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Abstract 

In this paper, a hybrid controller which combines of two control designs is proposed 

to control the nonlinear human walking swing leg system (HWSS) by producing a 

dynamic output feedback. The HWSS is modelled as a double pendulum with 

nonlinearity, uncertainty and MIMO properties. Therefore, these challenges are 

considered to verify the effectiveness of the proposed controller. The H2 state 

feedback controller and PID controller are fused together to form a new optimal 

robust controller. The H2 full state feedback controller is only used in the first 

control design and the H2 full state feedback with PID controller are used in the 

second control design to effectively compensate the system and achieve the desired 

tracking properties. The cultural algorithm (CA) method, which is one of the 

effective optimization algorithms, is used to obtain the optimal parameters of the 

controller. The results show that the proposed H2PID controller can robustly 

stabilize the system and achieve a desirable specification, in the presence of 

uncertainty and disturbance. Finally, it can be seen that the findings of this work 

show the superiority of the proposed H2PID controller in that it can overcome the 

effect of the coupling and achieve the required performance. 

Keywords: Cultural algorithm, Double pendulum, Human walking swing leg 

system (HWSS), Nonlinear-control, Optimal control. 
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1.  Introduction 

Leg locomotion represents the most intricate motions in the human leg or in the 

humanoid robotic leg because of its complicated nonlinear behavior. Therefore, it 

is required to design a robust controller to achieve the desired tracking performance 

while coping with the high nonlinearities and parameters uncertainty [1]. 

The ability of the human to move from one place to another depends on the three 

prospects of walking, running, and jogging gaits. Walking is the commonly used 

gait in human movement. It has two prime phases: single support phase (SSP) 

which is one leg moving (swing) and the other leg will be fixed (stance), and double 

support phase (DSP) [1]. This research study focuses on the SSP phase because the 

SSP has much common share in walking gait and it is more interesting than DSP. 

The swing leg of SSP is usually modelled as a double pendulum. The thigh and 

shank of the human leg will appear as the links of the double pendulum which are 

connected by the hip and knee joints. The joints connect the upper part of the thigh 

with the body and the lower part of the thigh with the shank. Therefore, two motors 

can replace these joints in an artificial walking system [1]. The human walk is 

characterized by its stability and the excellent robust muscular control. It is 

important to mention that the stability and control of one leg will have an impact 

on the whole body locomotion behavior. A few researchers have modelled the 

dynamic system of leg locomotion to self-impact double pendulum (SIDP) [2] 

The literature is enriched with research contributions addressing the issue of 

controlling and enhancing the performance of artificial human walking swing leg 

system (HWSS). The numerical methods, Fourier series approximation and inverse, 

temporal finite element, and advanced computer based numerical tool were used by 

Dragnis to find an optimal control for HWSS but the model of HWSS was never made 

to be more realistic [3]. Zang et al. proposed a Proportional and Derivative controller 

(PD) to improve the robustness, response speed, position accuracy, and intelligent 

behavior of the system. The PD controller was used to control the two motors which 

represented the hip and knee joints. However, the problem was the torques applied by 

the motors were very high [4]. The Model Predictive Control (MPC) has been suggested 

by Wang et al. to calculate the torques, angles, and velocities of the joints based on the 

parameters of the gait. Nevertheless, the disturbance was not completely rejected by the 

MPC and the control action had unacceptable reaction [5]. A feedback controller based 

on learned probabilistic which was proposed to generate policies of walking using a 

very small set of data from scratch. However, the parameters of the controller were not 

optimal because the cost function lacks the holistic optimal solution of the system [6]. 

A state feedback controller has been developed by Desai and Geyer, the method utilized 

the advantage of segment reaction to control leg placement under the effect of large 

disturbance. However, the results showed that the actual output didn’t fit the desired 

input [7]. An Adaptive Neural Network (ANN) controller was proposed by Bazargan 

et al. to robustly control the nonlinear human swing leg system. The controller was 

designed based on an inherently nonlinear ANN which passes through a time-

consuming training process to evaluate the inverse dynamic of the model [8]. A Neural 

Network Predictive Control (NNPC) has been suggested by Ekkachai and 

Nilkhamhang to control a semi-active prosthetic knee with a constant speed for 

walking. For this reason, the controller cycle was slowed down to be compliable with 

the changes in gait since damping constant was increasing in each step [9]. An optimal 

PID controller using two optimization methods for a biped robot walking has been 

proposed by Ravi and Pandu in 2019. It was found that the Modified Chaotic Invasive 
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Weed Optimization (MCIWO) can give a better performance than that of the PSO 

method [10]. Boxing et al. in 2019 have proposed a multi-module controller for walking 

quadruped robots. The Central Pattern Generator (CPG) method was used to design the 

controller [11]. Hazem and Mustafa in 2018 have proposed a mixed H2/Sliding mode 

controller for human swing leg system the controller weights parameters have been set 

manually to give the required performance. The proposed mixed controller has given a 

performance better than if one of them was used [12]. 

In this paper, a full state feedback H2 controller, which is represent one of most 

popular robust controllers, is integrated with dual PID controllers and optimized 

together, using Culture Algorithm (CA) to control the HWSS system. The second 

section of this paper presents the system mathematical modeling while the design 

procedure for the proposed controller is addressed in the third section. Results and 

discussion will be provided in section four. Section five is devoted for conclusion. 

2.  Materials and Methods  

The human walking swing system represents the leg system when the hip and knee 

joints are mobilized while the ankle contribution neglected [13]. The system has been 

modelled by a double pendulum as shown in Fig. 1. It is clear to see there are two links 

representing the hip and knee joints that used to connect the thigh with the body (hip 

joint) and thigh with the shank (knee joint). The mass and length of the thigh are 𝑚1 

and 𝑙1 respectively and the mass and length of the shank are 𝑚2 and 𝑙2 respectively. 

The rotation angles for the hip and knee joint are 𝜃1 and 𝜃2 respectively and the external 

torques applied on the thigh and shank are τ1 and τ2 respectively [1, 2, 8]. 

 

Fig. 1. Schematic of HWSS [8]. 

The equations of position for the thigh and shank respectively are [14] 

𝑋1 =   
1

2
𝑙1 𝑠𝑖𝑛 𝜃1                                                                                             

𝑌1 =  
1

2
𝑙1 𝑐𝑜𝑠 𝜃1                                                                                                     (1) 

𝑋2 =  𝑙1 𝑠𝑖𝑛 𝜃1 + 
1

2
 𝑙2 𝑠𝑖𝑛 𝜃2                                                                                      
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𝑌2 =  𝑙1 𝑐𝑜𝑠 𝜃1 + 
1

2
 𝑙2 𝑐𝑜𝑠 𝜃2                                                                                (2) 

The linear velocity for shank is 

𝑣2 =  √�̇�2
2 + �̇�2

2                                                                                                      (3) 

By differentiating Eq. (2) and substituting the result in Eq. (3), yields 

𝑣2 =  √(𝑙1 �̇�1 𝑐𝑜𝑠 𝜃1 + 
1

2
 𝑙2 �̇�2 𝑐𝑜𝑠𝜃2)

2

+  (−𝑙1 �̇�1 𝑠𝑖𝑛 𝜃1 −  
1

2
 𝑙2 �̇�2 𝑠𝑖𝑛𝜃2)

2

  

= √𝑙1
2�̇�1

2 + 𝑙1�̇�1𝑙2�̇�2 𝑐𝑜𝑠(𝜃1 − 𝜃2) + 
1

4
 𝑙2

2 �̇�2
2                                                      (4) 

The kinematic energy is [14, 15]: 

𝐾𝑒 =  
1

2
 𝐼1 𝑤1

2 +  
1

2
 𝐼2 𝑤2

2 +   
1

2
 𝑚2 𝑣2

2                                                                   (5) 

where 𝑤1 =  �̇�1  𝑤2 =  �̇�2  , 𝐼1 =  
1

3
 𝑚1 𝑙1

2  (thing moment of inertia) and 𝐼2 =

 
1

12
 𝑚2 𝑙2

2 (shank moment of inertia) 

then 

 𝐾𝑒 =  
1

2
 ( 

1

3
 𝑚1 𝑙1

2 ) �̇�1
2 + 

1

2
 (

1

12
 𝑚2 𝑙2

2) �̇�2
2 +  

1

2
 𝑚2  (𝑙1

2�̇�1
2 + 𝑙1�̇�1𝑙2�̇�2 𝑐𝑜𝑠(𝜃1 − 𝜃2) + 

1

4
 𝑙2

2 �̇�2
2) 

 =
1

6
𝑚1𝑙1

2�̇�1
2 +

1

6
𝑚2𝑙2

2�̇�2
2 +

1

2
 𝑚2 (𝑙1

2�̇�1
2 + 𝑙1�̇�1𝑙2�̇�2 𝑐𝑜𝑠(𝜃1 − 𝜃2))                     (6) 

The potential energy of the system is [14, 15]: 

𝑃𝑒 =  𝑚1 𝑔 ℎ1 + 𝑚2 𝑔 ℎ2 

 =  −
1

2
𝑚1𝑔 𝑙1 cos 𝜃1 −  𝑚2 𝑔 (𝑙1 cos 𝜃1 +  

1

2
 𝑙2 cos 𝜃2)                                      (7) 

where ℎ1  and ℎ2  represent the heights of the center mass for thigh and shank 

respectively, and 𝑔 is the acceleration of gravity. 

By using Lagrange Dynamics [15] 

𝐿 =  𝐾𝑒 + 𝑃𝑒                                                                                                         (8) 

and by substituting Eqs. (6) and (7) in Eq. (8), yields 

𝐿 =
1

6
𝑚1𝑙1

2�̇�1
2 +

1

6
𝑚2𝑙2

2�̇�2
2 +

1

2
 𝑚2 (𝑙1

2�̇�1
2 + 𝑙1�̇�1𝑙2�̇�2 𝑐𝑜𝑠(𝜃1 − 𝜃2)) +

(
1

2
𝑚1 + 𝑚2)  𝑔 𝑙1 𝑐𝑜𝑠 𝜃1 +

1

2
𝑚2𝑔 𝑙2 𝑐𝑜𝑠 𝜃2                                                         (9) 

The equation of Euler-Lagrange [15] 

𝑑

𝑑𝑡
[

𝜕𝐿

𝜕�̇�𝑖
] −

𝜕𝐿

𝜕𝜃𝑖
=  𝜏𝑖                                                                                                (10) 

where 𝑖 = 1,2  

then 

𝜕𝐿

𝜕�̇�1
=  (

1

3
𝑚1 + 𝑚2) 𝑙1

2�̇�1
2 +

1

2
𝑚2𝑙1𝑙2�̇�2 𝑐𝑜𝑠(𝜃1 − 𝜃2)                                        (11) 
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𝑑

𝑑𝑡
[

𝜕𝐿

𝜕�̇�1
] =  (

1

3
𝑚1 + 𝑚2) 𝑙1

2�̈�1
2 +

1

2
𝑚2𝑙1𝑙2�̈�2 𝑐𝑜𝑠(𝜃1 − 𝜃2) − 

1

2
𝑚2𝑙1𝑙2�̇�2 𝑠𝑖𝑛(𝜃1 −

𝜃2) (�̇�1 − �̇�2)                                                                                                            (12)  

𝜕𝐿

𝜕𝜃1
= − 

1

2
𝑚2𝑙1𝑙2�̇�1�̇�2 𝑠𝑖𝑛(𝜃1 − 𝜃2) − (

1

2
𝑚1 + 𝑚2) 𝑔𝑙1 sin 𝜃1                         (13) 

and 

𝜕𝐿

𝜕�̇�2
=  

1

3
𝑚2𝑙2

2�̇�2
2 +

1

2
𝑚2𝑙1𝑙2�̇�1 𝑐𝑜𝑠(𝜃1 − 𝜃2)                                                      (14) 

𝑑

𝑑𝑡
[

𝜕𝐿

𝜕�̇�2
] =  

1

2
𝑚2𝑙1𝑙2�̈�2

2 𝑐𝑜𝑠(𝜃1 − 𝜃2) −
1

2
𝑚2𝑙1𝑙2�̇�1 𝑠𝑖𝑛((𝜃1 − 𝜃2)(𝜃1̇ − 𝜃2̇) +

 
1

3
𝑚2𝑙2

2𝜃2̈                                                                                                             (15) 

𝜕𝐿

𝜕𝜃2
=  

1

2
𝑚2𝑙1𝑙2�̇�1�̇�2 𝑠𝑖𝑛(𝜃1 − 𝜃2) −

1

2
𝑚2𝑔𝑙2 sin 𝜃2                                           (16) 

Substituting Eqs (12)-(13) and (15) in Eqs (16) and (10), the dynamic equations 

of the system will be represented by Lagrange’s method to be [2, 8, 15]. 

𝜏1 =     
(𝑚1+3𝑚2)

2
 𝑙1

2�̈�1 +
𝑚2𝑙1𝑙2�̈�2

2
𝑐𝑜𝑠(𝜃1 − 𝜃2) −  

𝑚2𝑙1𝑙2�̇�2
2

2
𝑠𝑖𝑛(𝜃1 − 𝜃2) +

(𝑚1+2𝑚2)

2
 𝑔𝑙1 sin 𝜃1                                                                                             (17) 

𝜏2 =  
1

3
 𝑚2𝑙2

2�̈�2 +
𝑚2𝑙1𝑙2�̈�1

2
𝑐𝑜𝑠(𝜃1 − 𝜃2) −  

𝑚2𝑙1𝑙2�̇�1
2

2
𝑠𝑖𝑛(𝜃1 − 𝜃2) +

1

2
 𝑚2𝑔𝑙2 sin 𝜃2                                                                                                     (18) 

Since, the model of the system can be represented as a double pendulum; the 

equation of motion can be formally represented as [14] 

𝑀(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝐺(𝜃) =  𝜏                                                                        (19) 

where 𝜃, �̇�, 𝑎𝑛𝑑 �̈� represent the angular positions, velocities, and accelerations of 

joints respectively; 𝑀(𝜃)  is 2 × 2  inertia matrix; 𝐶(𝜃, �̇�)�̇�  is 2 × 1  vector of 

Coriolis; 𝐺(𝜃)  is 2 × 1 vector of gravitational torques; and 𝜏  is 2 × 1 vector of 

actuator joint torques. The inertia matrix, Coriolis vector and the vector of 

gravitational torques can be expressed as  

𝑀(𝜃) = [

(𝑚1+3𝑚2)

2
 𝑙1

2 𝑚2𝑙1𝑙2

2
𝑐𝑜𝑠(𝜃1 − 𝜃2)

𝑚2𝑙1𝑙2

2
𝑐𝑜𝑠(𝜃1 − 𝜃2)

𝑚2

3
 𝑙2

2
]                                      (19a) 

𝐺(𝜃) =  [

(𝑚1+2𝑚2)

2
 𝑔𝑙1 sin 𝜃1

𝑚2

2
 𝑔𝑙2 sin 𝜃2

]                                                                         (19b) 

𝐶(𝜃) = [
0

𝑚2𝑙1𝑙2�̇�2

2
𝑠𝑖𝑛(𝜃1 − 𝜃2)

𝑚2𝑙1𝑙2�̇�1

2
𝑠𝑖𝑛(𝜃1 − 𝜃2) 0

]                                (19c) 

𝜏 =  [
𝜏1

𝜏2
], 

From Eqs. (17) and (18), �̈�1 and �̈�2 can be obtained as 
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�̈�1 =  
𝐾4(𝜏1−𝐾2�̇�2

2 sin(𝜃1−𝜃2)−𝐾3 sin 𝜃1)−𝐾2𝑐𝑜𝑠(𝜃1−𝜃2)(𝜏2−𝐾2�̇�1
2 sin(𝜃1−𝜃2)−𝐾5 sin 𝜃2) 

𝐾1𝐾4−𝐾2
2cos (𝜃1−𝜃2)2     (20) 

�̈�2 =  
𝐾1(𝜏2−𝐾2�̇�1

2 sin(𝜃1−𝜃2)−𝐾5 sin 𝜃2)−𝐾2𝑐𝑜𝑠(𝜃1−𝜃2)(𝜏1−𝐾2�̇�2
2 sin(𝜃1−𝜃2)−𝐾3 sin 𝜃1) 

𝐾1𝐾4−𝐾2
2cos (𝜃1−𝜃2)2     (21) 

where [14], 

𝐾1 =
(𝑚1+4𝑚2)

4
 𝑙1

2, 𝐾2 =
𝑚2𝑙1𝑙2

2
, 𝐾3 =

(𝑚1+2𝑚2)

2
 𝑔𝑙1, 𝐾4 =

𝑚2

4
 𝑙2

2, 𝐾4 =
𝑚2

2
 𝑔𝑙2 

Table 1 lists the system parameters. 

Table 1. The parameters of the system [16]. 

Parameter Value Unit 

𝑚1 , 𝑚2 0.1 𝐾𝑔 

𝑙1 , 𝑙2 0.55 𝑚 

𝑔 9.81 𝑚/𝑠2 

Assume the state variables are  

𝑥1 = 𝜃1: The angular position for the upper link. 

𝑥2 = 𝜃2: The angular position for the lower link. 

𝑥3 = �̇�1: The angular velocity for the upper link. 

𝑥4 = �̇�2: The angular velocity for the lower link. 

Therefore [14], 

�̇�1 = 𝑥3 

�̇�2 = 𝑥4 

�̇�3 =  
𝐾4(𝜏1−𝐾2𝑥4

2 sin(𝑥1−𝑥2)−𝐾3 sin 𝑥1)−𝐾2𝑐𝑜𝑠(𝑥1−𝑥2)(𝜏2−𝐾2𝑥3
2 sin(𝑥1−𝑥2)−𝐾5 sin 𝑥2) 

𝐾1𝐾4−𝐾2
2cos (𝑥1−𝑥2)2                

�̇�4 =  
𝐾1(𝜏2−𝐾2𝑥3

2 sin(𝑥1−𝑥2)−𝐾5 sin 𝑥2)−𝐾2𝑐𝑜𝑠(𝑥1−𝑥2)(𝜏1−𝐾2𝑥4
2 sin(𝑥1−𝑥2)−𝐾3 sin 𝑥1) 

𝐾1𝐾4−𝐾2
2cos (𝑥1−𝑥2)2     (22) 

The inputs are 

𝑢1 = 𝜏1: The external torque at the actuator of the upper link. 

𝑢2 = 𝜏2: The external torque at the actuator of the lower link. 

The outputs are: 

𝑦1 = 𝜃1: The angular position for the upper link. 

𝑦2 = 𝜃2: The angular position for the lower link. 

2.1.  H2PID controller design 

In this paper, the full state feedback H2 controller and PID controller have been 

used to robustly stabilize the system and track the desired trajectory for human 

walking swing system. Moreover, the ability of the control system to tolerate 
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disturbances and uncertainties has been tested. It is worth to mention, the control 

design was in two steps; the first step is by designing a full state feedback H2 

controller to achieve the required stabilizing, while in the second step the H2 

controller has been fused with dual PID controllers to enhance the performance of 

the system. Furthermore, the adjust culture algorithm (CA) has been used to find 

the optimal parameters of the proposed hybrid controller. 

Recently, the significance of robust control in the topics of control systems 

becomes the most interesting subject for scientists. It can be considered the full state 

feedback H2 controller as an optimal control algorithm. Figure. 2 shows the structure 

of the full state feedback controller [17]. The structure has two inputs and two outputs 

that mean the structure is MIMO which is represented by the matrix in Eq. (23) 𝑀. 

Uncontrolled input of the system, the control signal, the error signal, and the output 

of the system can be represented by the variables 𝑑, 𝑢,𝑒, and 𝑦 respectively [17]. 

𝑀 = [
𝐴 𝐵1 𝐵2

𝐶1 0 𝐷12

1 0 0

]Kc                                                                                      (23) 

 

Fig. 2. A full state feedback H2 control structure [17]. 

Assume that: 

1- (𝐴, 𝐵1) and (𝐴, 𝐵2) are stabilizable. 

2- (𝐶1, 𝐴) is detectable. 

Now, by considering the system shown in Fig. 2, the system can be represented 

by 

�̇� = 𝐴𝑥 + 𝐵1𝑑(𝑡) + 𝐵2𝑢(𝑡) 

𝑒(𝑡) = 𝐶1𝑥(𝑡) + 𝐷12𝑢(𝑡) 

𝑦(𝑡) = 𝑥(𝑡)                                                                                                         (24) 

And the transfer function of the closed-loop for H2 (𝑇𝑒𝑑) is: 

‖𝑇𝑒𝑑‖𝐻2
2 = 𝐸(𝑒𝑇(𝑡)𝑒(𝑡))                                                                                    (25) 

where  

𝑒𝑇𝑒 = 𝑥𝑇𝐶1
𝑇𝐶1𝑥 + 2𝑥𝑇𝐶1

𝑇𝐷12𝑢 + 𝑢𝑇𝐷12
𝑇 𝐷12𝑢                                                   (26) 
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To minimize Eq. (26), it is assumed that 

𝑄𝑓 = 𝐶1
𝑇𝐶1 , 𝑁𝑓 = 𝐶1

𝑇𝐷12 and 𝑅𝑓 =  𝐷12
𝑇 𝐷12 

Then, the law of optimal state feedback is given by 

𝑢 = −𝐾𝑐𝑥                                                                                                            (27) 

where 

𝐾𝑐 = 𝑅𝑓
−1(𝑃𝐵2 + 𝑁𝑓)𝑇                                                                                        (28) 

The matrix 𝑃 can be determined by applying the following Ricatti equation [17, 

18]: 

𝑃(𝐴 − 𝐵2𝑅𝑓
−1𝑁𝑓

𝑇) + (𝐴 − 𝐵2𝑅𝑓
−1𝑁𝑓

𝑇)
𝑇

𝑃 − 𝑃𝐵2𝑅𝑓
−1𝐵2

𝑇𝑃 + 𝑄𝑓 = 0                 (29) 

The most common controller used in industry and academic research is the PID 

controller. The control signal 𝑢(𝑡) can be represented as:  

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑(𝑡)
𝑡

0
+ 𝐾𝑑

𝑑

𝑑𝑡
𝑒(𝑡)                                                    (30) 

where 𝐾𝑝 , 𝐾𝑖 , and 𝐾𝑑 represent the parameters of the PID controller [19]. 

2.2.  Controller parameters tuning 

The Cultural Algorithm (CA) is one of the effective optimization algorithms which 

has been used in this research to find the proposed controller’s parameters. Cultural 

evolution process represents the base of cultural algorithm [20]. There are two 

levels to evolution the process: micro and macro evolutionary levels. At the micro 

evolutionary level, the behavioural traits of individuals can be described socially as 

acceptable or unacceptable. At macro evolutionary level, the ability of individuals 

can generate their experience to the next generation [21]. The CA is known as dual 

inheritances evolutionary tend to consist from a population and a belief space. The 

belief space use to solve a problem from the population. Therefore, the process of 

evolutions can be used to direct in population and the acquired knowledge will save 

in belief space [20, 21]. The interaction between spaces is designed according to 

the following steps [21]. 

Step 1: For each parameter select an initial population of p candidate solutions, 

from a uniform distribution with has given domain from 1 to n. 

Step 2: By objective function f assess the performance of each parent. 

Step 3: The belief space can be initialized with candidate solutions and the 

problem domain.  

Step 4: By applying a variation operator (V) generate p new offspring solutions. 

Now, there are 2 p. 

Step 5: By objective function f assess the performance of each offspring solutions. 

Step 6: From the population of size 2 p select randomly c competitions for each individual.  

Step 7: Select the greatest p solutions to be parents for the next generation. 

Step 8: By accepting individuals and acceptance function update the belief space. 

Step 9: Unless an acceptable solution has been found or the available time is 

exhausted go back to step 4. 
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The following optimization targets were formulated to design an optimal H2PID 

controller with the following requirements: 

i. Minimization of the error signal 𝑒(𝑡). 

ii. Minimization of the H2 cost function characterized by a suitable tuning of 

𝑄𝑓and 𝑅𝑓 matrices.  

iii. Maximization of the system gain margin and Phase margin. 

The above requirements can be combined in a single constraint to construct a 

new performance index for the proposed H2PID controller. This performance 

criterion can be expressed by:  

𝐽(ℎ) = ∫ 𝑒(𝑡)2𝑑𝑡
𝑡𝑓

0
+ ‖𝑇𝑒𝑑‖𝐻2

2 + (𝐺. 𝑀)−1 + (𝑃. 𝑀)−1                                   (31) 

where ℎ represents a vector of the parameters to be optimized for the controller 

design. This vector can be defined as 

ℎ = [𝑞11 𝑞22 𝑞33 𝑞44 𝑟11 𝑟22𝑛11𝑛22 𝑘𝑝1 𝑘𝑖1 𝑘𝑑1 𝑘𝑝2 𝑘𝑖2 𝑘𝑑2]                             (32) 

where 

𝑄𝑓 = [

𝑞11 0 0 0
0 𝑞22 0 0
0 0 𝑞33 0
0 0 0 𝑞44

] , 𝑅𝑓 =  [
𝑟11 0
0 𝑟22

] , and  𝑁𝑓 = [

𝑛11 0
0 𝑛22

0 0
0 0

] 

and  𝑘𝑝1 𝑘𝑖1 𝑘𝑑1 represent the PID1 controller parameters and 𝑘𝑝2 𝑘𝑖2 𝑘𝑑2 represent 

the PID2 controller parameters. It is important to refer that the values of the elements 

(𝑞11 , 𝑞22,  𝑞33,  𝑞44) and (𝑛11, 𝑛22) have a significant effect on the performance. 

Figure. 3 shows the overall block diagram of the proposed H2PID controller 

with CA algorithm. 

 

Fig. 3. The overall block diagram for the proposed controlled system. 

3.  Results and Discussion 

By using Jacobean’s method, the nonlinear system represented by Eq. (22) can be 

linearized with the equilibrium points listed in Table 2. 
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Table 2. The system equilibrium points [14]. 

Equilibrium points Value Unit 

𝑥1 10 𝑑𝑒𝑔 

𝑥2 20 𝑑𝑒𝑔 

�̇�1 0.3 𝑟𝑎𝑑/𝑠 

�̇�2 0.4 𝑟𝑎𝑑/𝑠 

𝜏1 0.5 𝑁. 𝑚 

𝜏2 0.5 𝑁. 𝑚 

The resulting state space model is 

�̇� =            [

0 0 1 0
0 0 0 1

−18.9615 2.8818 −0.2155 −0.1274
20.2204 −23.9035 0.6116 0.1796

]  𝑥 + [

0 0
0 0

49.2616 −69.4362
−69.4362 197.0466

] 𝑢   

𝑦 =  [
1 0 0 0
0 1 0 0

]  𝑥 +  [
0 0
0 0

]  𝑢                                                                    (33) 

where the variables 𝑥 and �̇�  represent the state vector and differential equation 

respectively, 𝑦 represents the output equation. 

In this section, the proposed controller is verified by applying it to the nonlinear 

human walking swing leg system (HWSS) model. Figure. 4 illustrates the behavior 

of the system before applying the controller. The angular positions for the hip and 

knee joints are exhibited for open loop and closed loop system. It is clear from Fig. 

4 that the responses of the system are critical with high oscillation when the system 

is subjected to a step input. 

 

Fig. 4. Open loop and closed loop responses (a) hip joint (b) knee joint 

(Solid line represents open loop response, Dash line represents closed loop 

response, and Dash dot line represents the input). 
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To apply the H2 state feedback controller to HWSS, the weighting matrices 

parameters have been obtained using CA algorithm as shown in Table 3. 

Table 3. H2 controller parameters. 

Parameter Value 

𝑞11 900.121 

𝑞22 600.041 

𝑞33 100.221 

𝑞44 100.114 

𝑟11 1.111 

𝑟22 1.223 

𝑛11 2.157 

𝑛22 2.192 

The resulting 𝐾𝑐 matrix is 

𝐾𝑐 = [
29.5583 −0.1864 10.1104 0.0389
−0.0826 24.3130 0.0312 10.0221

]        

Figure 5 shows the responses of angular position and angular velocity for the hip 

and knee joints when H2 controller has been applied on the system in case of 

stabilization. Demonstrated in Fig. 5, the proposed controller successfully stabilized the 

system in less than 2 seconds. Thus, the system has become internally stable. 

 

Fig. 5. Responses of angular positions for hip and 

 knee joints in case of stabilization with H2 controller. 

Figure 6 shows the time responses after applying the full state feedback H2 

controller to the system in case of tracking with desired inputs, for 𝜃1 = 30° and 

𝜃2 = 15°. However, it is clear to see that the responses have steady-state error. This 

indicates that the H2 full state feedback controller cannot entirely compensate for the 

generated errors and its performance is limited. Moreover, the control actions tend to 
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have a large initial torques spike which is unacceptable behaviour of system actuators, 

as shown in Fig. 7. 

 

Fig. 6. The time response with H2 controller 

 in case of tracking (a) hip joint (b) knee joint. 

 

Fig. 7. Control action signals in case  

of H2 controller (a) hip joint (b) knee joint. 

The cultural algorithm is a newly introduced optimization method with proven 

capabilities in finding the optimal values of various applications. Based on the literature, 

many comparisons have been made to ensure the superiority of this method over other 

optimization algorithms. The CA algorithm is used to obtain the optimal parameters of 

controller that give the desired performance. The CA parameters values that have been 

used to find the best values for the parameters of the controller are shown in Table 4. 
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Table 4. CA parameters values. 

Parameter Name Value 

Number of decision variables 12 
Decision variables lower bound 0.1 

Decision variables upper bound 1000 

Maximum number of iterations 50 

Population size 40 

Acceptance ratio 0.35 

Alpha 0.3 

Beta 0.5 

Figure. 8 shows the evaluation of the best cost function value over iterations 

calculated from the cultural optimization algorithm to find the optimal parameters 

of the H2PID controller. It is shown that the settings for CA parameters listed in 

Table 4 were adequate for this application. It can be seen that increasing the number 

of iteration above 25 did not improve the convergence of CA significantly.  

 

Fig. 8. Best cost vs. iteration. 

The optimized parameters of the proposed controller are listed in Table 5. 

Table 5. H2PID controller parameters. 

2 Value 
𝑞11  846.5 

𝑞22  286.2 

𝑞33  100 

𝑞44  475.7 

𝑟11  405.4 

𝑟22 279.1 

𝐾𝑝1  20.4359 

𝐾𝑖1  15.2093 

𝐾𝑑1 2.9336 

𝐾𝑝2  8.909 

𝐾𝑖2  17.5203 

𝐾𝑑2 1.3817 
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The resulting state feedback gain matrix is 

𝐾𝑐 = [
0.50021 −0.44802 0.20723 −0.36633
0.23001 0.93752 0.06505 1.2758

] 

Figure. 9 shows the responses of angular positions for the hip and knee joints when 

the proposed controller has been applied on the system in case of tracking. It can be 

seen that the responses for hip and knee are stable with zero steady-state error. The 

settling time has been significantly reduced without overshooting the desired angles set. 

Moreover, the proposed controller has a less aggressive control action for hip and knee 

joints while maintaining an applicable range, as shown in Fig. 10. 

 

Fig. 9. The time response with the H2PID. 

controller in case of tracking (a) hip joint (b) knee joint. 

 

Fig. 10. Control action for hip and knee joints in case of tracking. 
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On the other hand, the tracking performance of the controlled system for a given 

trajectory input signal is shown in Fig. 11. It can be seen that the controlled system 

can effectively track the given trajectory. This can be attributed to the high ability of 

the proposed H2PID controller in improving the tracking properties. 

 

Fig. 11. Tracking properties of the controlled  

system with H2PID controller (a) hip joint (b) knee joint. 

The robustness of the controlled system is then tested twice with two cases. The 

first test was when a disturbance signal was subjected to the system. The value of 

disturbance was 15% of the reference input and it was applied at 𝑡 = 4 𝑠. Figure. 

12 shows the effect of disturbance on the output of angular positions for hip and 

Knee joints and how the controller can effectively reject these disturbances holding 

the system to its steady-state value. Figure. 13 shows the behavior of the control 

action, it is clear from Fig. 13 that the control actions acted to reject the disturbance 

and maintain stability with minimal energy. It is shown that a low control effort 

was needed after applying the disturbance. This can be attributed to the extra torque 

given by the applied disturbance. 

 

Fig. 12. Disturbance rejection properties of the controlled system. 
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Fig. 13. Control action for hip 

 and knee joints when the disturbance is applied. 

The second test of robustness is done with applying ±10% variation in system 

parameters(𝑚1 , 𝑚2 , 𝑙1 , 𝑙2). Figure. 14(a) shows the responses of angular position for 

hip joint while Fig. 14(b) shows the responses of angular position for knee joint. It can 

be observed that the proposed controller has the capacity to compensate the system 

parameters variation and achieve the desired performance. It is worth noting that, these 

robustness properties are inherited from the PID controller part of the design. 

 

Fig. 14. The responses of angular position for joints  

with the system parameters variation (a) hip joint (b) knee joint. 
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the proposed controller. Table 6 presents a comparison between H2PID controller and 

Mixed H2/Sliding Mode controller in terms of time response specifications. 

Table 6. Performance comparison. 

Controller 
Hip joint Knee joint 

tr (s) ts (s) tr (s) ts (s) 

Mixed H2/SMC [12] 3 4 1 2 

H2PID 0.3 0.5 0.5 0.25 

From Table 6 it is seen that the proposed H2PID controller can achieve a more 

desirable performance in comparison to the Mixed H2/SMC proposed by [12]. This can 

be seen in terms of achieving small rise time and settling time. Also, the control action 

does not suffer from chattering which is one of the features of sliding mode control. 

4.  Conclusions 

In this paper, the hybrid H2PID controller was proposed to robustly stabilize the 

system and achieve desirable tracking properties. It was shown that combination 

between H2 and PID controller can give a better performance than if one of them is 

used. The PID controller was added to enhance the tracking properties where the H2 

control was unable to give an adequate time response specifications. The CA 

algorithm was used as an effective optimization method to optimize the controller 

design procedure. The results showed that the proposed controller can robustly 

stabilize the system with more desirable performance. 

 

Nomenclatures 
 

e(t) Error signal 

g Acceleration of gravity, m2/s 

G.M Gain margin, db 

h1 Heights of the center mass for thigh, m 

h2 Heights of the center mass for shank, m 

I1 Thing moment of inertia, kg m2  

I2 Shank moment of inertia, kg m2 

ke Kinematic energy, J 

L Lagrange Dynamics 

l1 Length of the thigh, m 

l2 Length of the shank, m 

m1 Mass of the thigh, kg 

m2 Mass of the shank, kg 

P.M Phase margin, deg 

Pe Potential energy of the system 

v2 Linear velocity for shank, m/s 
 

Greek Symbols 

𝜃1             Rotation angle for the hip joint, deg 

𝜃2             Rotation angle for the knee joint, deg 

τ1             External torques applied on the thigh, N. m 

𝜏2             External torques applied on the shank, N. m 
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Abbreviations 

ANN Adaptive Neural Network 

CA Cultural Algorithm 

CPG Central Pattern Generator 

DSP Double Support Phase 

HWSS Human Walking Swing leg System 
MCIWO Modified Chaotic Invasive Weed Optimization 

MPC Model Predictive Control 

NNPC Neural Network Predictive Control 

SIDP Self-Impact Double Pendulum 

SSP Single Support Phase 
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