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Abstract 

A mixture of the compensations of the reduced of Fourier series extension in the 

third dimensions (semi-analytical procedure) and two-dimensional finite element 

procedure are adapted to execute dynamic analysis of rotational axisymmetric 

shells due to random loading types. This procedure is depending for decreases 

the computer charge and expand the computational competence also time as well 

as exact results can be obtained. A three-nodded quadratic isoperimetric 

axisymmetric shell element is selected to mobilize the shell buildings. The 

computer program called (DAASNL) is established for dynamic and static 

analysis of arbitrary revolution loaded shells. This program is easy to use with 

less time for different civil engineering problems with different loading cases. 

FORTRAN language used for writing this program. Finite element formulation 

equations of motion are presented and discussed as well as outlined of method 

solution. The geometry effects, thickness, shallowness, configuration of mesh, 

boundary conditions and Gaussian integration were presented. Orderly for 

validate the pertinency for anticipated element depend in the current paper for the 

dynamic analysis also to explain the improved capability of program in the 

analysis of axisymmetric bodies under dynamic loading and general static, as 

well as some cases were presented. The presented cases had been measured in 

available books and papers so as to comparison of found solution with other 

analytical solutions for the purpose of verification. Adequate and competent 

results are found. The study results show that using three node degenerated 

element conjugate with the semi-analytical standard method is exact dependable 

also delivers exact solution related to dynamic analysis and astatic even for state 

of thin shells. For thin shell, an enhancement was appearing in the solution 

accuracy may accomplished by depending reduced integration method. 

Keywords: Axisymmetric shells, Blast loading, Fourier series, Non-symmetric 

loads, Shells of revolutions, Solid shell element. 
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1. Introduction 

The shell structure may define as a solid range placed between curved surfaces -

two closely spaced [1]. Generally, a geometrically of shell is a defined by its the 

shape of mid surface and thickness. A behaviour of shell is ruled by the behaviour 

of it surface of central. Shell constructions proposal of greatest effective practise 

for constructional material for various applications. Occasionally it be some 

problematic for construct compared with further shapes but if restraint may 

overwhelm, it is providing an accepted as a best choice for various applications. 

There are commonly used in, domes, space shell roofs, rockets, aircraft, chimneys, 

cooling tower and nuclear containment vessels, and so on. It is acceptance in 

construction because of the resultant low-cost as well as to the accessibility of 

enormous variation of shapes with more flexibility in architectural. And it may 

effectively employ for minimal maintenance demands, descriptions of elegance, 

and functional usage. 

Rendering to “thinness ratio”, that is refer to a ratio for shell thickness to a 

curvature radius for a consideration point, shells may be classified as thin or thick. 

Usually, when the ratio be more than (1/10), so a shell is considered a thick as well 

as when the ratio be among (1/10 till 1/50), a shell be considered a thin and if a ratio 

smaller than (1/50), a shell be considered thinner when it be used for an effective 

carrying load members [1]. The classification of shell as thin or thick should be 

dependent on real behaviour of the separate shells due to the assumed scheme of 

carried loads.  The ratio of carried load for amount of the material consumed for 

the situation of the shell is considered very high [2, 3]. That is be considered a very 

important issue thus far as the efficiency of shell structure is worried. An applying 

load that spread over the structure of shell due to acting of bending (transverse 

action) with adding action membrane (in-plane action). For flat plate beneath same 

load situations grows just moments and transverse forces. The revolution of surface 

is created through a rotation of the curved plane around of axis in it is plane [4]. 

The connection of plane that it is contains an axis of a revolution with mid surface 

is called the “meridian”. Slightly horizontal cross section of a revolution for surface 

is a circle by it is centre placing on a revolution axis, for circles that called as 

“parallel circles” [1, 5], see Fig. 1. 

 
Fig. 1. Shell of revolution [1]. 

The consideration of several researchers had been concerned by the issues of 

modelling and empathetic the consequence of shell vibrations due to the blast loads. 

A limited traditional text has been available in mentioned field: a investigate about 

a uniform radial instinct for elastic also plastic material response that had been 

reported in [4]. Amongst of other notifications conclusions, the researcher 
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originates that for under impulsive loads, the modes of buckling take a higher 

number for circumferential waves, so those static counterparts. So as to get time 

reliant on pressure flows on a cantilever small scale cylindrical shells shape, the 

team of France academics achieved experimental research on cylindrical shells 

with scale factor of 1:48 [5-7]. Knowing the scale factor defined as the ratio of 

every two corresponding lengths for the two same geometric figures or the 

proportionality coefficient or the constant proportionality. The objectives of such 

program testing were to find a probabilistic analysis for threshold values producing 

a various level of damage. Analytical research depend on Donnell’s approximation 

had been achieved by depending on the static response to be established concert 

limits depend for plasticity. 

Duong et al. [8, 9] investigated a nonlinear dynamic analysis of functionally 

graded material (FGM) shell structures by depending on a higher order for element 

solid shell. It was considered an element, the quadratic distribution for shear stress 

with a thickness. In an FGM, the building be prepared from the combination of 

metal also ceramic, or the mixture of remained ceramics or remained metals that 

which suitable to attain the anticipated objective. Properties of materials of shell 

structure are diverse continuously in a direction of thickness due to all four-

limitation power-law distribution on according of a constituent’s volume fractions. 

Accuracy and performance of a current solid-shell (higher order) element are 

established by comparison the results from the literature and the numerical results 

found from analyses of finite element. 

Ameijeiras and Godoy (2016) [10] presented an analytical result to expect a 

non-linear forced vibration for flexible thin-walled cylindrical shells due to 

unexpectedly load. For mentioned model, a kinematic nonlinear relation was 

depended by Donnell’s easy shell theory. The result be achieved for example a 

sequence’s summation for relationships to trigonometric functions for the 

circumferential also axial directions, although a degrees of freedom hinge on a time. 

The blast effect be expected to signify effect under explosions on a shell as 

pressures time dependent by the specified circumferential spreading (a cosine 

square spreading according to the dominant angle). The obtained results for this 

model were validated through comparison with the nonlinear finite element model 

according to a similar condition of load. The effect of a level of load as well as a 

geometry of shell on a fleeting response is examined by mean of analytical research. 

Good correctness is initiate for the results of the series shells that were 

demonstrative in horizontal, oil storage tanks for industry of oil [11]. 

An axisymmetric structures analysis due to non-symmetric loading lays into a 

group of semi-analytic procedures. The group of problems are considered by a 

three-dimensional structure in that material properties as well as geometry are 

independent for one co-ordinate direction then the applied load might be dependent 

on the co-ordinate [12]. This technique includes stating the behaviour of the all-

pertinent scope variables and load in the co-ordinate due to a Fourier series, 

therefore minimizing an analysis for uncoupled two-dimensional series analysis.  

The topic aim of this study to be developed an effective theoretical method to 

analysis of axisymmetric shell as well as dome structures for current improved 

understanding for their behaviour due to the dynamic load depending on a semi-

analytical finite element method. The implicit time integration scheme and 

isoperimetric finite discretization has been used for the reason that these techniques 
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are verified to be greatest effective for extensive series of problems. An elementary 

principle for isoperimetric elements is which an interpolation functions (shape 

functions) for displacements are used for representing a geometry for an element. 

The analysis of axisymmetric structures under non-symmetric loading is of three-

dimensional problems in that material properties and geometry are not dependent 

in one coordinate direction however the applied load can be used on mentioned 

coordinate as mentioned previously, so Fourier series were used in the present work 

to reduce the analysis to the series for uncoupled two-dimensional analysis   

FORTRAN programming language was used in the present work because it is 

one for a first (if not a first) high level languages developed of computers. 

FORTRAN was initially developed practically exclusively of performing numeric 

computations. This language is more suited to non-numeric operations such as 

searching databases for information. Also, it is easy to use with less time for 

different civil engineering problems. 

2. Description of Element 

The disintegrated quadratic isoperimetric axisymmetric shell element founded on 

translational displacement interpolation and independent rotational has been 

adopted here. The element behaviour is based clearly on two basic assumptions: 

Firstly, ordinary for a mid-surface of shell before deformation that expected for 

keep on straight but not necessarily normal to it afterward deformation. Secondly, 

a stress perpendicular to a mid-surface is presumed to be insignificant regardless of 

loading for their small values. 

The element has three nodes through five freedom degrees for each node, three 

for translational for axial, radial and circumferential directions (u, v, w) and remains 

are rotational that signify a rotation for a normal at node (α, β). Every node in this 

element be considered as the nodal circle Fig. 2. 

  

(a) Global cylindrical coordinate 

system. 

(b) Local coordinate system. 

Fig. 2. Degenerated isoperimetric Shell element [13]. 

Noting that for Fig. 2, 𝑟, 𝑧, 𝜃𝑟, 𝑧, 𝜃  is the system of coordinate Global 

cylindrical, 𝑟′, 𝑧 ′𝑟′, 𝑧′ are the Local coordinate system, 𝑢𝑖, 𝑣𝑖 , 𝑤𝑖𝑢𝑖 ,  𝑣𝑖 , 𝑤𝑖  are 

the Transformation freedom degrees, 𝛼𝑖 , 𝛽𝑖 are Rotational freedom degrees,  is 

the meridian direction angle and θ is the circumferential direction angle.   
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The shape functions for the geometry of shell element along the meridian and 

the displacement functions are both assumed to be of quadratic form. The variations 

of both element dependent functions are assumed to vary linearly across the shell 

thickness. It may be considered which every point in a shell element may 

description depend on a pair of points in a bottom and a top face for element (itop 

and ibot) as could be seen in Fig. 2. Each point was with a given cylindrical 

coordinate. The relation between a global coordinate for each point for shell also a 

curvilinear coordinate may be writing as mentioned a form in Eq. (1) [13, 14]: 

{
𝑟
𝑧
} = ∑ 𝑁𝑖(𝜉)

3
𝑖=1

1+𝜂

2
{
𝑟𝑖
𝑧𝑖
}
𝑡𝑜𝑝.

+ ∑ 𝑁𝑖(𝜉)
3
𝑖=1

1+𝜂

2
{
𝑟𝑖
𝑧𝑖
}
𝑏𝑜𝑡.

             (1) 

where Ni(ξ) define as a shape function related to node i for element. Which there 

significant as shown in Eq. (2): 

N1 = ξ (ξ -1)/2, N2 = 1- ξ 2, N3 = ξ(ξ +1)/2                                          (2) 

So, it can be notified that the suitable write the Eq. (1) in the formula detailed 

as a “vector” linking a lower and an upper point (i.e. the length for vector equal to 

a thickness of shell) and a mid-surface coordinate, therefore, now we have Eq. (3a 

and 3b):  

{
𝑟
𝑧
} = ∑ 𝑁𝑖(𝜉)

3
𝑖=1  {

𝑟𝑖
𝑧𝑖
}
𝑚𝑖𝑑

+ ∑ 𝑁𝑖(𝜉) 
𝜂

2
 3

𝑖=1 𝑉3𝑖
→ 

                                                (3a) 

𝑉3𝑖
→ 
= 𝑡𝑖 {

𝑐𝑜𝑠 𝜑𝑖
𝑠𝑖𝑛 𝜑𝑖

}                                                                                                  (3b) 

3. Field of Displacement 

For non-symmetric loading, the axial displacements, circumferential and variation 

of the radial done the volume of the element is separated into meridional and 

circumferential behaviour. The displacement in circumferential is expected to be 

harmonic for any order. 

The vector of displacement U given by Eq. (4) below represented the global 

coordinate system [13]: 

𝑈 = {
𝑢
𝑣
𝑤
} =

∑ [
𝑐𝑜𝑠 𝑛 𝜃 0 0 𝑠𝑖𝑛 𝑛 𝜃 0 0
0 𝑐𝑜𝑠 𝑛 𝜃 0 0 𝑠𝑖𝑛 𝑛 𝜃 0
0 0 𝑠𝑖𝑛 𝑛 𝜃 0 0 𝑐𝑜𝑠 𝑛 𝜃

]

{
 
 

 
 
𝑢̄𝑛
𝑣̄𝑛
𝑤̄𝑛
𝑢𝑛
𝑣𝑛
𝑤𝑛}
 
 

 
 

𝑁
𝑛=0                  (4) 

That a collection range done a whole number for harmonics also n is an order 

for every harmonic. A double with single striped relations mention, 

correspondingly, to an antisymmetric with symmetric donations of a components 

of displacement to a nth harmonic. The functions only for r and z and are included 

in an element in relations for displacement of the nodal. It is worth noting to explain 

that when it be said a symmetry in the structural system, it implies an existence for 

symmetry both in the loading on that structure and also structure itself (involving a 
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conditions of support). For the antisymmetric system a structure (involving 

conditions of support still symmetric, however, the loading is antisymmetric. 

For simplification cases, load components that considered a symmetric are 

primary measured then far along there are antisymmetric. A displacement of nodal 

involve of a displacement relative to node I add displacement of node i formed 

using rotation for 𝑉3
𝑖𝑉3
𝑖

 
also there are specified using Eq. (5). Noting that the 

rotation for normal at a node (α, β) give a relative displacement for each node of 

the element which are represent a nodal circle. 

{

𝑢̄𝑛
𝑣̄𝑛
𝑤̄𝑛

} =∑𝑁𝑖 {

𝑢̄𝑛𝑖
𝑣̄𝑛𝑖
𝑤̄𝑛𝑖

}

3

𝑖=1

+∑𝑁𝑖𝑡𝑖
𝜂

2

3

𝑖=1

[
− 𝑠𝑖𝑛 𝜑𝑖 0
𝑐𝑜𝑠 𝜑𝑖 0
0 1

] {
𝛼̄𝑛𝑖
𝛽̄𝑛𝑖
} {

𝑢̄𝑛
𝑣̄𝑛
𝑤̄𝑛

}

=∑𝑁𝑖 {

𝑢̄𝑛𝑖
𝑣̄𝑛𝑖
𝑤̄𝑛𝑖

}

3

𝑖=1

+∑𝑁𝑖𝑡𝑖
𝜂

2

3

𝑖=1

[
− 𝑠𝑖𝑛 𝜑𝑖 0
𝑐𝑜𝑠 𝜑𝑖 0
0 1

] {
𝛼̄𝑛𝑖
𝛽̄𝑛𝑖
} 

(5) 

where ui, vi, wi, are displacements of the nodal, η is curvilinear coordinates   and 

𝛼𝑖, 𝛽𝑖 are angle of rotational as presented in Fig. 2.   

The contribution to the global displacement as of a specified node i for n 

harmonic is: 

{

𝑢̄𝑛
𝑣̄𝑛
𝑤̄𝑛

}

3𝑥1

=∑

[
 
 
 
 
 
𝑁𝑖 0 0
0 𝑁𝑖 0
0 0 𝑁𝑖

   

−𝑁𝑖𝜂
𝑡𝑖
2
𝑠𝑖𝑛 𝜑𝑖 0

+𝑁𝑖𝜂
𝑡𝑖
2
𝑐𝑜𝑠 𝜑𝑖 0

0 +𝑁𝑖𝜂
𝑡𝑖
2]
 
 
 
 
 

3

𝑖=1

{
 
 

 
 
𝑢̄𝑛𝑖
𝑣̄𝑛𝑖
𝑤̄𝑛𝑖
𝛼̄𝑛𝑖
𝛽̄𝑛𝑖}
 
 

 
 

 (6) 

or in condensed form: 

{𝑈̄𝑛} = ∑ [𝑁]𝑖{𝑈̄𝑛𝑖}
3
𝑖=1 {𝑈̄𝑛} = ∑ [𝑁]𝑖{𝑈̄𝑛𝑖}

3
𝑖=1                                                          (7) 

in additional form: 

{

𝑢̄𝑛
𝑣̄𝑛
𝑤̄𝑛

} = [ [𝑁]1   [𝑁]2   [𝑁]3] {

𝑈̄𝑛1
𝑈̄𝑛2
𝑈̄𝑛3

} (8) 

An overall countenance for all harmonics is specified by Eq. (9): 

{
𝑢
𝑣
𝑤
} = ∑[𝑆𝑛] 

𝑁

𝑛=0

[[𝑁]1   [𝑁]2   [𝑁]3] {

𝑈̄𝑛1
𝑈̄𝑛2
𝑈̄𝑛3

} {
𝑢
𝑣
𝑤
}

= ∑[𝑆𝑛] 

𝑁

𝑛=0

[[𝑁]1   [𝑁]2   [𝑁]3] {

𝑈̄𝑛1
𝑈̄𝑛2
𝑈̄𝑛3

} 

(9a) 

where: [𝑆𝑛]
3𝑥3
= [

𝑐𝑜𝑠 𝑛𝜑 0 0
0 𝑐𝑜𝑠 𝑛𝜑 0
0 0 𝑠𝑖𝑛 𝑛𝜑

]                                                   (9b) 
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where:                                                    

Equation (9a) may wrote as shown: 

{𝑈} = ∑ [𝑆𝑛][𝑁]{𝑈̄𝑛}
𝑁
𝑛=0                                                                                     (9c) 

where [N] was the (3×15) matrix for shape functions also {𝑈̄𝑛}  is the (15x1) 

displacement vector for element. 

According to a situation for antisymmetric (a double banded relations state), a 

matrix [𝑆𝑛] that will be substituted using [𝑆𝑛] matrix. That [𝑆𝑛] be got from [𝑆𝑛] 

using replacement cos nθ by sin nθ as well as vice versa.  

4. Definitions of Stress and Strain  

When a field of displacement has been definite, a strain displacement association be 

recognized using combination of correct derivative for displacements. A strain component 

of the axisymmetric shells stated for global coordinate system were presented [15]: 

{
 
 

 
 
𝜀𝑟𝑛
𝜀𝑧𝑛
𝜀𝜃𝑛
𝛾𝑟𝑛𝑧𝑛
𝛾𝑟𝑛𝜃𝑛
𝛾𝑧𝑛𝜃𝑛}

 
 

 
 

=

{
 
 
 
 

 
 
 
 

𝜕𝑢𝑛

𝜕𝑟
𝜕𝑣𝑛

𝜕𝑧
𝑢𝑛

𝑟
+
1

𝑟

𝜕𝑤𝑛

𝜕𝜃.
𝜕𝑢𝑛

𝜕𝑧
+
𝜕𝑣𝑛

𝜕𝑟
.

1

𝑟

𝜕𝑢𝑛

𝜕𝜃
+
𝜕𝑤𝑛

𝜕𝑟
−
𝑤𝑛

𝑟
1

𝑟

𝜕𝑣𝑛

𝜕𝜃
+
𝜕𝑤𝑛

𝜕𝑧
. }
 
 
 
 

 
 
 
 

                                                                    (10) 

An essential for alter a strain to local coordinate system using a suitable 

alteration. Now two groups for alterations were essential before an element will 

been integrated corresponding to a curvilinear coordinates ξ with η [15]: 

First, a global displacement derivatives u, v also w according to a global r, z also 

θ coordinates may specified using depending Jacobian operator shown in Eq. (11): 

[
 
 
 
 
𝜕𝑢𝑛

𝜕𝑟

𝜕𝑣𝑛

𝜕𝑟

𝜕𝑤𝑛

𝜕𝑟
𝜕𝑢𝑛

𝜕𝑧

𝜕𝑣𝑛

𝜕𝑧

𝜕𝑤𝑛

𝜕𝑧
𝜕𝑢𝑛

𝜕𝜃

𝜕𝑣𝑛

𝜕𝜃

𝜕𝑤𝑛

𝜕𝜃 ]
 
 
 
 

= 𝐽−1

[
 
 
 
 
𝜕𝑢𝑛

𝜕𝜉

𝜕𝑣𝑛

𝜕𝜉

𝜕𝑤𝑛

𝜕𝜉

𝜕𝑢𝑛

𝜕𝜂

𝜕𝑣𝑛

𝜕𝜂

𝜕𝑤𝑛

𝜕𝜂

𝜕𝑢𝑛

𝜕𝜃

𝜕𝑣𝑛

𝜕𝜃

𝜕𝑤𝑛

𝜕𝜃 ]
 
 
 
 

                                        (11) 

where J is a Jacobian operator concerning a derivative of natural coordinate to a 

derivative of local coordinate. That may be considered from a definition for 

coordinate as presented in Eq. (3) as mentioned below: 

𝐽 =

[
 
 
 
𝜕𝑟

𝜕𝜉

𝜕𝑧

𝜕𝜉
0

𝜕𝑟

𝜕𝜂

𝜕𝑧

𝜕𝜂
0

0 0 1]
 
 
 

                                                             (12) 

Second, a displacements global derivative (u, v, w) is now altered for a local 

derivative for orthogonal displacements depending on alteration matrix [T] that 
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would be specified later. An illustration for global coordinate transformation to a 

local coordinate can be presented below in Eq. (13): 

{
𝑟
𝑧
𝜃
́
́
} = [

𝑐 𝑠 0.
−𝑠 𝑐 0.
0. 0. 1.

] {
𝑟
𝑧
𝜃
}                                                                     (13) 

At that point a strain stated for local coordinates (r’, z’ and θ) according to the 

global coordinates (r, z and θ) shown below: 

{𝜀́} = [𝑇]{𝜀}.                                                                        (14) 

or by matrix formula: 

{
 
 

 
 
𝜀𝑧́𝑛
𝜀𝜃𝑛
𝜀𝑧́𝑛𝜃𝑛
𝛾𝑟́𝑛𝑧́𝑛
𝛾𝑟́𝑛𝜃𝑛}

 
 

 
 

=

[
 
 
 
 
 
 
𝑠2 −𝑠𝑐 0 −𝑠𝑐 𝑐2 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

𝑟

1

𝑟
0

0 0
𝑠

𝑟
0 0

𝑐

𝑟

𝑐

𝑟
𝑐 0 0 −

𝑠

𝑟

−2𝑐𝑠 𝑐2−𝑠2 0 𝑐2−𝑠2 2𝑐𝑠 0 0 0 0 0 0

0 0
𝑐

𝑟
0 0 −

𝑠

𝑟
−
𝑠

𝑟
−𝑠 0 0 −

𝑐

𝑟]
 
 
 
 
 
 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝑢𝑛

𝜕𝑟
𝜕𝑢𝑛

𝜕𝑧
𝜕𝑢𝑛

𝜕𝜃
𝜕𝑣𝑛

𝜕𝑟
𝜕𝑣𝑛

𝜕𝑧
𝜕𝑣𝑛

𝜕𝜃
𝜕𝑤𝑛

𝜕𝑟
𝜕𝑤𝑛

𝜕𝑧
𝜕𝑤𝑛

𝜕𝜃
𝑢𝑛
𝑤𝑛}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 (15) 

{𝜀𝑛
′ }
5𝑥1.

= [𝐺]5𝑥11.[𝐴]11𝑥11.

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝑢𝑛

𝜕𝜉

𝜕𝑢𝑛

𝜕𝜂

𝜕𝑢𝑛

𝜕𝜃
𝜕𝑣𝑛

𝜕𝜉

𝜕𝑣𝑛

𝜕𝜂

𝜕𝑣𝑛

𝜕𝜃
𝜕𝑤𝑛

𝜕𝜉

𝜕𝑤𝑛

𝜕𝜂

𝜕𝑤𝑛

𝜕𝜃
𝑢𝑛
𝑤𝑛}
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

11𝑥1.

                                                      (16) 

That which: 

[𝐴] = [
[𝐴∘]9𝑥9

[𝐼]2𝑥2
] , 𝐴∘ = [

[𝐽]−1 0

[𝐽]−1

0 [𝐽]−1
] 

and 
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[𝐺] =

[
 
 
 
 
 
 
 
𝑠2 −𝑠𝑐 0 −𝑠𝑐 𝑐2 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

𝑟

1

𝑟
0

0 0
𝑠

𝑟
0 0

𝑐

𝑟

𝑐

𝑟
𝑐 0 0 −

𝑠

𝑟
−2𝑐𝑠 𝑐2−𝑠2 0 𝑐2−𝑠2 2𝑐𝑠 0 0 0 0 0 0

0 0
𝑐

𝑟
0 0 −

𝑠

𝑟
−
𝑠

𝑟
−𝑠 0 0 −

𝑐

𝑟]
 
 
 
 
 
 
 

 

At that point the vector of strain presented as: 

{𝜀 ′} = ∑ [𝐺𝑖]
3
𝑖=1 . [𝐴𝑖]. ∑ [𝐶𝑛̅]

𝑁
𝑛=0 . [𝛽̅𝑛𝑖]. {𝑈𝑛𝑖}                                                         (17) 

For the ith node in nth harmonic, once may be determined a strain matrix [𝛽̅𝑛𝑖]
̅̅ ̅̅ ̅̅  

as shown below: 

[𝛽̅𝑛𝑖]11𝑥5 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑁𝑖

𝜕𝜉
0 0 −

𝜕𝑁𝑖

𝜕𝜉
𝜂
𝑡𝑖

2
𝑆𝑖 0

0 0 0 −𝑁𝑖
𝑡𝑖

2
𝑆𝑖 0

−𝑛𝑁𝑖 0 0 𝑛𝑁𝑖𝜂
𝑡𝑖

2
𝑆𝑖 0

0
𝜕𝑁𝑖

𝜕𝜉
0

𝜕𝑁𝑖

𝜕𝜉
𝜂
𝑡𝑖

2
𝐶𝑖 0

0 0 0 𝑁𝑖
𝑡𝑖

2
𝐶𝑖 0

0 −𝑛𝑁𝑖 0 −𝑛𝑁𝑖𝜂
𝑡𝑖

2
𝐶𝑖 0

0 0
𝜕𝑁𝑖

𝜕𝜉
0

𝜕𝑁𝑖

𝜕𝜉
𝜂
𝑡𝑖

2

0 0 0 0 𝑁𝑖
𝑡𝑖

2

0 0 𝑛𝑁𝑖 0 𝑛𝑁𝑖𝜂
𝑡𝑖

2

𝑁𝑖 0 0 −𝑁𝑖𝜂
𝑡𝑖

2
𝑆𝑖 0

0 0 𝑁𝑖 0 𝑁𝑖𝜂
𝑡𝑖

2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                       (18) 

where Ci = cos ϕi and Si = sin ϕi 

Also, a concluding strain displacement relationship there: 

{𝜀 ′} = ∑ [𝐵̅𝑛]
𝑁
𝑛=0 . {𝑈𝑛}                                                                                          (19) 

where: [𝐵̅𝑛] = [𝐺][𝐴][𝛽̅𝑛𝑖] 

A stress related to a preceding strain can be defined in the local coordinate as 

shown in Eq. (20): 

{𝜎 ′} = [𝐷′] ∑ [𝛽̅𝑛𝑖]
𝑁
𝑛=0 {𝑈𝑛}                                                                                  (20) 

which the matrix [D’] is a (5x5) consider a matrix of elasticity involving a fitting 

property of material. 

5. Stiffness Matrix 

The element stiffness matrix of a symmetric harmonic relationship drive used 

formulated due to depending on a strain energy principle. An energy of strain of a 

scheme is [16]: 

𝐸 =
1

2
∫ ∫ 𝜀𝑇 𝜎 𝑟 𝜃 𝑑𝐴

𝜋

0

2

𝐴.
.                                                                (21) 

Replacing Eq. (19) with Eq. (20) through Eq. (21), so once determination be got: 

𝐸 =  
1

2
∫ ∫ ∑ ∑ {𝑈̅𝑛}

𝑇[𝐵̅𝑛]
𝑇[𝐷′][𝐵̅𝑚]{𝑈𝑚}𝑟𝑑𝐴𝑑𝜃.

𝑁
𝑚=0

𝑁
𝑛=0𝐴

2𝜋

0
                         (22) 
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Next preparing the manipulation of matrix, it significant for contemplate an 

integral over θ that involve (consider beyond a diagonal sub matrices) a terms sinmθ 

sinnθ and cosmθ cosnθ, that m with n are different integers.  By giving with account 

a property for orthogonality, those relations become extinct for a bound from 0 till 

2π. Conversely a diagonal sub matrix involves relations similar sin2nθ or cos2nθ 

which those relations can product a public factor π till 2π after making an integration. 

At that time, ta strain energy can be expressed by Eq. (23) as shown below: 

𝐸 =
1

2
𝜆𝜋 ∑ {𝑈𝑛}

𝑁
𝑛=0 ∫ [𝐵̅𝑛]

𝑇[𝐷′][𝐵̅𝑛]𝑟𝑑𝐴{𝑈𝑛}.𝐴
                                                   (23) 

where:-  

    λ = 2 for n = 0 

       = 1  for n = 1, 2, 3, … …, N. 

Now, element stiffness matrix can be written: 

[𝐾𝑛]15𝑥15. =
𝜕2𝐸

𝜕𝑈𝜕𝑈̅
= 𝜆𝜋 ∫ [𝐵̅𝑛]

𝑇[𝐷′][𝐵̅𝑛]𝑟𝑑𝐴.𝐴
                                                   (24) 

also, due to depending on a relationship  𝑑𝐴 = 𝑑𝑟 𝑑𝑧 = |𝐽| 𝑑𝜉 𝑑𝜂. , so, we 

obtain the Eq. (25), 

[𝐾𝑛]15𝑥15. = 𝜆𝜋 ∫ ∫ [𝐵̅𝑛]
𝑇[𝐷′][𝐵̅𝑛]𝑟|𝐽|𝑑𝜉𝑑𝜂.

+1

−1

+1

−1
                                                 (25) 

where [𝐾𝑛] consider an element stiffness matrix of symmetric nth harmonic term. 

A stiffness matrix for structure next gets together for stiffness matrix of elements 

be expressed distinctly of each harmonic also kept through the auxiliary storage file 

of consequent stage aimed to solution. 

6. Formulation of Mass Matrix 

In this study a dependable mass method is assumed and a mass matrix of element 

for a symmetric “n” harmonic term be produced depending on a principle of kinetic 

energy as shown in equations below: 

First, a kinetic energy T of the scheme be [17]: 

𝑇 =
1

2
∫ ∫ 𝜌 {𝑈̇}

𝑇
{𝑈̇} 𝑟𝑑𝐴𝑑𝜃.

𝐴

2𝜋

0
                                                                        (26)  

where parameters be defined, 

𝜌 : is a density of mass 

{𝑈̇} : a vector of velocity. Also, a dot signifies difference due to time. 

The vector of velocity may be written as shown in Eq. (27) below: 

{𝑈̅̇} = ∑ [𝐶𝑛̅]
𝑁
𝑛=0 [𝑁]{𝑈̅̇𝑛}.                                                                                   (27)  

where [N] is the (3x15) shape functions matrix as well as the matrix [𝐶̄𝑛] be (15x3) 

matrix of damping. 

Relieving Eq. (27) through Eq. (26), so, 

𝑇 =
1

2
∫ ∫ 𝜌∑ ∑ {𝑈̅̇𝑛}

𝑇
[𝑁]𝑇[𝐶𝑛̅]

𝑇[𝐶𝑛̅][𝑁]{𝑈̅̇𝑚} 𝑑𝐴𝑑𝜃.
𝑁
𝑚=0

𝑁
𝑛=0𝐴

2𝜋

0
                       (28)  
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Next execution manipulation of matrix also applying a conditions of 

orthogonality Eq. (28) can expressed by Eq. (29): 

𝑇 =
1

2
𝜆𝜋𝜌∑ {𝑈̅̇𝑛}

𝑇
𝑁
𝑛=0 ∫ [𝑁]𝑇[𝑁]𝑟𝑑𝐴 {𝑈̅̇𝑛}𝐴

.                                         (29) 

where: λ = 2  for n = 0 

               = 1  for n = 1, 2, 3, ...., N. 

A mass matrix of element may write as: 

[𝑀𝑛]15𝑥15 =
𝜕2𝑇

𝜕𝑈̅̇𝜕𝑈̅̇
= 𝜆𝜋𝜌 ∫ [𝑁]𝑇[𝑁] 𝑟𝑑𝐴.

𝐴
                                                        (30) 

or: 

[𝑀̅𝑛] = 𝜆𝜋𝜌 ∫ ∫ [𝑁]𝑇[𝑁]𝑟|𝐽|𝑑𝜉𝑑𝜂.
+1

−1

+1

−1
                                              (31) 

7. Formulation of Load Vector  

For non-axisymmetric exterior load be fragmented down by axial, radial also 

circumferential main components (Pz, Pr, PT respectively) by a typical measure for 

Fourier series representation. Subsequent estimates are created as per in Eq. (32): 

𝑃𝑟 = ∑ 𝑃̅𝑟𝑛 𝑐𝑜𝑠 𝑛𝜃.

𝑁

𝑛=0.

+∑ 𝑃̿𝑟𝑛 𝑠𝑖𝑛 𝑛𝜃

𝑁

𝑛=1

. 

𝑃𝑧 = ∑ 𝑃̅𝑟𝑛 𝑐𝑜𝑠 𝑛𝜃.
𝑁
𝑛=0. + ∑ 𝑃̿𝑟𝑛 𝑠𝑖𝑛 𝑛𝜃.

𝑁
𝑛=1                                                             (32) 

𝑃𝑇𝜃 = ∑ 𝑃̅𝑇𝑛 𝑠𝑖𝑛 𝑛𝜃.

𝑁

𝑛=1.

+∑ 𝑃̿𝑇𝑛 𝑐𝑜𝑠 𝑛𝜃.

𝑁

𝑛=0

 

where: 

𝑃̅𝑟𝑛 , 𝑃̅𝑧𝑛 , 𝑃̅𝑇𝑛 𝑎𝑠 𝑤𝑒𝑙𝑙 𝑎𝑠 𝑃̿𝑟𝑛 , 𝑃̿𝑧𝑛 , 𝑃̿𝑇𝑛 are, respectively, a symmetric load also 

antisymmetric load breadths for a nth harmonic term of radial, axial also tangential 

directions respectively. Then, may it had obtained by an integration progress with 

a benefit for trigonometric functions orthogonality in an interval (0 ≤ θ ≤ 2π). 

Subsequently, loading forms for example the pressures, gravity action allotted 

of surface for element, should it minimized for comparable nodal forces earlier 

solution may progress [18]. These adaptations of loads distributed by comparable 

nodal loads may be doing by depending on the virtual displacement principle. 

Therefore, the forces for nodal of a nth harmonic part of node i (for symmetric 

situation) can presented in Eq. (33) shown below: 

{
 
 

 
 
𝑃𝑟𝑛𝑖
𝑃𝑧𝑛𝑖
𝑃𝑇𝑛𝑖
𝑀𝛼𝑛𝑖
𝑀𝛽𝑛𝑖.}

 
 

 
 

5𝑥1.

= ∫ ∫ [𝑁𝑖]5𝑥3
𝑇 [𝐶𝑛̅]3𝑥3. {

𝑃̅𝑟𝑛 cos 𝑛𝜃

𝑃̅𝑧𝑛 cos 𝑛𝜃

𝑃̅𝑇𝑛 sin 𝑛𝜃

}  𝑟𝑑𝜃𝑑𝐴.
2𝜋

0𝐴
                              (33) 

Using an orthogonality for functions trigonometric (an integration with respect 

to θ for a range 0→2π), Eq. (33) develops: 
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{
 
 

 
 
𝑃𝑟𝑛𝑖
𝑃𝑧𝑛𝑖
𝑃𝑇𝑛𝑖
𝑀𝛼𝑛𝑖
𝑀𝛽𝑛𝑖.}

 
 

 
 

= ∫ 𝜋𝑟[𝑁𝑖]
𝑇 {

𝑃̅𝑟𝑛
𝑃̅𝑧𝑛
𝑃̅𝑇𝑛.

}𝑑𝐴
𝐴

  for   n=1, 2, ……, N. 

= 2∫ 𝜋𝑟[𝑁𝑖]
𝑇 {

𝑃̅𝑟𝑜
𝑃̅𝑧𝑜
0

}𝑑𝐴.
𝐴

  for n = 0                                       (34) 

8. Equilibrium Equation of Dynamic 

The motion equations for the revolution shell under preservation loading has been 

derived as of principles of Hamilton variational as per Eq. (35) shown below: 

𝑀𝑈̈ + 𝐶𝑈̇ + 𝐾𝑈 = 𝑝(𝑡).                                                        (35) 

which a stiffness K matrix, damping C and mass M are formed through a direct 

assemblage process for related element matrices. And 𝑈̈ , 𝑈̇  also 𝑈  are an 

acceleration, velocity as well as displacement vectors respectively. Then it may 

notify since a preceding section, all a matrix of structure may it stated in terms of 

the sensible number for harmonic terms in a circumferential direction. At that 

moment the resulting separated equations for motion of the typical harmonic (n) at 

every station of time (∆t) will it be shown in Eq. (36) below: 

∑ (𝑀𝑛𝑈̈𝑛 + 𝐶𝑛𝑈̇𝑛 + 𝑘𝑛𝑈𝑛 = 𝑃𝑛(𝑡))
𝑁
𝑛=0.                                                               (36) 

Also an equation for undamped motion is presented in Eq. (37): 

∑ (𝑀𝑛𝑈̈𝑛 + 𝑘𝑛𝑈𝑛 = 𝑃𝑛(𝑡)) .
𝑁
𝑛=0                                                                             (37) 

From Eq. (37), (N+1) distinct separated problems were solved of every time step 

to find a displacement of nodal Un consistent of every harmonic. First of all, harmonic 

terms may be processed, the last displacements at every node for every angle (θ) may 

be find by the combination of every harmonic. On one occasion the collected matrices 

of the total structure are passed out, the unknown parameters of displacement may 

eagerly be initiate by solving the found equilibrium equation. Fundamentally for the 

solution of simultaneous Eq. (15), there are two different methods: Mode super-

position and direct solution techniques methods. Once when associated to a solution 

of model superposition, a direct integration method be attractive in an eigen value 

problem be avoided. As well as, definitely, in utmost cases, a direct integration 

method is a faster. In this work, a method of direct integration will be being depending 

on it is accuracy, efficiency also wide using. Then doing step by step solution by 

depending on method of Newmark integration have been originated to being actual 

in a solution for both shell and solid finite element systems. It will be implied method 

and unconditionally stables of all steps of time. 

9. Verification and Applications 

For applicability demonstrate of the potential and formulation of the developed 

program, some examples were measured and associated with obtainable results in 

a literature. Satisfactory and actual results are gotten. 
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9.1. Pinched cylindrical shell 

The cylindrical shell strained using two completely opposite pointed forces P at a 

cylinder centre be analysed of it is static reply state. Cylinder ends are fixed. A 

boundary condition, geometry, finite element mesh as well as material properties 

are presented in Fig. 3. 

Varies thicknesses of a cylinder were depended for justification of a varies 

radius for thickness ratio (R/h). A load be approximately by Fourier series 

development as shown in Eqs. (38) and (39): 

𝑃𝑟 = ∑ 𝑃𝑚 cos 𝑛𝜃.
𝑁
𝑛=0                                                                                            (38) 

A Fourier load breadths of a point load are: 

𝑃𝑟𝑜 =
𝑃

𝜋𝑟̅
 for n = 0. 

𝑃𝑟𝑛 =
2𝑃

𝜋𝑟̅
  for even harmonic terms                                                         (39) 

       = 0.  for odd harmonic terms 

Note: 𝑟̅: distance from to a point load and a centre. 

It can be notified from Table 1, a catalogue a maximum deflection of 

normalized non dimensional at a point load. Then radius to thickness percentages 

travelled were R/h = 100, 300 also 500. A value of maximum deflection (wfem) may 

be computed by a current method is regularised to a solution specified in the 

references [17] that shown in Eq. (39): 

𝑊̅ =
𝑤𝑓𝑒𝑚

𝑤𝑟𝑒𝑓.
.                                                                                                          (39) 

where 

𝑊̅ : normalized deflection, 

wfem. : current finite element results also 

wref.. : reference [19] solution. 

Reference [19] solution may be presented as: 𝑤𝑟𝑒𝑓. = 𝐶
𝑃

𝐸𝑡
 

where C is a proportional constant related the values of central deflection with the 

applied central load. The constant value C for every (R/h) ratio be shown through 

Table 1 composed with a number of Fourier harmonic depend for every case. 

Table 1. Normalized maximum deflection  

at the point load for cylindrical shell with fixed ends. 

R/h C 
No. Fourier 

harmonic 
𝑾̅̅̅ 

100 136.8 6 1.0706 

300 516.2 8 0.9020 

500 960.9 11 1.0310 

Table 1 presents a satisfactory agreement of found deflection results also 

presents junction tendencies of the deflection with those of reference [19] and 
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shows conjunction tendencies of a displacement through a number for Fourier 

harmonic increases by increasing the (R/h) ratio. More accurate results could be 

gain with increased number of Fourier harmonic as the results approach to its real 

values when more terms of Fourier series are considered especially when R/h 

values are increased as could be seen in Table 1. Figure 4 illustrations non 

dimensional normal (radial) deflection at a point load as opposed to a 

circumferential direction of a shell for different (R/h) ratios related. A maximum 

deflection happens when theta angle equal be zero (that be characterise an applied 

point load) as may be notify as of the figure. 

 
Fig. 3. Axisymmetric cylindrical shell with symmetrical point load. 

 

Fig. 4. Normal displacement at point load  

versus circumferential theta direction for example of (Fig. 3). 

9.2. Dynamic response for cylindrical shell 

The cylindrical shell laid for a uniformly inner spread sine wave impulsive loading 

through a highest intensity with (100 kPa) be measured and given by Fig. 5 

collected with a material property, mesh of finite element also geometry. 

A purpose for that case is for comparison it is response with a solution of 

standard finite element for computer program of dynamic analysis transient using 
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an element with nine-node. The compartment of two results with veneration to 

number for unknowns also computer time consumption as shown in Table 2. A total 

number of degrees for freedom and a needed computer time minimized by 80% 

comparison with standard finite element as mentioned Table 2. 

Table 2. A comparison of unknowns and  

computer time consumption for the example shown in Fig. 4. 

Type of approach 
Present 

work 

Standard 

finite element 

Number of elements 3 6 

Number of unknowns 35 175 

Computer time consumption (sec) 20 115 

Figure 6 showed the normal displacement of the tip point. It can be notified that 

a normal displacement point arrives it is a maximum value approximately (0.75 

sec.). It can be seen from the Fig. 7 the conjunction of a circumferential stress σθ 

results on a tip point such generalised values beginning from a near Gauss point 

(element 3, G.P. No.3) by a typical finite element solution. 

 

Fig. 5. Axisymmetric cylinder under sine impulsive load. 

 

Fig. 6. Tip normal deflection-time history  

for cylindrical shell under sinusoidal load. 
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Fig. 7. Circumferential stress-time  

history of the tip point for the problem of Fig. 5. 

9.3. A shallow thin spherical cap 

The dynamic analysis for the thin spherical shallow cap be approved obtainable due 

to applying Heaviside step intensity pulse loading with (4.41 MPa). A cap radius 

be (R=56.6 cm), thickness (h=10 mm), also semi angle with (ϕ=26.67ᵒ). 

Completely a related collected data within finite element mesh were showed by 

Fig. 8. The step for time (5E-6 sec.) be depending through mentioned example. A 

time difference for an apex deflection for the cap can be seen in Fig. 9. The 

mentioned example be compared fit by the reference [20] result in that the analysis 

be approved out depending on ten eight-node elements with a same step time. A 

static effect of an apex is as well as showed in Fig. 9. The current study apex 

deflection time history be correspondingly associated to a three-dimensional result 

[21, 22] which twenty-seven elements were depended for romanticize a quarter of 

a cap. It can be seen that very good match is found as presented in Fig. 9. 

The difference of a normal stress (σθ) due to time on a Gauss point closer to an apex 

(element 6, G.P.3) be presented through a Fig. 10. A time for minimum and maximum 

stress also a length of period was presented in Fig. 10. Correspondingly, the difference 

of a vertical deflection for a point near a support (node 3) is showed by Fig. 11. 

  

(a) Section in the cap. (b) Finite element 

Fig. 8. Shallow thin spherical cap (mesh and geometry). 
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Fig. 9. Apex deflection-time history for  

shallow thin spherical cap under Heaviside loading. 

Fig. 10. Circumferential stress-time history 

at the point nearest to the apex for shallow 

thin spherical cap. 

 
Fig. 11. Variation of vertical deflection-

time history node 3 for shallow thin 

spherical cap. 

10. Conclusions and Recommendations 

Regarding to obtained results from this work, a main conclusion be brief in listed 

points shown below: 

• The adapted shell analysis program depends on a semi analytical method has 

been create for give a suitable solution specially related to dynamic cases. As 

well as, by comparison the obtained results with the results from the other 

references, all appear errors lie inside the normal accuracy engineering. Usually, 

the error percentage is less than of 10% of all worked cases and the percentage 

can depended satisfactory related to greatest applied problems. 

• An anticipated method was institute to become an additional effective and 

inexpensive from a standpoint for data handling also preparing, computer time 

and calculation efficiency as well as reminiscence requirements. 

Correspondingly the limited elements numbers were satisfactory to signify a 
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whole structure by exact results founded also that lead to decreasing an analysis 

for cost. 

• Suggested proposal method may be stretched to consist of both geometric 

nonlinearities and material. But that would be result in the big increasing for 

computer time, then a matrix of stiffness will be being moulded several times 

through a step-by-step solution procedure [23]. 

• In general, the required computer time also a total number for freedom degrees 

a present work is reduced with 70- 80% compared with standard finite element 

as it be mentioned in Table 2.  

• It is recommended to solve more complex problems such as tanks filled with 

liquid or water to deal with the hydrostatic pressure. 

• It is recommended to re-analyse the same problems under the effect of 

earthquakes for their importance nowadays.   

Nomenclatures 

 

dA Element Infinitesimal area. 

𝐸 Energy of strain 

[𝐽] Jacobian matrix 

[𝐾𝑛] Stiffness matrix of element 

K, C, and M  Stiffness matrices damping also mass respectively 

m and n Different integers 
[𝑀𝑛] Mass matrix element 

[N] A (3x15) shape functions matrix 

Ni(ξ) Shape function related with node i for an element 

Pr, Pz, PT load components in radial, axial also circumferential  

𝑃̅𝑟𝑛 , 𝑃̅𝑧𝑛 , 𝑃̅𝑇𝑛 Symmetric load bounties for a nth   harmonic part for                    

radial, axial also circumferential directions respectively. 

𝑃̿𝑟𝑛 , 𝑃̿𝑧𝑛 , 𝑃̿𝑇𝑛 Anti-symmetric load bounties for a nth   harmonic part for                    

radial, axial also circumferential directions respectively. 

𝑟, 𝑧, 𝜃 Global cylindrical coordinate system 

𝑟′, 𝑧 ′, θ Local coordinate system 

T Kinetic energy  
[𝑇] Matrix for a strain transformation  

u, v, w Global displacement system 

ui, vi, wi Translation freedom degrees 

U Displacement vector 

{𝑈̇} The vector of velocity 

{𝑈̄𝑛} A (15x1) a displacement vector for element. 

𝑈, 𝑈̇, 𝑈̈ Displacement, velocity also acceleration vectors respectively. 

𝑈̄, 𝑈̄̇, 𝑈̄̈   Element displacement, velocity also acceleration vector for 

symmetric definite harmonic part. 

𝑊̅ Normalized deflection, 

 

Greek Symbols 

𝛼𝑖 , 𝛽𝑖 Freedom Rotational degrees. 

θ Angle for a circumferential direction 

 Angle for a meridian direction 
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ξ and η Coordinates of curvilinear 

𝛽̅ Matrix of strain 

{𝜀 ′} Strain displacement 

𝜌 Mass density  

∆t Interval of time 
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