�̂�𝑚0
, initial estimate of PHN spectral components with least square (LS) 

estimation of [6].At𝑖𝑡ℎiteration, the estimate of CTF can be calculated as: 

�̂�𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐇

{(𝐑𝑚 − 𝓗𝑚�̂�𝑚𝑖
)

𝐻

(𝐑𝑚 − 𝓗𝑚�̂�𝑚𝑖
)}                                       (24) 

To find the solution of Eq. (24), a random search method is always preferred 

over expensive exhaustive grid search method in case of multidimensional 

optimization [17]. However it is important to begin with the best estimate of𝐏𝑚 

possible to avoid local minima. To update the PHN spectral components estimate, 

we compute the conjugate gradient of the MAP cost function with respect to the 

vector𝐏𝑚. This gradient is given by: 

𝛻𝐏𝑚∗ℒ(𝐇, 𝐏𝑚) =
1

𝜎𝜔
2 (𝓗𝑚𝐻𝓗𝑚𝐏𝑚 − 𝓗𝑚𝐻𝐑𝑚) + 2𝚯−1𝐏𝑚                             (25) 

where: 

𝛻𝐏𝑚∗ℒ(𝐇, 𝐏𝑚) =

[
 
 
 
 
 
 
𝜕ℒ(𝐇,𝐏𝑚)

𝜕𝑝0
𝑚∗

𝜕ℒ(𝐇,𝐏𝑚)

𝜕𝑝1
𝑚∗

.

.
𝜕ℒ(𝐇,𝐏𝑚)

𝜕𝑝𝑁−1
𝑚 ∗ ]

 
 
 
 
 
 

 .                                                                                        (26) 

At iteration𝑖 , 𝐇 = �̂�𝑖  so we put𝛻𝐏𝑚∗ℒ(𝐇,𝐏𝑚)|
𝐇=�̂�𝑖 equal to zero and solve 

for𝐏𝑚 . Thus we obtain the next PHN spectral components estimate as: 

�̂�𝑚𝑖+1
= [�̂�𝑚𝑖𝐻

�̂�𝑚𝑖
+ 2𝜎𝜔

2𝚯−1]−1�̂�𝑚𝑖𝐻

𝐑𝑚.                                                              (27) 

This updating procedure continues for 𝑖 = 0,1,2,3… till ℒ(�̂�, �̂�𝑚) stabilizes 

with‖�̂�𝑖+1 − �̂�𝑖‖ ‖�̂�𝑖‖ < 𝜀⁄  (preset threshold) or a number of iterations is reached. 

6. Simulation Results  

Performance of the proposed joint MAP algorithm is simulated in this section, 

where each simulation point is conducted using 1,000 OFDM symbols in 

MATLAB. Simulation model is based on IEEE 802.11g like system with 64 

subcarriers and 20 MHz of transmission bandwidth. OFDM symbols are generated 

using 16-QAM and 64-point inverse fast Fourier transform (IFFT), and then 

prepended by cyclic prefix (CP) of length 16 samples before transmitting over the 

channel. The discrete sampled CIR is modelled as 10 tapped delay lines having an 

exponentially decreasing power delay profile (PDP):  

𝛼𝑙
2 = 𝐸{|ℎ(𝑙)|2} =

1

𝛾
𝑒𝑥𝑝(−0.5𝑙), 𝑙 = 0,1, . . , 𝐿 − 1                                               (28) 

where 𝛾 = ∑ 𝑒𝑥𝑝(−0.5𝑙)𝑙  is choosen to normalise the PDP to unit energy. The 64-

point FFT of the received signal is taken after receiver PLL PHN modelling 

followed by CP removal. The receiver PLL PHN is modelled as O-U process as 

shown in Fig. 2. PLL VCO parameters are,𝑓𝑐 = 5 GHz, loop corner frequency is 20 

kHz, 𝐶𝑖𝑛 = 10−25𝑠𝑒𝑐and 𝐶𝑉𝐶𝑂 = 10−19s. Assuming that the VCO is noisier than 

reference oscillator, 𝐶𝑃𝐿𝐿 = 4 ∗ 108/s2.  
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Fig. 2.  Simulated PLL PHN Samples for  

PLL VCO (Ornstein-Uhlenbeck process). 

Results for the matrix 𝚯 are evaluated and presented in Fig. 3.It is observed 

from Fig. 3 that, the cross correlation of some lower order PLL PHN spectral 

components cannot be neglected when compared with auto correlation terms. 

The  �̂�𝑚0
is obtained with LS estimation [6] with common phase error (CPE) 

correction [18]. For that channel has been LS estimated [19], without PHN. 

Equation (24) is minimised with random search algorithm [17]. 

In Fig. 4 the MSE of the proposed channel estimation for estimating normalised 

CTF against system signal to noise ratio (SNR) for𝑖 = 6 and 𝑄 = 4, is compared 

with the posterior CRLB for an OFDM channel estimator without PHN distortion. 

MSE performance curves for the channel estimation with CPE correction only and 
non-iterative maximum likelihood (ML) joint estimation of [9] are also simulated 

and presented in Fig. 4. 

As calculated in Appendix A, the posterior CRLB for estimating the CTF, 

(𝐶𝑅𝐿𝐵H) is calculated as: 

𝐶𝑅𝐿𝐵H = 𝐿/𝑆𝑁𝑅                                                                                                      (29) 

and the MSE is obtained as: 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑ (𝐻𝑛

𝑚 − �̂�𝑛
𝑚)

2𝑁−1
𝑛=0

𝑀
𝑚=1                                                                                 (30)  

where𝑀represents the number of simulated OFDM symbols. 
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Fig. 3. Correlation property of PHN spectral components for PLL VCO. 

 

Fig. 4. MSE performance of CTF estimation as a function of SNR. 

In Fig. 4 the proposed joint MAP algorithm outperforms the conventional channel 

estimator with CPE correction only for a wide range of SNR. As shown in Fig. 4, to 

achieve the MSE=10-2, proposed joint MAP algorithm shows 4dB improvement in 
SNR over conventional method. This performance gap increases with SNR as with 

high PHN levels random inter carrier interference (ICI) dominates over CPE for large 

values of SNR [4]. As shown in Fig. 4, the proposed joint MAP algorithm achieves 

MSE=10-4 at SNR= 33 dB whereas the conventional method causes a significant SNR 

degradation in the estimation and produces an error floor. 

It can also be observed from Fig. 4 that the proposed joint MAP algorithm 

shows better improvements than the non-iterative ML joint estimator [9].As shown 

in Fig. 4, to achieve the MSE=10-2, proposed joint MAP algorithm shows 1dB 
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improvement in SNR over ML joint estimator [9]. It is because the proposed 

algorithm performs optimization before each iteration to combat the sever 

sensitivity towards high PHN level. As we apply the statistical knowledge of the 

PLL PHN spectral components without the assumption of small PHN this adds in 

the performance improvement even for the large SNR values. It can be observed 
from Fig. 4 that the proposed joint MAP algorithm achieves MSE=10-4 at SNR= 

33dB whereas the ML joint estimator [9] needs SNR= 37 dB which shows the 

improvement of 4dB for higher SNR values. 

7. Conclusions 

A statistically near optimum joint MAP channel estimation algorithm for OFDM 

system in presence of PLL PHN is presented in this paper. A more advanced and 

enhanced model for time varying PHN, produced by PLL VCO is presented and 

analysed. Simulation results prove that with the proposed iterative cyclic gradient 

descent optimization algorithm the estimator achieves near CRLB MSE 
performance. Relaxing the assumption of small PHN improves over the cost 

function minimization and joint MAP estimation. The potential improvement in the 

performance proves the competence of proposed joint MAP algorithm to mitigate 

the high level of PHN even in fading environment. As the performance improves 

with increasing the order of approximation and number of iterations a trade-off 

should be maintained between performance improvement and computational 

complexity. Incorporation of fading statistical study,  done with different models 

of channel, can further enhance the performance. 

Nomenclatures 
 
B(t) Brownian process 

√𝐶𝑃𝐿𝐿 PLL bandwidth in /sec 

𝐶𝑖𝑛 Diffusion rate of the reference oscillator in sec  

𝐶𝑉𝐶𝑂 Diffusion rate of the VCO in sec 

D𝑚  𝑚𝑡ℎsymbol vector 

𝑓𝑐 Centre frequency of VCO in Hz 

ℎ(𝑙) Discrete time composite CIR 

𝐻𝑘 CTF on the     𝑘𝑡ℎ subcarrier 

i Iteration number 
M Number of simulated OFDM symbols 

𝑁 No. of subcarriers 

P𝑚 PHN vector for the 𝑚𝑡ℎ OFDM symbol  

Q Approximation order 

𝑟𝑘
𝑚 

 

frequency domain received signal on the𝑘𝑡ℎsubcarrier of the 

𝑚𝑡ℎsymbol 

𝑇𝑠 Symbol time in sec 

𝑍𝑘
𝑚 AWGN in frequency domain 

 

Greek Symbols 
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2𝜌2 𝐸𝑠 (Symbol energy per subcarrier) 

𝛼𝑙
2 Exponentially decreasing PDP  

𝛾 Normalising coefficient for PDP 

𝜀 Preset threshold 

𝜇 Asymptotic mean of noise process 

𝜑 Drift of the noise process 

Θ Covariance matrix of Pm 

θ(t) Time varying PHN process 

𝜙𝑃𝐿𝐿𝑛
 PLL PHN process sequence 

𝜙𝑛 PHN process sequence 

𝜎2 Variance of the noise process 

𝜎𝜙𝑛
2 Variance of the PHN 

𝜎𝜙𝑃𝐿𝐿𝑛

2 Variance of the PLL PHN 

𝜔𝑙𝑝𝑓  Angular corner frequency of the low pass filter in rad/s 

 

Abbreviations 

AR(1) Autoregressive process of order one 

AWGN Additive white Gaussian noise 

CFO Carrier frequency offset 

CIR Channel impulse response 

CP Cyclic prefix 

CPE Common phase error 

CRLB Cramer-Rao lower bound 

CTF Channel transfer function 

DFT Discrete Fourier transform 

ICI Inter carrier interference 

IFFT Inverse fast Fourier transform 

IQ In and quadrature phase 

iid Identically and  independently distributed 

LS Least square 

MAP Maximum a posteriori 

ML Maximum likelihood 

MSE Mean square error 

OFDM Orthogonal frequency division multiplexing 

O-U Ornstein-Uhlenbeck 

PDP Power delay profile 

PHN Phase noise 

PLL Phase locked loop 

PSD Power spectral density 

QAM Quadrature amplitude modulation 

SNR Signal to noise ratio 

VCO Voltage controlled oscillator 



Multidimensional Optimization for Joint MAP Channel and PLL Phase . . . . 1919 

 
 
Journal of Engineering Science and Technology               June 2022, Vol. 17(3) 

 

References 

1. Robertson, P.; and Kaiser, S. (1995). Analysis of the effects of phase noise in 

orthogonal frequency division multiplex (OFDM) systems. Proceedings IEEE 
International Conference on Communications ICC '95, Seattle, WA, USA. 

2. Armada, A.G. (2001). Understanding the effects of phase noise in orthogonal 

frequency division multiplexing (OFDM). IEEE Transactions on Broadcasting, 

47(2), 153-159. 

3. Wu, S.; and Bar-Ness, Y. (2002). Performance analysis on the effect of phase 

noise in OFDM systems. Proceedings IEEE Seventh International Symposium 

on Spread Spectrum Techniques and Applications, Prague, Czech Republic. 

4. Wu, S.; and Bar-Ness, Y. (2004). OFDM systems in the presence of phase 

noise: consequences and solutions. IEEE Transactions on Communications, 

52(11), 1988-1997. 

5. Petrovic, D.; Rave, W.; and Fettweis, G. (2007). Effects of phase noise on 

OFDM systems with and without PLL: Characterization and compensation. 

IEEE Transactions on Communications, 55(8), 1607-1616. 

6. Syrjälä, V.; Valkama, M.; Tchamov, N.; and Rinne, J. (2009). Phase noise modelling 

and mitigation techniques in OFDM communications systems. Proceedings 

Wireless Telecommunications Symposium, Prague, Czech Republic, 1-7. 

7. Lin, D.D.; Pacheco, R.A.; Lim, T.J.; and Hatzinakos, D. (2006). Joint 

estimation of channel response, frequency offset, and phase noise in OFDM. 

IEEE Transactions on Signal Processing, 54(9), 3542 - 3554.  

8. Tao, J.; Wu, J.; and Xiao, C. (2009). Estimation of channel transfer function 

and carrier frequency offset for OFDM systems with phase noise. IEEE 

Transactions on Vehicular Technology, 58(8), 4380-4387. 

9. Rabiei, P.; Namgoong, W.; and Al-Dhahir, N. (2010). A non-iterative 

technique for phase noise ICI mitigation in packet-based OFDM systems. 

IEEE Transactions on Signal Processing, 58(11), 5945-5950. 

10. Munier, F.; Eriksson, T.; and Svensson, A. (2008). An ICI reduction scheme 

for OFDM system with phase noise over fading channels. IEEE Transactions 

on Communications, 56(7), 1119-1126. 

11. Salim, O.H.; Nasir, A.A.; Mehrpouyan, H.; Xiang, W.; Durrani, S.; and 

Kennedy, R.A. (2014). Channel, phase noise, and frequency offset in OFDM 

systems: Joint estimation, data detection, and hybrid Cramer-Rao lower bound. 

IEEE Transactions on Communications, 62(9), 3311–3325. 

12. Septier, F.; Delignon, Y.; Menhaj-Rivenq, A.; and Garnier, C. (2007). OFDM 

channel estimation in the presence of phase noise and frequency offset by 

particle filtering. 2007 IEEE International Conference on Acoustics, Speech 

and Signal Processing - ICASSP '07, Honolulu, HI, USA. 

13. Nguyen-Duy-Nhat, V.; Bui-Thi-Minh, T.; Tang-Tan, C.; Bao, V.N.Q.; and 

Nguyen-Le, H. (2016). Joint phase noise and doubly selective channel 

estimation in full-duplex MIMO-OFDM systems. 2016 International 

Conference on Advanced Technologies for Communications (ATC), Hanoi, 
Vietnam, 412-417. 

14. Lee, T.-J.; and Ko, Y.-C. (2017). Channel estimation and data detection in the 

presence of phase noise in MIMO-OFDM systems with independent 

oscillators. IEEE Access, 5, 9647-9662. 



1920       K. Shrivastav et al. 

 
 
Journal of Engineering Science and Technology               June 2022, Vol. 17(3) 

 

15. Ghosh, A.P.; Qin, W.; and Roitershtein, A. (2016). Discrete-time Ornstein-

Uhlenbeck process in a stationary dynamic environment. Journal of 

Interdisciplinary Mathematics, 19(1), 1-35.  

16. Mehrotra, A. (2002). Noise analysis of phase-locked loops. IEEE Transactions on 

Circuits and Systems I: Fundamental Theory and Applications, 49(9), 1309-1316. 

17. Nelder, J.A.; and Mead, R. (1965). A simplex method for function 

minimization. The Computer Journal, 7(4), 308-313. 

18. Wu, S.; and Bar-Ness, Y. (2002). A phase noise suppression algorithm for 

OFDM based WLANs. IEEE Communications Letters, 6(12), 535-537. 

19. Coleri, S.; Ergen, M.; Puri, A.; and Bahai, A. (2002). Channel estimation 

techniques based on pilot arrangement in OFDM systems. IEEE Transactions 

on Broadcasting, 48(3), 223-229. 

20. Shrivastav, K.; Yadav, R.P.; and Jain, K.C. (2017). Cyclic gradient descent 

optimization for joint MAP estimation of channel and phase noise in OFDM. 

IET Communications, 12(12), 1485-1490. 

Appendix A 

Derivation for 𝐶𝑅𝐿𝐵H 

For an OFDM system with frequency selective channel, the𝐶𝑅𝐿𝐵H is given as [20]: 

𝐶𝑅𝐿𝐵H = 𝑁 × 𝐶𝑅𝐿𝐵h 

where𝐶𝑅𝐿𝐵h is MSE for the estimation of CIR. The received signal without PHN 

distortion is (from Eq. (15) and (16)): 

𝐑𝑚 = 𝐗𝑚𝐅𝐡 + 𝐙𝑚 

where𝐗𝑚 is a diagonal matrix with entries  [𝐷0
𝑚 ,𝐷1

𝑚 , … ,𝐷𝑁−1
𝑚 ] , 𝐅 is 𝑁 × 𝐿DFT 

matrix with 𝐹(𝑛, 𝑙) = 𝑒𝑥𝑝 (−
𝑗2𝜋𝑛𝑙

𝑁
) and 𝐡 = [ℎ(0), ℎ(1), … , ℎ(𝐿 − 1)]𝑇  is the 

time domain channel vector. Thus: 

log [Pr(𝐑𝑚|𝐡)] =
−1

2𝜎𝜔
2 (𝐗𝑚𝐅𝐡 − 𝐑𝑚)𝐻(𝐗𝑚𝐅𝐡−  𝐑𝑚).      

𝜕

𝜕𝐡∗
{log [Pr(𝐑𝑚|𝐡)]} = =

−1

2𝜎𝜔
2
𝐅𝐻𝐗𝑚𝐻𝐙𝑚 

The Fisher information matrix [7-8] is given as: 

𝐹𝐼𝑀(𝐡) = {[
𝜕

𝜕𝐡∗
(log[Pr(𝐑𝑚|𝐡)])] [

𝜕

𝜕𝐡∗ (log[𝑃𝑟(𝐑𝑚|𝐡)])]𝐻} =
1

2𝜎𝜔
2 𝐅𝐻𝐗𝑚𝐻𝐗𝑚𝐅 . 

where 𝐗𝑚𝐻𝐗𝑚 = 2𝜌2𝐈,where 2𝜌2 = 𝐸𝑠(symbol energy per subcarrier). Thus:  

𝐹𝐼𝑀(𝐡) =
2𝜌2

2𝜎𝜔
2 𝐅𝐻𝐅 = 

𝜌2

𝜎𝜔
2 𝑁𝐈. 

Therefore the𝐶𝑅𝐿𝐵h is given by [7-8] 𝐶𝑅𝐿𝐵h = 𝑇𝑟[𝐹𝐼𝑀−1(𝐡)] =
𝐿𝜎𝜔

2

𝑁𝜌2 =
𝐿

𝑁×𝑆𝑁𝑅
 

where 𝑆𝑁𝑅 =
𝐸𝑠

𝑁0
⁄ =

2𝜌2

2𝜎𝜔
2  . Thus, 𝐶𝑅𝐿𝐵H =

𝐿

𝑆𝑁𝑅
. 


