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Abstract 

Many tiles on facade of historic temples are damaged and deteriorated due to aging 

and environmental factors. Regular inspection is required for proper maintenance 

and automatic inspection offers a significant advantage over manual inspection as 

it is efficient and accurate. Many previous studies are focus on detecting damages 

in factory tiles for the quality control purposes, although there has not been much 

study on tile damages for historical temples. This paper proposed an image-based 

system to detect damages in tiles using Convolutional Neural Networks (CNN) on 

a temple facade. The dataset was created by an Unmanned Aerial Vehicle (UAV) 

and a digital camera from a historical temple in Bangkok, Thailand. In the proposed 

work, CNN was trained on various image patches sizes. The detection accuracy of 

the system was found to be 95% in the validation data and 91% on the testing data. 

The results of the proposed system were compared with a system using handcrafted 

features, including 2D wavelet transforms with the Artificial Neural Network 

(ANN). The proposed system shows that the CNN approach is more accurate than 

the traditional handcrafted method. 

Keywords: Computer vision, Convolutional neural network, Historical temple, 

Tile’s damage detection, Unmanned aerial vehicle. 
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1.  Introduction 

Condition assessment plays a vital role in maintaining structural health and 

reliability for historical structures. Discoloration and defects are signs of 

degradation in tiles, which are commonly used on a temple facade. The detection 

of defects in structures can help to prevent further damages. Visual inspection is a 

common procedure for identifying the first sign of problems in structure, and it is 

normally carried out by a team of experts. However, this procedure is time-

consuming, expensive, requires an expert knowledge, and is normally prone to 

human error. Furthermore, some parts of structures are not easily accessible by 

human inspectors, therefore; inspection cannot be carried out in these places. 

Image-based inspection methods aided by Unmanned Aerial Vehicles can help 

carrying out the visual inspection task in this age of disruptive technologies. 

Unmanned Aerial Vehicles (UAVs) can be used to collect images from the areas 

which are not easily accessible by human, and then damages in the collected images 

can then be detected by various crack detection algorithms using handcrafted 

features and classifiers, or by deep learning techniques. 

Generally, damage detection systems consist of two main steps, feature 

extraction and classification. In the first step, features are extracted from input 

images using various techniques such as Gaussian filters [1], edge detection [1], 

and morphological operation [2]. Then, in the second step, classifiers such as 

Support Vector Machine (SVM) [3], Random Forest (RF) [4] and Neural Networks 

[5] are used to classify the extracted features. However, these techniques are often 

affected by noise, distortion and lighting variation. These conditions are limiting 

factors when working with computer vision systems based on these methods. 

Feature extraction from images containing complex structures as shown in Fig. 1 

is usually non-trivial and therefore, the crack detection problem remains a 

challenging problem, which requires robust and industry-ready solutions. 

Therefore, in this research work, Convolutional Neural Network (CNN) is applied 

to detect damages in ceramic tiles from a historical site. CNN is an attractive 

method due to its ability to learn features automatically from input images, and in 

many applications, it has proven to be somewhat suitable techniques for dealing 

with classification problems. 

For the tile damage detection problem, many early works are focus on 

detecting tile damages in factories for the quality control purposes. However, 

these algorithms are not suitable for the tiles in historical temples as the images 

or videos acquired from the temples are from the uncontrollable environment, 

unlike the factory tiles, which are usually performed in the controlled laboratory 

environment. Therefore, this paper is focus on developing a CNN-based damage 

detection system to attempt to detect damages in tiles on a temple façade offering 

a new paradigm shift for the assessment of such valuable structures, like these 

historic temples. The data used in this work is obtained by an Unmanned Aerial 

Vehicle (UAV) and a digital camera. The example images of the temple are 

shown in Fig. 1. The rest of the paper is organized as follows, Section 2 describes 

related works in tile damage detection, Sections 3 and 4 explains the proposed 

methodology and experiments, respectively. Finally, discussion and conclusion 

are drawn in Sections 5 and 6. 
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Fig. 1. Investigated shapes of projectiles (Geometry and dimensions). 

Pictures of a temple and the tiles façade: 

(a) Top left and right: The overview image of the temple. 

(b) Bottom left: A close-up image of the temple façade. 

(c) Bottom right: a close-up image of the tile façade on the temple. 

2.  Literature Review 

Tile decoration on temple facades not only provides aesthetic appearance, but 

also protects the concrete surface beneath [6]. Tile colours, shapes and patterns 

must remain intact and undamaged to fulfil their intended use and regular 

maintenance are generally required. Ar et al. [7] applied a Gabor filter and 

connected component analysis to extract patterns on marble tiles, which were 

then used for classifying different types of tile textures. Najafabadi and 

Pourghassem [8] used an image-based technique to obtain corners in ceramic tiles 

and the tiles, whose corner angles are between 92 degree and 89 degrees were 

classified as non-defective, otherwise they were considered as defective. 

Ghazvini et al [9] applied a rotation invariant wavelet transform, statistical 

features and an Artificial Neural Network (ANN) classifier for tiles defect 

detection. The statistical features included the median of maximum points, 

minimum points, mean, and standard deviation, and the average accuracy was 

90%, and the proposed method was faster than other previous methods. 

Hanzaei et al. [10] proposed a tile defect detection system with the accuracy of 

93% using Rotation Invariant of Local Variance (RIMLV), Median filtering, 

morphological operations and Support Vector Machine (SVM). Thomas et al. [11] 

proposed a photogrammetry technique, which is in the form of image-based 

rendering (IBR), to create a 3D models for post-processing. The result showed that 

the rendering method can create a new way of inspection by the image recognition 

technique. Samarawickrama et al. [12] proposed an image-based defect detection 

technique in ceramic tiles using colour, edges, and morphological operation to 
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separate cracked tiles, corner-damaged tiles, and discoloured tiles from good tiles. 

The proposed method claimed to have the detection accuracy up to 96% with the 

detection rate of 2 seconds per tile. However, the proposed techniques were still 

largely affected by colour variation in images, scale changes, and viewpoints.  

Convolutional Neural Network (CNN) for crack detection can be an alternative 

method for detecting tile defects. CNN can classify many classes and therefore, it 

became popular for the image classification problems [13]. Zhang et al. [14] used 

a deep CNN for automatic crack detection in road images. In this work, the authors 

used 500 images collected using a low-cost smartphone for classification. The 

results by the proposed CNN method offered a superior performance than the 

handcrafted feature methods. Cha et al. [15] applied a deep convolutional neural 

network for concrete crack detection. The authors used 40 thousand images of size 

256x256 for training and testing the system, which gave 98% accuracy. The 

proposed CNN was then compared with the traditional Canny and Sobel edge 

detection methods. The proposed CNN showed a much better performance than the 

other methods. Recently, Faster region‐based convolutional neural network (Faster 

R‐CNN) and Mask R‐CNN were implemented for the detection of damage in tile. 

Mask R‐CNN has higher capability to detect damages of the tiles with complex 

geometric features [16]. The MCuePush U-Net model was used to detect magnetic 

tile surface defects. The proposed model was able to detect multiple surface defects 

in low-contrast images [17]. Faster R-CNN was proposed to detect the damage in 

the historic masonry buildings. The deep learning model was able to detect 

damages with small proportion of errors, which was particularly sensitive to light 

[18]. A deep fully convolution neural network was implemented to detect pixel-

level cracks in concrete structure [19]. Another studied was carried to detect 

concrete crack using the deep convolutional network with VGG 16, Inception V3, 

and ResNet as classifiers. The result from the VGG 16 outperform the remaining 

classifiers to detect cracks [20]. The Mask-RCNN with Inception-ResNet-V2 

performs best for the crack detection and segmentation problems [21].  

3.  Methods 

The outline of the proposed system consists of the modules as shown in Fig. 2(a). 

The images are acquired by an Unmanned Aerial Vehicle (UAV) or by a DSLR 

camera. After the data acquisition step, a CNN algorithm is used for detecting 

damages in ceramic tiles on a temple facade. The architecture of the proposed 

damage detection system is shown in Fig. 2(b). The detail of each module in the 

proposed system is explained below. 

3.1.  Image acquisition 

A UAV has been used for surveying as they are simple to use, fast and cheap to acquire 

image or video data. The main advantage is that it can obtain images from high altitude, 

which is not accessible easily by human. In this paper, a UAV is used to acquire images 

from the façade of a historic temple using a DJI Phantom 4 drone. The drone was 

manually flown along the temple’s facade to collect images. Sample images taken from 

the drone are shown in Fig. 3. Some images are also taken by a DSLR camera. 

The images collected using the UAV and DSLR are converted into patches of 

various sizes. The total of 3600 images are used in this work, in which 2880 are 

used for training and validation, while the remaining 720 image patches are used 
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to test the proposed system. The damage and non-damage tiles are manually 

labelled as 0 and 1, respectively. The samples of damage and non-damage image 

patches are shown in Fig. 4. 

Damage Detection 
Classification 

Results

 

(a) 

 

(b) 

Fig. 2. (a) System outline and (b) CNN damage detection system. 

 

Fig. 3. Example images from the temple. 
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Fig. 4. Non damaged image patches (a-c), 

Samples of damaged tiles (d-f) (highlighted in red). 

3.2.  Damage detection using CNN 

In this work, a Convolutional Neural Network (CNN) is used for automatic damage 

detection in ceramic tiles due to its capability to learn features automatically unlike 

the traditional handcrafted features techniques. The architecture of the CNN used 

is this work is shown in Fig. 5 and the detail of the architecture is shown in Table 

1. The CNN consists of three main parts, input images, deep features extractor, and 

a classifier. The role of the feature extractors is to extract meaningful features 

through automatic learning from raw input images. The learned features are then 

given to the SoftMax classifier to classify between damaged and non-damaged 

tiles. Keras Sequential model [22] was used in this work, the architecture of the 

CNN used in this work is shown in Fig. 5. Each layer is explained below. 

Fig. 5. CNN architecture used in the proposed system. 
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Table 1. Proposed CNN architecture. 

Operation Layer #Filters 
Filter  

Size 

Stride 

Value 

Padding 

Value 
Size of Output Image 

Input Image - - - - 100×100×3 64×64×3 32×32×3 

Convolution 

Layer 
Convolution 64 3×3×3 1×1 1×1 100×100×64 64×64×64 32×32×64 

Pooling Layer 
Max 

Pooling 
1 3×3 0 0 49×49×64 31×31×64 15×15×64 

Convolution 

Layer 
Convolution 128 3×3×64 1×1 1×1 49×49×128 31×31×128 15×15×128 

Pooling Layer 
Max 

Pooling 
1 2×2 0 0 24×24×128 15×15×128 7×7×128 

Convolution 

Layer 
Convolution 256 3×3×128 1×1 1×1 24×24×256 15×15×256 7×7×256 

Pooling Layer 
Max 
Pooling 

1 2×2 0 0 12×12×256 7×7×256 3×3×256 

Fully Connected Layer 4056 1×1 1×1 1×1 36,864 12,544 2,304 

Softmax Layer 2 1×1 1×1 1×1 2 2 2 

3.2.1. Convolution layer 

Three steps involved in the convolution layer are shown in Fig. 6. Firstly, an 

element-by-element dot product multiplication is performed between the sub-array 

of an input image and a kernel, which is called a filter matrix or a receptive field. 

The initial weight of the filter matrix is randomly generated. The filter size is 

smaller than the input array size of the input image, but the sub-array of input 

images and the filter size are identical in each operation. Different filter sizes can 

be used in each convolution layer. In the second step, output values are multiplied 

and then added. And finally, an output feature map is obtained from the output 

values from the second step. 

 

Fig. 6. An example of the computation in the convolution layer. 

3.2.2. Max pooling layer 

In the pooling layer of the CNN, the dimensionality of the images is reduced by 

reducing the number of pixels in the output obtained from the previous layer of the 

convolutional layers. A non-linear down sampling operation is performed, in which 

the spatial size of input images is reduced. In the max pooling layer, the maximum 

value of the sub-array of the input image is selected as shown in Fig. 7. Scherer et 

al. [23] showed that the max pooling layer significantly outperforms the 

subsampling operations, therefore; the max pooling operation is used in this study. 
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Fig. 7. The example of the computation of the max pooling layer. 

3.2.3. Activation layer 

Generally, in the activation layer, a non-linearity function such as, y = tanh (x), is 

used, but in this work the Rectified Liner Unit (ReLu) [24] function is applied instead. 

Krizhevsky et al. [13] demonstrated that CNN with the ReLu function can be trained 

six times faster than using the standard tanh units. Equation (1) shows the 

mathematical formula of the Relu activation function, in which the output is either 

zero or positive, and has no negative values as shown in Fig. 8. 

𝑦(𝑥) = 𝑚𝑎𝑥(0, 𝑥)                                (1) 

 

Fig. 8. Relu activation function. 

3.2.4. Dropout layers 

One of the main issues in machine learning is overfitting, which is when the data is 

learned from the training samples effectively but fail to generalize for validation 

and testing data. To avoid overfitting, the dropout layers are used. In the dropout 

layers, certain neurons are randomly disconnected with a normable dropout rate. 

3.2.5. Softmax layer 

For classification, a softmax function is used in the last layer of the CNN. The 

SoftMax function is explained in Eq. (2). For a given training set S = {a(i), b(i)} 

containing n image patches, let a(i) be ith image patch and b(i) be the class label, 

either 1 for damaged tiles, or 0 for non-damaged tiles, be the outpuft of unit j in the 



Tile Damage Detection in Temple Facade via Convolutional Neural . . . . 3065 

 
 
Journal of Engineering Science and Technology           August 2021, Vol. 16(4) 

 

last layer of a(i), then the probability P of the label b(i) of a(i) can be calculated 

from Eq. (2). The scores are converted to the probabilities of the output classes. 

𝑃(𝑏𝑖) = 𝑗(𝑘𝑗
𝑖) =

𝑒
𝑘

𝑗
(𝑖)

∑ 𝑚𝑒𝑘𝑚
(𝑖)                               (2) 

The SoftMax loss function L corresponding to Eq. (3) is given by: 

𝐿 =
1

𝑛
[∑ ∑ 1{𝑏(𝑖) = 𝑗}log

𝑒
𝑘

𝑗
(𝑖)

𝑒𝑘𝑚
(𝑖)

𝑖
𝑗=1

𝑛
𝑖=1 ]               (3) 

where n is the total number of patches. To optimize and reduce the loss error, the 

stochastic gradient descent (SGD) function is applied since the SGD function is the 

simplest and most efficient way to reduce the deviations [15, 25]. In this work, the 

weight decay and momentum parameters are set as 0.00001 and 0.9, respectively. 

4.  Results  

To evaluate the proposed damage detection system, 2880 tile patches are used for 

training and validation. Out of 2880 patches, 2160 patches or 75% of patches are 

used to train the CNN model, while the remaining 720 tile patches are used for 

validation of the proposed system, and the five-fold cross validation are applied. 

To test the proposed system, 720 previously unseen images are used for testing. 

Table 2 shows a confusion matrix that are used to evaluate the results of the 

proposed system. Each output value from the confusion matrix, i.e., TP, FP, FN, and 

TN, is obtained by comparing the classification result to the ground truth value. The 

ground truth is obtained by manually labelling the image patches. The ground truth 

is labelled for the training, validation and testing dataset so that the quantitative 

measures for the accuracy of the proposed CNN accuracy can be estimated. 

Table 2. Confusion matrix. 

Actual input label 

Predicted output label 

Positive (Damage) 
Negative (Non-

damage) 

Positive (Damage) True Positive (TP) False Negative (FN) 

Negative (Non-damage) False Positive (FP) True Negative (TN) 

The results of validation and testing are shown in Tables 3 and 4, respectively. 

Different patch sizes are also tried to study the optimal patch sizes against the 

system accuracy. As shown in Table 3, the maximum accuracy was achieved when 

32 x 32 patch size was used to train and test the proposed system. An increase in 

the size of a patch may make damages appear to become smaller and could fade 

out within the tile patterns, which resulted in a decrease in accuracy. However, if a 

patch size is too small, it can be difficult for CNN as an entire patch may only 

contain damaged pixels, which makes it indistinguishable from non-damaged areas. 

Therefore, in this proposed work, a 32 x 32 patch size was used since it can achieve 

the accuracy of up to 94%, and it offered the best performance among the other 

patch sizes. To evaluate the performance of the proposed system, a confusion 

matrix and classification report are used, and the metrics used for the calculations 
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are shown in Eq. (4, 5 and 6). From Tables 3 and 4, the validation accuracy of the 

proposed damage detection system is 95%, and the testing accuracy is 91%. The 

training and validation accuracy with the number of epochs are shown in Fig. 9. As 

can be seen, the system accuracy and loss became stable after 3 epochs. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                (4) 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (5) 

𝐹1 score =
2 𝑥 Precision 𝑥 Recall

Precision+Recall
                              (6) 

Fig. 9. (a) Training and validation accuracy, 

(b) Training and validation loss. 

Table 3. The results of the proposed system on the validation dataset. 

Patch size 
Accuracy 

(Validation) 
Precision Recall F1 Score 

32x32 94.9 0.94 0.94 0.94 

64x64 92.4 0.92 0.91 0.91 

100x100 83.3 0.83 0.83 0.83 

Table 4. The results of the proposed system on the testing dataset. 

Method 
Accurac

y 
Precision Recall F1 Score 

Wavelets with ANN 72.1 0.71 0.70 0.71 

LBP, HOG 61.2 0.61 0.61 0.61 

Proposed method 91.25 0.91 0.92 0.91 

After training, the proposed system was tested with 720 previously unseen 

images. The accuracy of the testing data is 91% as shown in Table 4. From Table 

3 and 4, Recall identifies the proportion of the patches that are correctly classified 

as cracks. In Table 3, 32×32 patch size has the highest recall of 0.94, which means 

that 94% of the cracked patches are identified correctly. The high recall means that 

most of the crack patches are detected. From Table 4, the proposed method has the 

highest recall against the other feature-based methods. 



Tile Damage Detection in Temple Facade via Convolutional Neural . . . . 3067 

 
 
Journal of Engineering Science and Technology           August 2021, Vol. 16(4) 

 

The proposed method was compared with other existing methods, which were 

based on extracting handcrafted features by Ghazvini et al. [9]. The features were 

wavelet transform features and other statistical features, including the median of 

maximum points, minimum points, mean, and standard deviation. An Artificial 

Neural Network (ANN) classifier was used to classify the features to detect 

damages on the tiles. The results were also compared with other hand-crafted 

features, which was based on the Local Binary Patterns (LBP) as they have been 

successfully applied in many texture classification problems [26, 27]. The LBP was 

combined with Histogram of Oriented Gradients (HOG) features [28], which were 

normally used in the object detection problem. The features from LBP and HOG 

were then classified by Support Vector Machine as shown in [27].  

As can be seen from Table 4 (Testing dataset), the accuracy of the proposed 

method was better than other methods as it has the accuracy up 91% on the testing 

dataset. This suggests that automatic feature learning by CNN is better than the 

handcrafted method to detect damages in tiles. 

To localize damages, some sample images were used to show the results. A 

sliding window technique is used to classify each patch as a damage or non-

damage. It can be seen in Fig. 10. that most damaged regions are correctly 

identified, although some misclassification can still be observed. The localization 

of damages can be improved by increasing the number of training images. 

 

Fig. 10. Damage localization. 

A Receiver Operating Characteristic (ROC) curves can be used to evaluate the 

classification performance. A ROC curve is a plot between True Positive Rate 

(TPR), also called as sensitivity, and False Positive Rate (FPR) as shown in Fig. 

11. The TPR and FPR are computed for different probabilities values of the output 

by comparing predicted labels to ground truth values. Figure 11 shows the ROC 

curves between the proposed method and the other existing methods. As can be 

seen, the best result is achieved with the proposed CNN approach. Therefore, the 

proposed method by CNN is effective and can be used for detecting tile damages 

on a temple facade. 
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Fig. 11. The ROC curves between the proposed 

method and other handcrafted methods. 

5.  Discussion 

It can be seen from the results in Table 4 that damages can be detected using images 

and are useful for inspection. The performance of the proposed system using CNN 

is significantly improved as compared to other traditional handcrafted features. The 

CNN architecture used in this study are only simple as the complex architecture 

such as those by He et al. [29] and Krizhevsky et al. [13], may require a large 

amount of training data for the system to work well, and they are generally 

computationally complex. A large training dataset can be difficult to create as 

collecting images of damages to use as training samples were not straightforward 

since the interested site did not have many visible damages. Furthermore, 

experienced inspectors were required to verify damage and non-damage tiles for 

creating the training datasets. Manually labelling data for training are a time-

consuming process as discussed in Cha et al. [15], Krizhevsky et al. [13], and Zhang 

et al. [14]. The accuracy of the system can be increased by a larger number of 

training data and the quality of the training data can be improved by using 

verification by experienced inspectors. The process of creating data is in fact a 

significant problem in most machine learning systems. 

CNN can extract discriminative features from many images without any pre-

processing. A large amount of training images is required, which is a disadvantage. 

Since the tile patterns employed in this work are generally complex even for the human 

inspectors, therefore; it can be difficult to identify damaged tiles for making training 

dataset. To overcome this issue and to increase the training samples, data augmentation 

and transfer learning can be applied, which is beyond the scope of this study. 

Conclusions 

The experiments show that CNN can provide good results in damage detection in 

ceramic tiles. The proposed method is successfully applied to classify damages in 

tile images in both validation and testing datasets, although with better and larger 

datasets, the performance of the system can be improved further. 

The traditional approach in detecting tile damages based on the feature extraction 

technique clearly performed worse than the CNN-based technique as it automatically 

learns features which aggregates essential information from images to improve the 
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classification accuracy. The capability of the proposed system is a significant 

achievement towards automation and automatic inspection for heritage structures.  
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Nomenclatures 

L SoftMax loss function 

n Number of image patches 

P Probability of label b(i) of a(i) 

(𝑏𝑖) Class label 

(𝑘𝑗
𝑖) Output of unit j in the last layer of a(i) 

Abbreviations 

ANN Artificial neural network. 

CNN Convolutional neural networks. 

FN False negative. 

FP False positive. 

FPR False positive rate. 

HOG Histogram of oriented gradients. 

IBR Image-based rendering. 

LBP Local binary patterns. 

ROC Receiver operating characteristic. 

RIMLV Rotation invariant of local variance. 

ReLu Rectified liner unit. 

SGD Stochastic gradient descent. 

SVM Support vector machine. 

TN True negative. 

TP True positive. 

TPR True positive rate. 

UAVs Unmanned aerial vehicles. 
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