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Abstract 

The Slantlet transform (SLT) is a set of parallel filters, which are originally an 
orthogonal discrete wavelet transform (DWT). The SLT is recently a method to 
improve some properties of DWT, such as time localization. In this paper, a 
complexity reduction of SLT is proposed by reducing the mathematical 
computations of SLT filters based on the method of sum-of-powers-of-two 
(SOPOT) representation. Modifications of all coefficients of SLT filters can 
result in a multiplierless realization. The original and the modified magnitude and 
phase responses of the SLT filters are plotted. Moreover, the maximum and 
average errors in magnitude and phase responses between the original and 
modified filters are evaluated. The ECG signal is used as a case of study. The 
mean square error (MSE) value and the percent root mean square difference 
(PRD) are used as tools to refer to the amount of similarity. Furthermore, it is 
noteworthy that these error values are very small between the original and 
modified filters. Consequently, the new realization leads to a less-complex 
realization of the Slantlet transform with very small errors. 

Keywords: ECG signal, Less-complex, Magnitude and phase responses, 
Multiplierless realization, Slantlet transform, SOPOT.  
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1.  Introduction 
The discrete wavelet transform (DWT) is an efficient technique in the field of signal 
processing where it used in several of practical applications such as signal and 
image processing for analysing, de-noising, compression, and estimation. DWT 
offers a proportionally efficient representation of piecewise signals. On the other 
hand, it is an effective tool especially for the applications that need to multi-
resolution analysis. It provides variable windows which are short at high 
frequencies and long at low frequencies [1]. 

One of weak points in DWT that it is unable to produce an optimal discrete time 
basis for limited number of zero moments, to overcome this problem, Selesnick 
proposed in 1999 a type of filters like DWT, namely Slantlet filters, which provides 
a best performance compared to DWT by their improvements of the time 
localization properties [2]. 

The Slantlet Transform (SLT) is recently an advanced multi-resolution 
technique which is suitable for a piecewise linear data. Just like DWT, the Slantlet 
filters are orthogonal and can offer multi-resolution decomposition. Moreover, they 
provide an octave band and zero-moment characteristics, SLT filters can take the 
same minimum number of level of decomposition (L=2) like DWT. The filters of 
SLT are implemented in a parallel structure by employing different filters for each 
scale, whereas the DWT filters are usually implemented as a tree structure based 
on filter bank iteration [3, 4]. 

It has been talked by Selesnick [2] that Slantlet filters have some features that 
make it better than the classical DWT and the conventional DCT. These facts were 
then proved through the simulation of Panda et al. [3]. Benefits from the 
specifications and features of the SLT were investigated by more researches, such 
as Maitra and Chatterjee who proposed in 2006, the development of an automated 
brain MRI diagnostic system using the Slantlet features, leading to excellent 
classification with 100% accuracy, while utilizing only six features for the classifier 
input [5]. Also, Abou-Loukh et al. [6] used a method to accurately classify ECG 
arrhythmias through a combination of Slantlet transform and artificial neural 
network (ANN) where the overall accuracy of classification of that approach was 
98.40%. Mundher et al. [7], introduced a watermark approach embedded in the 
cover image (three channels Red, Green and Blue) using discrete Slantlet 
transform. The results of the approach proved that the best channel was the Blue. 

Patil and Patil [8], introduced the Slantlet transform to protect patient 
confidential data where the proposed method allowed ECG signal to hide patient 
confidential data and other physiological information.  Some metrics were used 
then to evaluate the effectiveness of the technique; such as Peak Signal to Noise 
Ratio (PSNR), Percentage Residual Difference (RD %) and Bit Error Rate (BER). 
The results proved the possibility of better similarity and diagnosis measurement 
of watermarked ECG [8]. Many other applications can be seen in [9-12] 
respectively for efficient systems and approaches for steganography, classification 
of overcurrent and inrush current for power system reliability, speech compression 
and authentication.  

Recently, Bam and Kasana [13] had proposed a method for the security of 
watermark and the cover image based on Slantlet transformation along with RS 
vector. The compared experimental results indicated that the PSNR between cover 
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and watermarked image was improved while the biometric security was applied for 
the integrity of the designed watermarking . 

This paper introduces a less-complex realization of the SLT filter structures 
which leads to some reductions in mathematical operations based on the concept of 
multiplierless representation. This kind of complexity reduction have been 
previously applied to some DWT structures [14, 15]. All multipliers of SLT filters 
can be approximated and represented depending on the method of sum-of-powers-
of-two (SOPOT) as a multiplierless realization. In SOPOT representation, each 
multiplier coefficient will be mathematically represented in the form 2±𝑟𝑟 ± 2±𝑠𝑠, 
where r and s are integer values. Concequently in hardware, it is known that the 
multiplierless representation leads to highly-efficient performance, less 
complexity, less processing time, less heat accumulation and inexpensive structure.  

Besides this section, Section 2 contains an overview of the SLT filter banks 
with their constructions based on the structure of DWT regarding the notations 
which are used in the SLT filters. In addition, the supported length and the 
derivations of the coefficients of such filters, which can be considered as important 
improvement compared to DWT filters are also given. In section 3, the less-
complex realization of the SLT filters coefficients is considered. This realization is 
produced based on the SOPOT representation with minimum average amount of 
error in the magnitude and phase responses of the resulting filters. In section 4, a 
case study is introduced to compare the amount of similarity between the obtained 
coefficients of the SLT filters in either of the following two cases: first, the 
implementation based on the original values of the multipliers, and their 
counterparts; implemented based on multiplierless representation. The 
performance evaluation is highlighted by calculating the MSE and PRD functions 
for ten different samples of some standard ECG signals. Finally, Section 5 sums up 
the conclusions of this paper. 

2.  Filter Banks of SLT 

2.1.  Filter bank construction 
The Slantlet filter banks are considered as an improved version of the DWT, where 
the support of the discrete time basis functions is reduced. The SLT basis does not 
depend on the filter bank iteration method like in a DWT. Instead, different parallel 
filters are used in each scale. Two-scale iterative DWT filter banks are shown in 
Fig. 1(a) and their equivalent forms are shown in Fig. 1(b). The filter banks of 
Slantlet is a set of digital filters in parallel form as shown in Fig. 1(c). It should be 
noted that the Slantlet structure in Fig. 1(c) is an equivalent to the DWT structure 
shown in Fig. 1(b) but with different filters.  

The two-scale Daubechies filter can be used as an example; this shortest filter 
is designed to satisfy the orthogonality characteristic with the k-zero moment. 
For two-zero moments, the iterative filters of Fig. 1(a) have lengths 10 and 4, 
while the Slantlet filter banks with two-zero moments have lengths 8 and 4. 
Therefore, the length of the SLT filter bank with two-scale is two samples less 
than the length of the two-scale Daubechies-2 filter bank iteration as shown in 
Fig. 2 [9, 10]. 
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(a) Two-scale DWT filter banks. (b) Two-scale equivalent structure of 

DWT. 

 
(c) Two-scale SLT filter banks structure. 

Fig. 1. Two-scale filter bank and an equivalent structure. 

2.2.  Branches of the SLT with support length filters 
The filter bank of SLT consist of a set of parallel filters with time responses of 
ℎ𝑖𝑖(𝑛𝑛), 𝑓𝑓𝑖𝑖(𝑛𝑛), and 𝑔𝑔𝑖𝑖(𝑛𝑛) where i indicates to the scale. The filters length for scale i 
is commensurate to 2i, and this is approximately correct for iterated filter banks. 
This can be applied for SLT filter banks precisely.  

The l scale filter banks have 2l channels. The ℎ𝑙𝑙(𝑛𝑛) filter is called a low pass 
filter and the adjacent filter to the low pass is called 𝑓𝑓𝑙𝑙(𝑛𝑛) filter. ℎ𝑙𝑙(𝑛𝑛) and 𝑓𝑓𝑙𝑙(𝑛𝑛) 
filters are followed by down sampling by 2l. The remaining channels (2𝑙𝑙 − 2 ), 
which are filtered by  𝑔𝑔𝑖𝑖(𝑛𝑛) filter and its shifted time-reversed version         
𝑔𝑔𝑖𝑖((2𝑖𝑖+1 − 1) − 𝑛𝑛)  for 𝑖𝑖 = 1, … . , 𝑙𝑙 − 1, are followed by (2𝑖𝑖+1)  down sampling 
for each value 𝑖𝑖. 

Regarding the supporting length, it is obvious from Fig. 2 that the iterated filter 
banks can be considered to have more than the support of the SLT filters. For the 
general l scale case, the Daubechies filters with length-4 analyze scale 𝑖𝑖 with a 
length of filter 3. 2𝑖𝑖 − 2 . On the other hand, the Slantlet filter banks analyze scale 
𝑖𝑖 with the filter 𝑔𝑔𝑖𝑖(𝑛𝑛) of length (2𝑖𝑖+1) that leads to a reduction of (2𝑖𝑖 − 2) samples 
for 𝑖𝑖 scale. Consequently, SLT filters can be executed with shorter support and they 
can preserve all features, characteristic desirable of iterated DWT filter banks [2, 
11, 12]. 
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Fig. 2. Time and frequency responses of (a) the two-scale iterated of 
Daubechies-2 filter banks and (b) corresponding two-scale SLT filter banks. 

2.3.  Derivation of the slantlet filters coefficients 
The filters of SLT are 𝑔𝑔𝑖𝑖(𝑛𝑛) , ℎ𝑙𝑙(𝑛𝑛) and 𝑓𝑓𝑙𝑙(𝑛𝑛) filters which are piecewise linear. 
The coefficients of 𝑔𝑔𝑖𝑖(𝑛𝑛) filter for l scale can be written based on the following 
expression: 

𝑔𝑔𝑖𝑖(𝑛𝑛) = �
𝑎𝑎0,0 + 𝑎𝑎0,1 ∗ 𝑛𝑛                                    for  𝑛𝑛 = 0, … 2𝑖𝑖 − 1   

 𝑎𝑎1,0 + 𝑎𝑎1,1 ∗ (𝑛𝑛 − 2𝑖𝑖)                       for  𝑛𝑛 = 2𝑖𝑖 , … 2𝑖𝑖+1 − 1
                 (1) 

where the 𝑔𝑔𝑖𝑖(𝑛𝑛) filter parameters will be calculated according to the following 
equation: 
𝑚𝑚 = 2𝑖𝑖 
𝑠𝑠1 = 6 ∗ �(𝑚𝑚) ((𝑚𝑚2 − 1)(4𝑚𝑚2 − 1))⁄  
𝑡𝑡1 = 2 ∗ �3 (𝑚𝑚(𝑚𝑚2 − 1))⁄  
𝑠𝑠0 = −𝑠𝑠1 ∗ (𝑚𝑚 − 1) 2⁄  
𝑡𝑡0 = ((𝑚𝑚 + 1)(𝑠𝑠1 3⁄ ) −𝑚𝑚𝑡𝑡1)((𝑚𝑚 − 1) 2𝑚𝑚⁄ )                                                     (2) 
𝑎𝑎0,0 = (𝑠𝑠0 + 𝑡𝑡0) 2⁄  
𝑎𝑎1,0 = (𝑠𝑠0 − 𝑡𝑡0) 2⁄                                                                        
𝑎𝑎0,1 = (𝑠𝑠1 + 𝑡𝑡1) 2⁄  
𝑎𝑎1,1 = (𝑠𝑠1 − 𝑡𝑡1) 2⁄                                                                       

 

 
(a) (b) 



1710        A. M. Jasim et al. 

 
 
Journal of Engineering Science and Technology              June 2020, Vol. 15(3) 

 

Note that the value of parameters 𝑎𝑎0,0, 𝑎𝑎0,1,  𝑎𝑎1,0, and 𝑎𝑎1,1 which represent the 
values of the coefficients depend on 2𝑖𝑖 , where 𝑖𝑖 = 𝑙𝑙 − 1 . The same approach 
works for ℎ𝑙𝑙(𝑛𝑛) and 𝑓𝑓𝑙𝑙(𝑛𝑛) filters which are based on a piecewise linear form. It can 
be written in terms of eight unknown parameters 𝑏𝑏0,0, 𝑏𝑏0,1,  𝑏𝑏1,0, 𝑏𝑏1,1,  𝑐𝑐0,0,  𝑐𝑐0,1,
𝑐𝑐1,0, and 𝑐𝑐1,1. 

ℎ𝑖𝑖(𝑛𝑛) = �
𝑏𝑏0,0 + 𝑏𝑏0,1 ∗ 𝑛𝑛                                     for  𝑛𝑛 = 0, … 2𝑖𝑖 − 1   

 𝑏𝑏1,0 + 𝑏𝑏1,1 ∗ (𝑛𝑛 − 2𝑖𝑖)                         for  𝑛𝑛 = 2𝑖𝑖 , … 2𝑖𝑖+1 − 1
                   

𝑓𝑓𝑖𝑖(𝑛𝑛) = �
𝑐𝑐0,0 + 𝑐𝑐0,1 ∗ 𝑛𝑛                                       for  𝑛𝑛 = 0, … 2𝑖𝑖 − 1   

 𝑐𝑐1,0 + 𝑐𝑐1,1 ∗ (𝑛𝑛 − 2𝑖𝑖)                          for  𝑛𝑛 = 2𝑖𝑖 , … 2𝑖𝑖+1 − 1
               (3) 

where the parameters of ℎ𝑖𝑖(𝑛𝑛) and 𝑓𝑓𝑖𝑖(𝑛𝑛) filters are calculated according to the 
following equations: 

𝑚𝑚 = 2𝑖𝑖 

𝑣𝑣 = �(2𝑚𝑚2 + 1) 3⁄  
𝑢𝑢 = 1 √𝑚𝑚⁄  

𝑞𝑞 = �3/(𝑚𝑚(𝑚𝑚2 − 1))/3 
𝑏𝑏0,0 = 𝑢𝑢(𝑣𝑣 + 1) 2𝑚𝑚⁄  
𝑏𝑏0,1 = 𝑢𝑢 𝑚𝑚⁄  
𝑏𝑏1,0 = 𝑢𝑢 − 𝑏𝑏0,0        
𝑏𝑏1,1 = −𝑏𝑏0,1                                   (4) 
𝑐𝑐0,1 = 𝑞𝑞(𝑣𝑣 − 𝑚𝑚) 
𝑐𝑐0,0 =  𝑐𝑐0,1(𝑣𝑣 + 1)/2 
𝑐𝑐1,1 = −𝑞𝑞(𝑣𝑣 + 𝑚𝑚) 
𝑐𝑐1,0 =  𝑐𝑐1,1(𝑣𝑣 + 1 − 2𝑚𝑚)/2                                                                                
 

3. Multiplierless Representations 
In this paper, a less-complex realization of SLT is proposed by reducing the 
mathematical computations of SLT filters based on the method of SOPOT 
representation. Representing the coefficients of any filter based on the method of 
SOPOT will allow reducing the number of multiplier blocks, and that’s lead to 
simple implementations for the coefficients by applying a limited number of 
operations such as adders and shifters without using any multiplication. On the 
other hand, fewer number of adders requires less consumed power and significantly 
reduces the overall complexity [16, 17]. 

As shown in Fig. 1(c) the two-scale SLT have four filters; 𝐻𝐻2(𝑧𝑧), 𝐹𝐹2(𝑧𝑧), 𝐺𝐺1(𝑧𝑧), 
and the shifted time-reversed 𝐺𝐺1(𝑧𝑧)  version, ( 𝐺𝐺𝐺𝐺(𝑧𝑧) = 𝑧𝑧−3𝐺𝐺1(1 𝑧𝑧⁄ )) . The 
coefficients of SLT filters can be expressed as follows [2]: 

𝐺𝐺1(𝑧𝑧) = �− √10
20

− √2
4
� + �3√10

20
+ √2

4
� 𝑍𝑍−1 + �− 3√10

20
+ √2

4
� 𝑍𝑍−2 + �√10

20
− √2

4
� 𝑍𝑍−3     (5) 

𝐺𝐺𝐺𝐺(𝑧𝑧) = 𝑍𝑍−3𝐺𝐺1�1
𝑍𝑍� �  =  �√10

20
− √2

4
� + �− 3√10

20
+ √2

4
� 𝑍𝑍−1 + �3√10

20
+ √2

4
� 𝑍𝑍−2 +

             �−√10
20

− √2
4
� 𝑍𝑍−3                                                                   (6) 
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𝐻𝐻2(𝑧𝑧) = � 1
16

+ √11
16
� + � 3

16
+ √11

16
� 𝑍𝑍−1 + � 5

16
+ √11

16
� 𝑍𝑍−2 + � 7

16
+ √11

16
� 𝑍𝑍−3 +

            � 7
16
− √11

16
� 𝑍𝑍−4 + � 5

16
− √11

16
� 𝑍𝑍−5 + � 3

16
− √11

16
� 𝑍𝑍−6 + � 1

16
− √11

16
� 𝑍𝑍−7       (7) 

𝐹𝐹2(𝑧𝑧) = �7√5
80

− 2√55
80

� + �−√5
80
− 2√55

80
� 𝑍𝑍−1 + �− 9√5

80
+ √55

80
� 𝑍𝑍−2 + �− 17√5

80
+

                 3√55
80

� 𝑍𝑍−3 + �17√5
80

+  3√55
80

� 𝑍𝑍−4 + �9√5
80

+ √55
80
� 𝑍𝑍−5 + �√5

80
− √55

80
� 𝑍𝑍−6 +

                  �− 7√5
80

− 3√55
80

� 𝑍𝑍−7                                                                        (8) 

The above coefficients values of the four SLT filters can be represented based 
on shift right or left with adder or subtractor by applying the SOPOT method 
(multiplierless realization). This method leads to a reduction of the mathematical 
computations which consequently produces less-complex hardware. The four 
tables (Table 1, Table 2, Table 3, and Table 4), respectively show the multiplierless 
realization for all coefficients values; eight coefficients are exploited for the low 
pass filter 𝐻𝐻2(𝑧𝑧) and other eight coefficients are used for 𝐹𝐹2(𝑧𝑧) filter, while there 
are only four coefficients for 𝐺𝐺1(𝑧𝑧) filter with other four coefficients for its shifted 
time-reversed version 𝑍𝑍−3𝐺𝐺1(1/𝑧𝑧)  filter. Matlab R2015b program is used to 
optimize the selection of the values of the SOPOT representation.  

The values of all original filter coefficients and their corresponding SOPOT 
representations are explained in Table 1, Table 2, Table 3, and Table 4, respectively.  

Table 1. The original coefficients of 𝑯𝑯𝟐𝟐(𝒛𝒛)  
filter and their SOPOT representations. 

SLT 
Filter Coefficient 

Values 
SOPOT  

Representations 

Approximated 
Coefficient Values 

after SOPOT 
Representations 𝑯𝑯𝟐𝟐(𝒛𝒛) 

h(0)    0.2698 2−2 + 2−6 + 2−8   0.2695 
h(1)    0.3948 2−2 + 2−3 + 2−6 + 2−8   0.3945 
h(2)    0.5198 2−1 + 2−6 + 2−8   0.5195 
h(3)    0.6448 2−1 + 2−3 + 2−6 + 2−8    0.6445 
h(4)    0.2302 2−2 − 2−6 − 2−7 + 2−8    0.2305 
h(5)    0.1052 2−3 − 2−6 − 2−7 + 2−8    0.1055 
h(6) −0.0198 −2−5 + 2−7 + 2−8 −0.0195 
h(7) −0.1448 −2−2 + 2−3 − 2−5 + 2−7 + 2−8 −0.1445 

Table 2. The original coefficients of 𝑭𝑭𝟐𝟐(𝒛𝒛)  
filter and their SOPOT representations. 

SLT 
Filter Coefficient 

Values SOPOT Representations  
Approximated Coefficient 

Values after SOPOT 
Representations 𝑭𝑭𝟐𝟐(𝒛𝒛) 

h(0) −0.0825 2−5 − 2−3 + 2−7 −0.0859 
h(1) −0.1207 2−8 − 2−3 −0.1211 
h(2) −0.1589 2−4 − 2−2 + 2−5 −0.1563 
h(3) −0.1971 2−4 − 2−2 + 2−7 − 2−6 −0.1953 
h(4) 0.7533 2−1 + 2−2    0.7500 
h(5) 0.3443 2−2 + 2−3 − 2−5    0.3438 
h(6) −0.0648 2−4 − 2−3 −0.0625  
h(7) −0.4738 2−5 − 2−1 − 2−7 −0.4766 
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Table 3. The original coefficients of 𝑮𝑮𝟏𝟏(𝒛𝒛)  
filter and their SOPOT representations. 

SLT 
Filter Coefficient 

Values 
SOPOT  

Representation 

Approximated Coefficient 
Values after SOPOT 

Representations 𝑮𝑮𝟏𝟏(𝒛𝒛) 
h(0) −0.5117 −2−1 + 2−8 − 2−6 −0.5117 
h(1) 0.8279 1 − 2−3 + 2−6 − 2−4 0.8281 
h(2) −0.1208 2−8 − 2−3 −0.1211 
h(3) −0.1954 2−4 − 2−2 + 2−7 − 2−6 −0.1953 

Table 4. The original coefficients of 𝑮𝑮𝑮𝑮(𝒛𝒛)  
filter (𝒁𝒁−𝟑𝟑𝑮𝑮𝟏𝟏(𝟏𝟏/𝒛𝒛)) and their SOPOT representations. 

SLT 
Filter Coefficient 

Values 
SOPOT  

Representations 

Approximated Coefficient 
Values after SOPOT 

Representations 𝐙𝐙−𝟑𝟑𝑮𝑮𝟏𝟏 �
𝟏𝟏
𝒛𝒛� 

h(0) −0.1954 2−4 − 2−2 + 2−7 − 2−6 −0.1953 
h(1) −0.1208 2−8 − 2−3 −0.1211 
h(2) 0.8279 1 − 2−3 + 2−6 − 2−4 0.8281 
h(3) −0.5117 −2−1 + 2−8 − 2−6 −0.5117 

From Tables (1-4), to represent the original coefficients in SOPOT (with 16-bit 
register), it is clear that 12.5% to 50% of the original complexity will be required. 
That because of having a maximum shift of 2−8 in some resulting coefficients and 
2−2 in the others. 

After the completing the approximation of the SLT filters coefficients 
representation based on SOPOT method, the new magnitude, and phase responses of 
filters 𝐻𝐻2(𝑧𝑧), 𝐹𝐹2(𝑧𝑧), 𝐺𝐺1(𝑧𝑧) & 𝐺𝐺𝐺𝐺(𝑧𝑧) are calculated and compared with the magnitude 
and phase responses of SLT filters, which are built utilizing the original coefficients.  

The maximum and average error values in magnitude and phase responses for 
both SLT coefficient representation cases (with multipliers and with multiplierless 
representations) can be calculated based on the following equations: 

𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = �𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙 − 𝑀𝑀𝑎𝑎𝑔𝑔𝑟𝑟𝑒𝑒𝑟𝑟� 
∆𝑀𝑀𝑎𝑎𝑔𝑔𝑀𝑀𝑣𝑣𝑎𝑎 = (1 𝑘𝑘1⁄ ) ∗ ∑ 𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟

𝑘𝑘1
1   

𝑘𝑘1 =  number of frequency samples of 𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟                                              (9) 

𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = �𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙 − 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑟𝑟𝑒𝑒𝑟𝑟� 
∆𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑀𝑀𝑣𝑣𝑎𝑎 = (1 𝑘𝑘2⁄ ) ∗ ∑ 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟

𝑘𝑘2
1   

𝑘𝑘2 =  number of frequency samples of 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟                                             (10) 
where: 
𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙 : Magnitude response based on original coefficients for each filter. 
𝑀𝑀𝑎𝑎𝑔𝑔𝑟𝑟𝑒𝑒𝑟𝑟 : Magnitude response based on multiplierless coefficients representation                      
               for each filter. 
𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟: Amount of the error in magnitude response. 
∆𝑀𝑀𝑎𝑎𝑔𝑔𝑀𝑀𝑣𝑣𝑎𝑎: Average error in magnitude response. 
𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑜𝑜𝑖𝑖𝑜𝑜𝑜𝑜𝑙𝑙 : Phase response based on original coefficients for each filter. 
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𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑟𝑟𝑒𝑒𝑟𝑟 : Phase response based on multiplierless coefficients representation for   
                  each filter. 
𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 :  Amount of the error in phase response. 
∆𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑀𝑀𝑣𝑣𝑎𝑎: Average error in phase response. 

It is noteworthy that Table 5 is obtained from Eqs. (9) and (10). From the 
explained results in Table 5, it's clear that all coefficients of the SLT filters with 
two-scale filer banks can be represented by the SOPOT method, in which the 
maximum deviation in the magnitude response does not exceed 0.18%, whereas it 
reaches 1.7% for the phase responses.  

Table 5. Maximum and average  
deviations of magnitude and phase responses. 

SLT Filters 
Magnitude Response Errors Phase Response Errors 

∆𝑀𝑀𝑎𝑎𝑔𝑔𝑀𝑀𝑣𝑣𝑎𝑎 Max 
(𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟) ∆𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑀𝑀𝑣𝑣𝑎𝑎 Max 

(𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟) 
𝑯𝑯𝟐𝟐(𝒛𝒛)  4.86𝑎𝑎 − 04 0.0013 0.0015 0.2034 
𝑭𝑭𝟐𝟐(𝒛𝒛) 0.0018 0.0088 0.0021 0.2223 
𝑮𝑮𝟏𝟏(𝒛𝒛) −1.33𝑎𝑎 − 04 6 𝑎𝑎 − 04 0.0170 3.1413 

𝑮𝑮𝑮𝑮 =  𝒁𝒁−𝟑𝟑𝑮𝑮𝟏𝟏 �
𝟏𝟏
𝒛𝒛
�  −1.33𝑎𝑎 − 04 6 𝑎𝑎 − 04 4.067𝑎𝑎 − 04 0.0081 

The magnitude and phase responses of all SLT filters based on realization with 
original and approximated coefficients values are plotted together in Fig. 3. From 
the responses in Fig. 3 and the resulting small error values of Table 5, the following 
can be drawn: SLT filters based on realization with approximated coefficients 
values can hardwarely be implemented with less-complex burden and insignificant 
deviations in either responses (magnitude and phase). 
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Fig. 3(a). Original and modified magnitude responses. 
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Fig. 3(b). Original and modified phase responses. 
Fig. 3. Original and modified the  

magnitude and phase responses of the SLT filters. 

4.  A Case Study 

In this section, to compare the amount of similarity between the obtained filter 
coefficients at the output of SLT filters, which are implemented based on the 
original values of the multipliers, and their counterparts, which are implemented 
based on multiplierless representation. The mean square error (MSE) value and the 
percent root mean square difference (PRD) [18] are calculated for ten different 
samples of standard electrocardiogram (ECG) signals (MIT-BIH Arrhythmia 
Database ( www.physionet.org )), which are adapted as an input signal to the SLT 
filters. ECG signal is a time-varying signal that indicates the electrical activity of 
the heart [19]. Table 6 contains the values of MSE and PRD of each SLT filters, 
where the obtained values at the output of SLT filters refer to the similarity between 
the two representations, while the difference values are almost zeros. Figure 4 
shows the original ECG signal (sample 1) and its different coefficients which are 
obtained at the output of SLT filters for the two representations (with multipliers/ 
multiplierless). It can be noticed, from Fig. 4 that approximately no differences in 
outputs of different SLT filters in the two pre-mentioned representations, since 
error values are very small between the original and modified filters. 

Table 6. The MSE and PRD values for each SLT filters 
Gr (z) Filter G1(z) Filter F2(z) Filter H2(z) Filter ECG samples 

Diseases PRD MSE PRD MSE PRD MSE PRD MSE 
0.0536 2.07e-12 0.0256 1.57e-12 0.0897 6.00e-7 1.26e-4 2.91e-9 ECG 1 
0.0404 1.44e-11 0.0059 1.84e-12 0.2357 8.29e-6 4.00e-5   3.89e-9 ECG 2 
0.0355 1.88e-12 0.0086 6.37e-13 0.3003 3.04e-6 3.66e-5 1.19e-9 ECG 3 
0.0372 6.56e-12 0.0055 9.09e-13 0.3095 7.45e-6 3.06e-5 2.05e-9 ECG 4 
0.0407 2.08e-12 0.0216 1.62e-12 0.1786 1.61e-6 7.37e-5 2.61e-9 ECG 5 
0.0412 3.40e-12 0.0295 2.97e-12 0.0741 6.24e-7 1.26e-4 3.05e-9 ECG 6 
0.0447 8.99e-13 0.0363 9.06e-13 0.1568 4.12e-7 9.36e-5 1.08e-9 ECG 7 
0.0427 7.59e-12 0.0169 3.63e-12 0.1644 6.12e-6 3.37e-5 2.05e-9 ECG 8 
0.0413 4.70e-12 0.0071 9.01e-13 0.2562 4.32e-6 4.09e-5 2.12e-9 ECG 9 
0.0340 1.28e-12 0.0361 1.38e-12 0.1649 8.17e-7 8.62e-5 1.81e-9 ECG 10 

 

http://www.physionet.org/
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Fig. 4. The original ECG signal and the output of  

SLT filters with (multipliers/ multiplierless) representations. 

The SOPOT method was used to reduce the complexity of some types of DWT 
[14, 15]. A comparative study is given in Table 7, where the comparison between 
the reduction in those DWT types and the proposed SLT is illustrated (with 
accepted frequency response error). In all cases shown, the maximum number of 
required shifts is used in SOPOT representation of multipliers. 

Table 7. A comparative study based on maximum 
number of shifts used in representing multipliers 

Type filter Before  
Reduction  

After  
Reduction 

Percentage  
of reduction 

DWT Reference [14] 10 6 0.6 
DWT Reference [15] 10 6 0.6 
Proposed SLT 16 8 0.5 

5.  Conclusion 
In this study, the two-scale of the SLT filters is presented to reduce the complexity 
of realization by applying a limited number of computation processes. Moreover, 
SOPOT representation is used to reduce the mathematical computations of the SLT 
filter, in which all coefficients of the SLT filters are represented by a limited 
number of shift right or left with adder or subtractor. Furthermore, the magnitude 
and phase responses are calculated in both cases of the multiplier and multiplierless 
representations. Additionally, maximum deviation in the magnitude response has 
not been exceeded 0.18%, while it reaches 1.7% in the phase response. The 
percentage MSE and PRD values which are recorded between the two 
representations of the resulted filter coefficients at the SLT filters output are            
MSE = 0.00083% and the PRD = 0.3%. These values refer to the similarity rate 
between the two representations.  
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Nomenclatures 
𝑎𝑎0,0 +  𝑎𝑎0,1 + ⋯ Parameters of the 𝑔𝑔𝑖𝑖 filter  
𝑏𝑏0,0 +  𝑏𝑏0,1 + ⋯ Parameters of the ℎ𝑖𝑖 filter  
𝑐𝑐0,0 +  𝑐𝑐0,1 + ⋯ Parameters of the 𝑓𝑓𝑖𝑖 filter  
𝑔𝑔𝑖𝑖(𝑛𝑛), ℎ𝑙𝑙(𝑛𝑛), 𝑓𝑓𝑙𝑙(𝑛𝑛) SLT filters  
𝑘𝑘1 Number of frequency samples of 𝑀𝑀𝑎𝑎𝑔𝑔𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟               
𝑘𝑘2 Number of frequency samples of 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟                                          
h(0) ⁓  h(n) Coefficients of the SLT filters  
l  Scale of filter banks 
𝑀𝑀𝑎𝑎𝑔𝑔 Magnitude response 
𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎 Phase response 

Abbreviations 
DWT Discrete Wavelet Transform  
ECG Electrocardiograph 
MSE Mean Square Error 
PRD Percent Root Mean Square Difference 
SLT Slantlet Transform  
SOPOT Sum of Powers of Two  
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