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Abstract 

Most of the skin diseases exhibit complex, visually indiscernible features and 
characteristics, rendering traditional physical inspection technique fails. 
Meanwhile extraction of handcrafted features used in machine learning (ML) for 
prediction purposes may involve tedious manual labour. Different viable 
adaptations of deep convolutional neural network (CNN) system for automatic 
classification of skin diseases have not been extensively and systematically 
explored in the past. This could be due to the various degree of classification 
accuracy with complexity of the model, which also affects its modifiability, using 
the limited training data available. This work presents the use of AlexNet-SVM 
and Alex-KNN model trained with a limited data set for computer aided skin 
disease diagnosis. The performance of these models was also compared with that 
from transfer-learned AlexNet using images of skin disorders namely acne, 
eczema, psoriasis and rosacea. This work observed considerably consistent and 
good mean classification accuracy ranged in between 85 and 92 % produced by 
these customized models. Even though there is no correlation found between the 
models used in this research and their performance metrics using ANOVA t-test 
(ρ > 0.05), visual examination showed superiority of AlexNet-SVM over other 
models. In the concluding remark it is suggested that the highest adaptability of 
AlexNet-SVM to the considered task, combined with its robust and time effective 
advantages, make this approach an attractive tool for skin disease diagnosis. This 
model may be incorporated into skin health innovation as an added feature to 
allow accurate clinical decisions available rapidly and efficiently. 

Keywords: AlexNet, Computer Aided Diagnosis, KNN, Skin disease, SVM, 
Transfer-learned. 
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1.  Introduction 
Skin disorders or lesions that plague integumentary system have reported in [1] to 
affect around one third of human population (~1.9 billion people) at a time. These 
skin conditions particularly that on facial region have negative impact on its 
bearer's life and are strongly retarding their psycho-social and emotional wellbeing. 
While some (such as melanomas) can be easily recognized, classifying others 
required domain expertise, expert knowledge and specialized equipment and 
modalities [2]. Acne, psoriasis, rosacea and eczema are among the commonly 
encountered dermatologic diagnoses [3]; they usually appear as red colour and 
inflamed, and sometimes accompany with pustules or blisters, whose characteristic 
features can be hard to unambiguously classify.  

Following geographical heterogeneity in the shortage of professional 
dermatologists [4, 5], dermatological screening and treatment are mostly done by 
general practitioners who are not sufficiently trained in the area [6]. In many cases 
misdiagnosis or late treatment often exacerbates skin conditions that may 
contribute to impeded healing. This has not only led to increased financial burden 
to the individuals but also resources to manage them, especially those living in low-
income countries [7]. Human skin disorders can be caused by either bacterial 
infections or overgrowth of skin flora. Some other (intrinsic/extrinsic) factors 
include physiological change (such as stress and hormonal status) [8] and external 
agents such as drugs, cosmetics, chemical or food.  

The typical characteristic features used by dermatologists or medical personnel in 
the diagnosis including colour, size, location and shape of the lesion. Very often, this 
examination is accomplished with the use of other assistive devices such as 
dermoscopy, Wood lamp, or through clinical procedure such as biopsy. These efforts 
should be compounded with a great deal of experience and expertise before an 
appropriate treatment is instituted. Tissue oxygen saturation, which is known to be 
essential for any metabolic process and successful wound (lesion) healing, is commonly 
used to evaluate effectiveness of clinical treatment and intervention programmes. For 
that reason recent research and innovations [9-11] have been established in the field of 
adjunctive technology for dermal health screening using tissue oxygen as outcome 
parameter. It is of great significance that the function of these innovations is able to be 
extended to the classification of skin lesions to further elucidate the effectiveness of 
interventions or therapeutic products used on treated lesions.  

Current artificial intelligence (AI) technology has gained increasing importance 
in works related to prediction and decision-making such as in health industry to 
assist in medical diagnosis processes, in economic affairs to predict the financial 
market, in agriculture and food industries to manage market demands and food 
supply-demand balance through data mining methods (see [12, 13] for a 
comprehensive review of recent advances of AI). This is mainly driven by the 
increased capacity of technology in computing systems (e.g. both distributed and 
cloud), Graphical Processing Unit (GPU) and edge devices (e.g., Intel® 
MovidiusTM NCS for inference purposes). 

Computerized classification systems or computer aided detection (CAD) of skin 
disorders using metaheuristic approach, machine learning (ML) techniques [14, 
15], deep learning convolution neural network (DL-CNN) [7, 16], and transfer 
learning approaches [9, 17, 18] have been performed with considerable success in 
the past. The earliest approach is the human-engineered optimization algorithms 
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proposed through either domain knowledge or simulations. This method has its fair 
share of uses and applications in the past decades before it was replaced by ML 
technique, which classification and prediction depends on the extracted hand-
crafted features, a process that can be labour-intensive.  

Deep learning is the current state of art of the machine learning technique, 
where layers of data are arranged in hierarchical structure to automatically extract 
important features for predictions. Prior studies demonstrated the ability of CAD to 
match or even surpass human performance in many computers vision tasks, such 
as in skin cancer diagnosis [19], in playing board games [20] and for autonomous 
driving vehicles [21]. It must be noted that the use improved pretrained CNN 
models (such as AlexNet, GoogleNet, VGG16, Xception, ResNet18) with Support 
Vector Machines (SVM), K-Nearest Neighbour (KNN) and gradient boosting 
classifiers have been shown to achieve significant success in recent years [14, 22-
24]. These algorithms were also reported in [22] to have superior performance than 
classification output of a transfer-learned CNN model. The differences separating 
these approaches are in the strategy these classifiers adopted.  

SVM is based on construction of single or multiple hyperplanes in solving highly 
dimensional and nonlinear problems by closely matching attributes of observations 
to the class label. KNN approximates the distribution of data in non-parametric 
fashion (based on spatial neighbourhood information) while gradient boosting is an 
iterative functional gradient descent algorithm. In the latter approach, cost function is 
optimized via iterative selection of points in negative gradient directions. A review 
and discussions of these classifiers in data mining can be found in [25-26]. T 

he reported works on the use of these classifiers with pretrained CNN models 
and comparisons of different architectures of CNN in the field of dermatology are, 
however, far and few in between. This is primarily because of the variation in 
classification accuracy with the model complexity, whose learning requires a huge 
volume of data to enhance its inference performance.  

A systematic comparison of different network architectures by [27] showed an 
increased classification accuracy at the price of higher model complexity (i.e., using 
VGG, Inception, etc) using abundance of data collected from several sources and 
exhaustive computational resources. Therefore this work is motivated to compare the 
performance of transfer-learned AlexNet with AlexNet-SVM and AlexNet-KNN 
models trained using a limited data set for computer aided skin disease diagnosis. This 
choice of CNN model is because of its comparatively simple and shallow architecture, 
resulting in much faster training speed with less memory demand [28]. 

Since facial dermatological diseases were reported to cause stress, depression 
and can adversely impact both social and psychological wellbeing of its sufferers 
[29, 30], only facial images are used here. We believe that the outcomes of this 
work may be integrated into the skin health monitor developed within this 
laboratory [10] to further enriching the application of this innovation. Meanwhile 
the relatively shallow network structure of AlexNet model making it a much 
preferable choice in our design for fast retraining of the model at the edge using 
new and updated images collected from the device. All the following simulations 
were carried out using MATLAB 2019b. 
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2. Materials and Methods 
This section discusses the research methods used in the study. The first subsection 
summarizes the preparation of dataset required for deep learning. This is followed 
by the discussions of AlexNet models used in this work in section 2.2.  

2.1.  Dataset description 
Images of skin diseases studied in this work were reproduced and used with 
permission from DermNet NZ (www.dermnet.org). Only facial skin images were 
used in this present study, so images were manually chosen from acne, eczema, 
psoriasis and rosacea image database. There were 206 images collected for acnes, 
22 on eczema, and 33 and 49 images, respectively, on psoriasis and rosacea. The 
dataset for eczema, psoriasis and rosacea were enlarged by quintuple (n = 5) 
through augmentation during preprocessing stage. This is through rotation of main 
images in four directions (-10˚, 10˚, 20˚ and -20˚) and the flip of the images in 
horizontal direction. These augmented images of different classes were stored 
separately but in the same folder as their main images. In each run, we used 70 % 
of randomized split of data for training and 30 % for the testing. This split ratio is 
following the heuristic suggestion by [31] for balance training/testing proportion 
percentage and the results of previous investigation in [32] who reported improved 
classification accuracies using this ratio. The distribution of images of different 
skin disease classes for the training and testing process is shown in Table 1. An 
example of 249 sets of images used in net testing is shown in Fig. 1. 

Table 1. Distribution of training and testing data. 

Skin disease Number Total (incl.  
augmented) 

Training  
data 

Testing  
data 

Acne 206 206 144 62 
Eczema 22 132 92 40 
Psoriasis 33 198 139 59 
Rosacea 49 294 206 88 
Total 830 581 249  

 
Fig. 1. Random images chosen for testing the nets. 
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2.2. AlexNet based CNN models 
The architecture of pretrained AlexNet is shown in Fig. 2. This system consists of 
25 layers of 8 main blocks comprising of 5 convolution layers (Conv) each 
followed by ReLU activations, and 3 max pooling layers (Pool) at 1st, 2nd and 5th 
block. The function of convolution networks is to apply learnt filters to input image 
to create feature maps, the pooling layers operate upon each feature map to create 
new set of pooled feature maps. The output from the 5th block is passed to two fully 
connected networks, fc6 and fc7, each has fixed 4096 feature vectors. These fully 
connected layers, fcl, take input from the pooled features and applied weights to 
predict the correct label.  

The fc8 consists of 1000 nodes followed by Softmax that calculates the 
probability of class label distribution. Even though features from any fcl can be 
extracted, stored in features vectors, and used by classifiers (i.e., SVM and KNN) 
in Fig. 2 for classification, fc6 is chosen for analysis and further processes in the 
current study. This is on the basis that it was proved in [33] to contain most 
information for wide range of computer vision applications and object detection 
tasks. Besides, our experimentation showed evidence of a slight superiority in 
classification accuracy using fc6 compared to fc7 and fc8 (mean accuracy 
difference of < 4 %).  

The three different AlexNet based CNN systems considered are: model 1, 
Transfer-learned AlexNet; model 2, AlexNet-SVM; and model 3, AlexNet-KNN. 
Both SVM and KNN approaches used error-correcting output codes (ECOC) 
method, whose main function is to decompose a multiclass classification problem 
into several binary ones, in classifying deep features according to their class label.  

The AlexNet system takes only images of size 227×227×3 as its input. All 
images (the final total from main and augmented in Table 1) were first resized using 
the MATLAB’s imprecise function to match the input dimension of the net. The 
resized images were then zero-center normalized by subtracting the mean image of 
dataset from every input image to bring dataset to uniformity before training and 
testing the nets. 

 
Fig. 2. CNN based AlexNet architecture. The SVM and KNN replacing  
classification output layers are marked by the red dashed-line boxes. 

2.2.1. Transfer-learned AlexNet 
The present study used transfer learning concept for retraining the AlexNet in Fig.2 
using dataset in Table 1. Stochastic gradient descent with momentum (SGDM) 
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optimizer was used with initial learn rate of 0.01 and gradient threshold of 1 due to 
its shortest computational time as compared to other training methods (RMSProp 
and Adam) [34].  In effort to minimize the possibility of underfitting, 20 epochs 
and mini batch-size of 20 were chosen for the training set. These hyperparameter 
values were based on the acceptable ranges previously reported by [35, 36] in 
investigating overfitting and underfitting problems. Thus no attempts or trial runs 
have been made to optimize the experimental conditions. Meanwhile the number 
of outputs in fc8 layer was replaced with 4 nodes, each label is associated with a 
skin disease class in Table 1. 

2.2.2. AlexNet-ECOC SVM 
The SVM designed for two classes classification is combined with ECOC method 
(using the MATLAB fitcecoc function) that utilized one against one encoding 
scheme. The ECOC technique generates (k(k-1))/2 learners for k classes. Each 
learner is trained on the SVM classified feature vectors of training data of two class 
labels shown in Table 2. For example, in the case of learner 1, this learner groups 
all the observations (i.e., features) in acne class into a positive class (+1), eczema 
into a negative class (-1) and ignores observations in other classes (i.e., psoriasis 
and rosacea) before it was trained (on this set). The same applies to the remaining 
learners. During classification of a new observation (unseen sample), outputs of 
binary classifiers are combined to form the output codeword. This code is compared 
to the 6 bits codes in Table 2 by optimizing the aggregated losses using the 
quadratic loss function, L, given in Eq. (1) [37]. The class that has the nearest code 
to it is assumed as the class label of the new observation.  

𝐿𝐿 =  ∑ 𝑤𝑤𝑖𝑖�1 − 𝑦𝑦𝑖𝑖𝑓𝑓(𝑋𝑋𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1                                                                                  (1) 

where n is the sample size, wi is the weight for observation i, yi is the corresponding 
class label and f(Xi) is the classification score for observation i of the predictor data 
X. Readers are advised to refer to the published articles [38, 39] for the full account 
of the design behind the ECOC model. 

Table 2. One against one binary coding scheme.  
 Binary learner 

Class 1 2 3 4 5 6 
Acne 1 1 1 0 0 0 

Eczema -1 0 0 1 1 0 
Psoriasis 0 -1 0 -1 0 1 
Rosacea 0 0 -1 0 -1 -1 

2.2.3. AlexNet-ECOC KNN 
Similar to the case of ECOC SVM model, this method allows binary learners to 
learn via KNN clustered feature vectors of different classes using one by one 
scheme. The binary scheme for each learner and the loss function used in the 
training phase are the same as that in previous section. The predictor data was 
standardized prior to training the learners. During experimentation, various 
numbers of nearest neighbour (i.e., K = 5, 7 and 9) used in KNN learner were 
attempted, but only for number 5 did the model perform well for testing dataset. 
We, therefore, discarded result from other K values, whose accuracy is inferior by 
a factor of at least 1.1, in the subsequent analysis.  



3318        A. K. C. Huong et al. 

 
 
Journal of Engineering Science and Technology           August 2021, Vol. 16(4) 

 

3.  Results and analysis 
Due to randomization in the selection of training/testing dataset, each simulation 
was executed three times to effectively evaluate the performance of each model. 
Figure 3 shows the temporal evolution of accuracy and loss function of transfer-
learned AlexNet training state versus iteration during one of its runs. The model 
achieved near 100 % accuracy and 0 % loss function at iteration number of 300. 
The average computing time taken for each run in training the AlexNet, AlexNet-
SVM and AlexNet-KNN on a 64-bit operating system with processor Intel®Core 
i7-4600U CPU@2.10GHz are recorded and presented in Table 3. 

 
Fig. 3. (Left) Percent accuracy and (right) loss  

function of modified AlexNet during the training session. 

The classification outputs of these models for each skin disease category from one 
of the runs is shown in Fig. 4. This investigation is necessary to gain a deeper 
understanding of the models’ performances in diagnosis of each skin disease. The 
extended study of the classification results in Fig. 4 revealed that there were five 
same images (i.e., one image each from acne, eczema and psoriasis class and two 
from rosacea) misclassified by all the classifiers in our study. Very interestingly, 
all models misclassified psoriasis and eczema images as rosacea, while the rosacea 
images were misclassified as acne. Almost always, we recognize four potential 
reasons of errors in these images: (i) rarity of lesion in the image (ii) overlapping 
features or attributes with other class, (iii) regions that were unclear due to facial 
expression (canine smile), and (iv) low resolution image.  

 
Fig. 4. Confusion matrix of prediction results (class label I: Acne, 

 II: eczema, III: psoriasis, IV: rosacea). From left to right: modified  
AlexNet, AlexNet-SVM, AlexNet-KNN. 

The performance of these models is further compared using misclassification 
error rate, ε, and classification accuracy, Acc, given in Eqs. (2) and (3). The mean 
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(standard deviation, SD) of the calculated performance metrics for three simulation 
runs are summarized in Table 3. 

𝜀𝜀 =  ∑ 𝑃𝑃𝑖𝑖𝑛𝑛𝑖𝑖
𝑀𝑀𝑖𝑖

× 100 %4
𝑖𝑖=1                                                                                            (2) 

𝐴𝐴𝐴𝐴𝐴𝐴 = ∑ 𝑐𝑐𝑖𝑖
𝑀𝑀𝑖𝑖

4
𝑖𝑖=1  × 100 %                                                                                       (3) 

where ni and ci represent number of misclassified and correctly classified images, 
respectively, and Mi is the total samples in a specific class label i. Pi is the class 
prevalence given by the ratio between sample size in a class and total sample in all 
classes. Also shown in Table 3 are the reported classification accuracy of skin 
lesions from previous research that used similar network architectures. 

Even though the SVM and KNN classifiers are observed in Table 3 to produce 
similar classification performance at a fraction of computation time as compared to 
the conventional AlexNet, it is necessary to use statistical method to confirm if the 
significance difference (or similarity) exists in the means of the computed outputs. 
To test the equality of mean classification outputs, the differences in prediction 
accuracy and misclassification in each class in Fig. 5 are evaluated using a one-way 
ANOVA test in SPSS 23 software with confidence level, σ, of 95%. The results 
showed statistical insignificance in accuracy performance of different models in 
our study (ρ = 0.498), while ρ = 0.38 was calculated for the association test between 
the models used herein and misclassification rate. 

Table 3. Comparison of classification performance and  
training time of AlexNet models used in this study and in literature. 

Model Classification 
 accuracy, Acc 

Misclassification  
rate, ε 

Training time 
(s) 

Transfer-learned AlexNet† 91.36(4.42) % 2.34(1.25) % 3,780 
AlexNet-SVM† 92.91(3.6) % 1.63(0.93) % 138 
AlexNet-KNN † 85.53(6.09) % 3.21(1.37)% 98 
Transfer-learned AlexNet [9] 84.6(0.08) % - - 
Transfer-learned AlexNet [17] 91.02(3.57) % - - 
AlexNet-SVM [7] 86.21 % - - 
AlexNet-SVM [40] 94.45 (1.96) % - - 
AlexNet [41] 94.55 %  - - 
†Results from this work 

 
Fig. 5. Mean and standard deviation (SD) of percent (left) classification 

accuracy, Acc, and (right) misclassification rate, ε, for each skin disease class 
given by transfer-learned AlexNet, AlexNet-SVM and AlexNet-KNN. 
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4. Discussion 
Even though the hyperparameters used in CNN training in section 2.2.2 have not 
been meticulously fine-tuned as that demonstrated in [42] prior to the retraining 
session, Fig. 3 shows the accuracy of the modified network started to saturate at 
100 % at iteration number 300. This may suggest appropriate selection of parameter 
values for the model. This is supported by the considerably high accuracy in the 
prediction of the unseen test data using this modified pretrained model with mean 
percent classification accuracy ranged in between 85- 95 % in Fig. 5 for different 
skin disease class. Meanwhile in the case of AlexNet-SVM and AlexNet-KNN 
models, both the algorithms replaced the functions of fully connected networks. 
These models took results from fc6 layer without retraining the pretrained model 
and use them to classify image into defined classes. Thus, this has significantly 
reduced the computing time (up to twentyfold faster than transfer-trained approach) 
required in training data.  

The similarity in the results of the customized AlexNets in Fig. 5 was supported 
by the statistical testing of the relationship between the models and their 
performance metrics, which ρ values showed that they are of statistical 
insignificance (ρ>0.05). However, it is evidence through the visual inspection of 
the plots that AlexNet-KNN model gives overall inferior results, especially for 
eczema. This is likely affected by the size of this particular class, as the latter has 
the smallest data sample of the four. Since the KNN algorithm relies on the 
extracted spatial information of the pixels in its clustering process [43], small 
training data leads to insufficient mapping of clustering assignments to the target 
label. It is hypothesized that the performance of this classifier may be improved 
through fine-tuning of the parameters used and with an increased in data size. 
Meanwhile in the case of transfer-learned AlexNet, the misclassification error in 
rosacea class is notably larger than the rest. Notably, AlexNet-SVM is shown 
capable of giving consistent and accurate results (i.e., accuracy 90-95 %) with rapid 
training time. Based on the above research findings, it can be inferred that AlexNet-
SVM has better adaptability to the current dataset and may have better future of 
clinical application compared to other models. 

Based on the comparison with the literature in Table 3, consistent results were 
observed for similar AlexNet architectures used in the past in [17]. The AlexNet-
SVM used in [7] is similar to that used in this work, but a lower performance was 
reported in the precedent study. This is attributed to the differences in the choice 
of fcl where feature vectors are extracted, in addition to a larger number of classes 
considered in the study. In contrary, prior research in [41] handled smaller class 
groups (i.e., 3 groups) thus a slight superior performance was found. Meanwhile 
improvement in results of [40] is due to the advanced techniques implemented in 
preprocessing stage to enhance quality of the images before the training and 
testing sessions. 

It is interesting also to note that although augmentation strategies, commonly 
known as a critical component of training process, have not implemented on acne 
image class, a considerable good accuracy with percent misclassification error of less 
than 3 % is calculated for this class. This further confirms the feasibility of 
augmentation methods used in this work to overcome the imbalanced dataset, as the 
considerably good classification performance in Fig. 5 (i.e., 85-92 %) showed that 
the augmented data served sufficiently as new and unseen dataset for training and 
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testing of the models. Nonetheless, it should be noted on the considerably higher rate 
of skin lesion images misclassified as rosacea in all models such as that shown in Fig. 
4. We, therefore, do not rule out the possibility of overfitting/underfitting problems 
in our training. We suspected that our models suffer from overfitting to larger training 
sample class (i.e., rosacea). This problem may be obviated with a larger dataset used 
in training the model. The future of this work includes incorporate the classification 
system into the skin health innovation developed within this group in [10] to widen 
and enrich its application. This is in addition to the further enhancement of AlexNet-
SVM to include closed-loop feedback system to include new/updated information 
given to it for retraining at edge devices. 

5. Conclusions 
This study demonstrated the performances of different customized AlexNet models 
in the classification of four skin disease classes. The results revealed a striking 
similarity in the performance of the retrained AlexNet, AlexNet-SVM and 
AlexNet-KNN (ρ>0.05).  It was found that the performance of AlexNet-KNN 
depends on the data size used. This study recommended that the performance of 
these classification models can be improved by fine-tuning the hyperparameters 
and including more data in the training. The contribution of this research are our 
findings on the rapid training time (~2 minutes), good inference accuracy and high 
adaptability of AlexNet-SVM for dermatological application that suggest its 
excellent potential for embedding into skin oxygen innovation. All these attributes 
allow this model to be used for future edge retraining using new and updated 
images. This classifier would be useful as an added feature to the adjunctive 
technology for automatic and rapid skin disease classification, and for use as an 
assistive tool in dermatology research. 
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