
Journal of Engineering Science and Technology
Vol. 15, No. 2 (2020) 858 - 881
© School of Engineering, Taylor’s University

858

BUILDING COMPOSITE EMBEDDED SYSTEMS
BASED NETWORKS THROUGH HYBRIDISATION

AND BRIDGING I2C AND CAN

JAMMALAMADAKA RAJASEKHAR, JKR. SASTRY*

Department of Electronics and Computer Engineering,

Koneru Lakshmaiah Education Foundation University,

Vaddeswram, Guntur District, Andhra Pradesh, India

*Corresponding Author: drsastry@kluniversity.in

Abstract

Composite embedded networks are evolving day by day. Such kinds of networks

achieved through networking two or more heterogeneous networks.

Heterogeneity leads to the requirement of too many conversions leading to too

heavy time delays resulting in wastage of time than effective usage of the time

for transmission. Choice of proper communication speeds on both sides of

reception and transmission is the most crucial aspects to ensure that the time

delays reduced. In this paper, a multi-buffer-based system presented that

implements concurrent transmission process with output streaming through a

single dedicate process. In this paper, experimental results presented, which

prove that any combination of speed selection considering the I2C and CAN,

latency cannot be avoided. Bridging the sub-nets in composite ES networks will

reduce the latency heavily. The experimental results prove the latency is

minimum when transmission speeds of CAN and I2C are multiples of each other.

CAN (500 kbps), and I2C (1 Mbps) lead to multiples of 2 while the transmission

speed: CAN (125 kbps), I2C (400 kbps) leads to multiple of 4. In both cases, the

delay time is minimum. Idealistically both CAN and I2C driven using 1 Mbps

speed, however, exact speed matching is not possible.

Keywords: Communication bridge, Concurrent processing, Heterogeneous

embedded systems, Serial transmission through streaming.

859 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

1. Introduction

Embedded systems are designed to be adaptive systems. A single embedded system

generally used for sensing, monitoring, and controlling the behaviour of the

external environment. Some of the embedded systems are designed to achieve real-

time controlling of the actuating devices. Over the days, one can observe that many

of the embedded systems must be selected and networked to cater for a composite

application that caters varied processes that involve sensing and actuating.

Networking of several embedded systems is employed to implement

applications that have multi-node sensing and actuating. Many networking

protocols are in use, which includes I2C, CAN, USB, and RS485 that is bus-

based and effects serial communication. All the devices that can communicate

using the same protocol can be connected and implement a homogeneous

communication system.

For implementing some of the applications such as automotive systems,

aerospace systems, there are requirements of interconnecting several embedded

networks as they keep evolving. The sub-nets that need to be interconnected to form

composite networking are generally heterogeneous especially the variations in the

networking systems that lead to many differences in the communication speeds,

handling heterogeneous issues, error detection and control, arbitration, timing,

addressing, etc. The heterogeneous embedded systems differ in many ways

considering network length, the number of devices that can be connected, Timing,

arbitration, address resolution, synchronization, data and message formats, and the

message lengths. These stiff requirements do not allow devices that follow different

protocols connected on to the same network.

A complex ES based application requires connecting heterogeneous ES devices,

into a set of sub-networks implemented using different communication systems.

Hybrid networking carried to connect subnets developed over different

communication systems. There are many ways to achieve hybridization at different

levels of the IoT network say PIN level, Device-level, Gateway level, multi-master

level, etc. In this paper, Device-level Hybridization is presented considering an

application in the Automotive domain.

Initially, at the beginning of 2000, Engine control systems, braking systems

have been introduced, which are enabled through I2C networks using the embedded

sensors. More and more sensing and actuating systems added over the days. Since

2005 onwards the light-sensing, reverse braking, and door closing system

introduced, which all required high speed in actuating the controlling mechanisms.

I2C and CAN-based subnets have been used in the past to connect the devices with

specific communication speeds. CAN-based communication used when very high-

speed communication required among the devices connected in a sub-net.

However, with the increase in automation, a need has raised in moving sensing

inputs in between I2C and CAN making the systems more versatile and dependent.

This aspect led to inventing and implementing a solution that bridge networks so

that the data moved either way in between I2C and CAN.

For the communication to take place between the two subnets that are

heterogeneous, there can be many approaches, one of which, is the construction of

a bridge, which acts as a channel between the two subsystems. There are many

issues involved in effecting communication between heterogeneous networks.

Building Composite Embedded Systems based Networks through 860

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Some of them include data transfer rates, addressing, packet format,

synchronization, etc.

The bridge must be intelligent and dynamic so that appropriate and relevant

communication speeds for reception and transmission achieved, which leads to no

delay in the entire data flow from sending to the reception. One such bridge that

connects an I2C network to CAN network presented in this paper.

2. Related work

New Devices developed every day by VLSI industry, which conforms to the latest

communication standards released in the market. There are interfacing problems

when these devices interfaced with the ongoing applications built on standard

boards. Generally, to interface new devices with standard boards, converters are

developed that bridges the interface exposed by the devices to be converted into

interfaces exposed by the standard boards. The conversions as such are complicated

when huge diversity exits in building the interface or for that matter when

communication interfaces are to be bridged as the communication standards are

available in many different versions.

Cao and Nymeyer [1] presented a theoretical model of a converter that will

enable two given arbitrary protocols to communicate. The model presented by them

includes buffers and correctness conditions and considers that the protocols to be

non-deterministic. Verification of the conditions done in the process and valid data

will only be allowed for transmission-model checkers used for verification of the

conditions imposed during the process of conversion.

Two standards are used, which include field bus and CAN bus for

implementing industry-based applications. Field bus standards are not uniform

and greatly differ from industry to industry while CAN bus is a standard

communication system. Various applications implemented in the industry require

communication between the field bus and CAN bus, which lead to the

requirement of developing various convertees either hardware-based, software-

based, or by considering both hardware and software. Development of such a

converter is complex as field bus is non-standard.

Guohuan et al. [2] have presented an analysis of both the protocols and proposed

an interfacing method, which considers the use of both Hardware and software and

all the interacting ambiguities. ES networks are built using different

communication protocols, especially using

CAN-based system. At times these CAN-based system needs to be interfaced

with PC to monitor and control various devices that get connected to the CAN

network. PCs not supported with CAN ports on the other hand RS232C ports

mostly supported for interfacing with serial devices. When CAN networks are to

be connected to PC converters are required to establish communication both

ways, RS232C to CAN and vice versa. Wang and Guo [3] have presented a

protocol converter that converts RS232C to CAN and Vice versa. The converter

is developed using PIC18F2580 microcontroller that has native support within

the controller.

Field bus comes in different standards-many fields bus-based network built over

the days for implementing different applications. At times, situations aroused that

861 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

requires interconnection between two networks that are built using different bus

standards requiring the development of conversion from one filed bus standard to

the other. Guohuan et al. [4] have developed a conversion method based on ARM

technologies. The method is designed to convert from any field bus-based standard

to any other field bus standard leading to the development of many to many fields

bus-based protocol conversion. They have developed a gateway, which converts

the data packets to release through different standards into a standard gateway

packet, which is understandable to both the protocols.

Profibus and Modbus are the protocols used for the development of ES based

networking and communication, especially in the Industrial front. At times, needs

have risen to establish communication between these two types of the network

leading to the development of a converter that facilitates the conversion of the

protocol either way. Zhang et al. [5] have developed a gateway based on AT895C52

technologies released by ATMEL. In the gateway, a protocol chip Siemens SPC3

is built to facilitate protocol conversions

I2C communication represented as state machines. The data received from the

I2C transmitter can be placed in a buffer, which can be picked up by CAN

transmission system as proposed by Benachinamardi and Wali [6]. The conversion

from I2C to CAN developed through Verilog. The authors have not presented

conversion from CAN to I2C. The authors have just tried to interface at the data

level ignoring many aspects, which include speed matching, error detection,

synchronization, timing, heterogeneity, etc.

EPA (Ethernet for plant Automation) is developed for monitoring,

controlling, and interconnecting plant mounted devices for implementation of

industrial automation. MODBUS is also used simultaneously for

interconnecting the devices, which follow MODBUS protocols. These two

independent networks simultaneously mounted on a plant requiring

communication between the devices that connected on either of the networks.

Hui et al. [7] mentioned that a gateway developed using ARM technologies that

provide the interface required to convert EPA to MODBUS and vice versa. The

gateway proposed by them is claimed to be supporting real-time data

requirements posed by either of the communication systems.

IEC61850 is a standard used for automation of sub-station related systems. The

online monitoring system developed by state Grid Corporation used for building

smart grids. A communication system designed based on IEC 61850 standard and

the same used for effecting communication while building the smart grids. While

that being the case, other types of networking systems based on MODBUS and

CAN bus are implemented to support different parts of the automation system. This

aspect necessitated establishing communication between IEC61850 and Modbus /

CAN Bus leading to the development of a protocol conversion method.

Zhang et al. [8] proposed conversion method between Modbus and IEC61850.

Object-oriented technology used for information modelling on Modbus. The model

mapping relationship between IEC61850 and Modbus based on the principle of the

minimum information point, which maps to one to one correspondence with

IEC61850.The protocol conversion method presented has been verified using

interval controller.

Building Composite Embedded Systems based Networks through 862

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

SPI is the interface present on most of the embedded systems, which support

full-duplex communication with high throughput, whereas I2C is a two-wire bus

used for communication between two or more devices normally situated on the

same board. And as technology is trending, many features are being built into single

portable devices for which, the power is the main concern. Kiran and Vinilanagraj

[9] have proposed conversion of SPI to I2C and vice versa and develop a protocol

convertor with flexibility in interoperability and power concern. An effective low

power technique like clock gating insertion and dynamic power gating

implemented in this design.

In recent days, many devices built with wireless technologies like RF, GSM,

Bluetooth, and ZigBee for establishing alternate communication paths to achieve

fault-less communication for transmission of sensed data. The sensed data needs to

be transmitted to a remote location using a cellular communication system

requiring translation of radio-based data to a cellular data. This kind of an issue

aptly leads to conversion of wireless data to cellular data, thus, achieving

integration of a local communication to a remote communication [10].

Networking of embedded system achieved through many protocols like

RS232, RS485, I2C, CAN, SPI, and USB. Among these, RS485 is the most used

protocol in the industry for effective communication. However, the major

problem in implementing RS485 based communication system is lack of native

support in individual microcontrollers. Sastry et al. [11] proposed RS485 based

networking of distributed embedded systems by interfacing MAX485 to RS232C

existing in a microcontroller.

Sastry et al. [12] have proposed a method of concerting an RS232C based

interface to I2C communication interface. A design flow method, which uses

priority queues has been presented to affect the communication according to the

flow required. In similar lines, Sastry et al. [13] and Shwetha and Karunavathi [14]

presented the conversions from RS232C to CAN and USB. However, the methods

proposed by them are limited to connecting a heterogeneous device to a selected

network. These methods do not propose anything related to interconnecting sub-

networks built with the different communication system

Due to the recent developments in communication protocols, interoperability

problems are emerging. One such example is where client working on Ethernet,

USB, and SPI and server is on RS232C protocol. Narayanan and Murthy [15],

designed an interface for the conversion of multiple protocols into a single

protocol. The design carried for the conversion of Ethernet, USB V2.0 and SPI

to RS 232C using DSP processor.

The numbers of wireless IoT devices in automation networks are growing

rapidly. The concept of IIOT called Industry 4.0 is emerging, and many industries

are striving to take benefits out of it. The first issue, which comes into mind is

interoperability issues. Compatibility issues might arise while connecting standard

and nonstandard equipment’s.

Therefore, protocol conversion equipment is to be used. While using this,

Overhead increased. Murty et al. [16] analysed accurate estimation of network

performance in IIOT networks by taking Protocol conversion overhead during data

transmission. Results obtained are used for forecasting the overhead while

designing, thereby deploying efficient traffic flows.

863 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Many hybridisation issues have been discussed in the literature for

communication between a pair of devices [17-25] however, have not discussed the

communication that must happen between two devices that were situated on two

different networks.

3. Comparative Analysis of Approaches to Bridging ES sub-nets

Comparison of the contributions made to the literature has been made considering

the following parameters, which are the features required for bridging two ES based

sub-networks implemented through different bus-based serial communication

protocols. Table 1 shows a comparison. The features required include hardware

conversion, software conversion, use of interfacing circuits, use of a Bridge,

Gateway, conversion of protocols, and type of networking, which include either

bus-based or peer to peer connection. The features further include use of

middleware for handling heterogeneity issues, consideration to the data transfer

speeds, bus synchronization, timing, data buffering, error detection and control, and

use of conditions for verification of the data.

From the comparison, one can see that the solutions proposed do not quite

meet the requirements of developing a bridge that interconnects two embedded

sub-networks. As such the bridge that connects two ES networks must address

various issues that include data speed matching, data buffering, synchronization

of data transfer, and timing of communication that must hold good at either of

the sub-nets, error detection and control. The issue of connecting many protocols

to one and versa is not required when it comes to developing a bridge that

connects two sub-networks.

In this report, investigations and findings presented that have led to the

development of a bridge that comprehensively interfaces two different ES

sub-networks.

4. Overview of an Application with Two Different Sub-Systems

Many sectors evolved over a period implementing different technological solutions

especially in the field of automobile Industry focussing on different aspects of

monitoring and controlling starting from engine control to GPS systems that

provide tracking of the movement of automobiles system.

Many sensing, monitoring, and control systems have been introduced into

automobile systems over the days through the introduction of several sub-systems

that aim at sensing, monitoring, and controlling some partial aspects of the entire

automobile systems. Many sophisticated gadgets added not only to function

independently but also function as a part of either sub-system or the entire system.

In a typical automobile domain, the system was chosen that got evolved,

especially concerning automation, sensing, monitoring, and actuating. In the typical

automobile system, two subsystems considered and implemented over time. One

subsystem is built using I2C network, connected with engine temperature

monitoring and control and a braking system. The network is built using 4

Microcontroller based systems, which are heterogeneous and having inbuilt I2C

native interface ports. Age the time progressed; a second CAN-based network

introduced that has in it, the car reversing system, Interior lighting system, and door

control system.

Building Composite Embedded Systems based Networks through 864

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Table 1. Comparative analysis-bridging heterogeneous ES networks.

A
u

th
o
r
 s

e
r
ia

l

A
u

th
o
r
 n

a
m

e

H
a
rd

w
a
r
e
 c

o
n

v
e
r
si

o
n

S
o
ft

w
a
r
e
 c

o
n

v
e
r
si

o
n

U
se

 o
f

in
te

r
fa

c
in

g

c
ir

c
u

it
s

U
se

 o
f

b
r
id

g
e
/g

a
te

w
a
y

P
r
o
to

c
o

l
c
o
n

v
e
r
si

o
n

ty
p

e
 a

n
d

 m
a
p

p
in

g

T
y
p

e
 o

f
in

te
r
fa

c
in

g

U
se

 o
f

m
id

d
le

w
a
r
e

D
a
ta

 t
r
a
n

sf
e
r
 s

p
e
e
d

m
a
tc

h
in

g

B
u

s
sy

n
c
h

r
o
n

is
a
ti

o
n

T
im

in
g

sy
n

c
h

r
o
n

is
a

ti
o
n

D

a
ta

 b
u

ff
e
r
in

g

E
r
r
o
r
 d

e
te

c
ti

o
n

 a
n

d

c
o
n

tr
o
l

U
se

 c
o
n

d
it

io
n

s
fo

r

v
e
r
if

ic
a
ti

o
n

 o
f

d
a

ta

1 Jing Cao
- - - Bridge

One to

one
BUS - -

-
- √ - √

2 Lou Guohuan
√ √ √ -

One to

one
BUS - -

-
- - - -

3 Xianjun Wang

√ - - -

One to

one

Peer to

peer

interfacing

- -

-

- - - -

4 Lou Guohuan
- - - Gateway

Many to

many
- - -

-
- - - -

5 HaoZhanga
√ - - Gateway

One to

one
- - -

-
- - - -

6 Anupama - - - - - Data level - - - - - - -

7 Li Hui, Zhang

Hao,

PengDaogang

- - - Gateway
One to

one
- - - - - - - -

8 Zhang
- - - -

One to

one
- - - - - - - √

9 Kiran
√ - - -

One to

one
- - - - - - - -

10 Jaskirat Kaur
- - - -

One to

one
- - - - - - - -

11 Sastry
√ √ - -

One to

one
- - - - - - - -

12 Shwetha
√ √ - -

Many to

one
- - - - - - - -

13 Revathy √ √ - - - - - - - - - - -

4.1. Overview of prototype sub-system development of I2C network for

experimentation and results

4.1.1. Operational description of the network

Figure 1 shows the topology of the I2C networked embedded system. The I2C

network built with a single master and multiple slaves based on four

microcontroller-based systems.

One microcontroller-based system developed for monitoring the temperature

within a motor car engine through a temperature sensor (LM35) interfaced with

the master.

The master directs another microcontroller-based system for actuating a

PUMP or otherwise when the engine temperature is either within or outside the

threshold value. The master device also keeps enquiring the status of a braking

system, which is monitored and controlled through another microcontroller-

based system.

The master also provides instructions to the decoupling system to either

couple or decouple the engine from the brake shaft based on whether a brake is

applied or not.

865 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 1. I2C topology.

4.1.2. Functional requirements of I2C based system

The functional requirements of an I2C system shown in Table 2.

Table 2. Functional requirements of an I2C system.

Functional

requirements

number

Functional description

1 To sense the engine heat

2 To actuate pumps when the sensed temperature > threshold

value

3 To receive the status of the braking system periodically

4 To decouple the engine shaft and when a brake

is applied

4.1.3. Hardware description

The hardware details of an I2C system shown in Table 3.

Table 3. Hardware details of an I2C system.

Hardware

device

number

Hardware

description

Interface

description
Purpose of the device

1 AT mega 328 I2C Sensing the engine temperature

continuously

2 Tm4c123GXL I2C Sensing the brake applied or not

3 AT mega 2560 I2C Coolant control through the pump

4 AT Mega 328 I2C Coupling control

Atmega 328
Transmit engine

Temperature
monitoring[ECM]

TM4C123GXL
Transmit

Brake applied info[ABS]

ATmega2560
Coolant Control (FLOW

Control)

LM35

Sensor Pump

ATmega328
Coupling Control

Relay Coupler

Slaves

Master

I2C BUS

Building Composite Embedded Systems based Networks through 866

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

4.1.4. Software architecture

The software architecture implemented within the I2C based embedded systems

shown in Fig. 2.

In every microcontroller-based system, a task designed for effecting

communication between the master and the slave. Every slave system has an

application that either senses or actuates the controlling parameter. The

communication through an I2C system routed from the master system. The

breaking, coupling, and pump actuating systems shall perform as per the directions

initiated by the master.

Temp Sensing and
Monitoring Sofwatre

I2C Communication
System

(Engine Side)

I2C Communication
System

(Pump Control)

Pump Actuating System) Breaking System

I2C Communication
System

(Breaking)

I2C Communication
System

(Coupling)

Coupling System

Fig. 2. Software architecture for I2C system.

4.2. Overview of prototype development of CAN network for

experimentation and results

Figure 3 shows the CAN-based networking topology.

867 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Arduino Uno
Car Reversing System

ATmega328
Interior Light Control System

ATmega2560
Door Control Unit

Ultrasonic
sensor/
Distance

Light actuator Door sensor
Door

Actuator

CAN BUS

Fig. 3. CAN topology.

4.2.1 Operational description of the network

The CAN network has been built considering three microcontroller-based systems.

One microcontroller-based system developed for monitoring the distance between

a vehicle and a back obstacle through ultrasonic sensor interfaced to a specific

controller while the vehicle is in reverse gear. When the distance value is not in

threshold limit, the master sends a signal to the controller, which deals with the

internal lighting system so that a flashlight is invoked to indicate short object

distance. Another microcontroller-based system developed for checking the door

status continuously and actuating in terms of the door closing and opening.

4.2.2. Functional requirements

The functional requirements of a CAN-based system shown in Table 4.

Table 4. Functional requirements of the CAN-based system.

Requirement

serial
Functional description

1 To sense the distance of the obstacle from the car while

reversing and flashing an internal light when the distance is

beyond the threshold value

2 To check the door status continuously and activate a buzzer if a

door opened while on the run

3 To check the status of the door and control the lighting system

based on whether the door is closed or open and when

continuous lighting is on for some time

Building Composite Embedded Systems based Networks through 868

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

4.2.3. Hardware description

The hardware details of the CAN system shown in Table 5.

Table 5. Hardware details of a CAN system.

Hardware

device

number

Hardware

description

Interface

description
Purpose of the device

1 AT Mega 328 CAN To sense the distance while

reversing and sending the

information to the bus

2 AT Mega 2560 CAN To sense the door status

3 AT Mega 328 CAN To control the interior lightening

system

4.2.4. Software architecture

The software architecture implemented within the CAN-based embedded systems

shown in Fig. 4. A specific microcontroller, which acts as master implements as

car reversing system in this CAN network. The Reversing system computes the

distance between a nearby sighted object and the car. In the case that the car is

nearing a back object while reversing an amplified light is triggered through another

micro controller-based system. Another master designed for controlling the Car

doors. The lighting system is controlled based on the status of doors (open or

closed) or the longevity of the lights emitted.

Distance Sensing and
Monitoring Software

CAN Communication
System

Reversing System

Interior Lighting System

CAN Communication
System

Door Control Unit

CAN Communication
System

(Door Status)

Fig. 4. Software architecture for CAN system.

4.3.Communication requirements for bridging the heterogeneous

networks

While both the subsystems implemented, it is noticed that there existed a

dependency between both the subsystems. The need to open the car doors as the

temperature of the car engine raise beyond a threshold limit and the need to braking

while the car is reversing.

These dependencies lead to the development of a “BRIDGE” between both the

networks so that data can move either way. This requirement necessitated the

869 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

development of a device that is common to both the networks through which, the

data flow can be achieved both ways and use the same for controlling and actuating

purpose. Table 6 below shows the data flow requirements of the composite

networked embedded system built using two subnets while one being I2C based,

the other developed based CAN protocol. There could be many more such data

flow requirements, as stated in Table 6 below: Figure 5 shows the Bridge

networking topology.

Table 6. Functional requirements of bridge.

Data

flow

serial

From

network

To

network
Purpose

1 I2C CAN To receive the temperature data from an engine

monitoring system for controlling the doors accordingly

2 CAN I2C To send the distance data while car reversing for

actuating breaking

Atmega 328
Transmit engine

Temperature
monitoring[EC

M]

TM4C123GXL
Transmit

Brake applied
info[ABS]

PIC16F877A
Car Reversing

System

ATmega2560
Transmit door

info[DCU]

I2C CAN

LM35

Sensor

Ultrasonic
/ Distance

Door
sensor

Bridge controller

Door
Actuator

Fig. 5. Bridge topology.

5. Investigations and findings

The design and implementation of the bridge involve many factors, which

include word addressing, conversion of numbering systems, application-

specific message flow system, synchronisation of application-specific

messages mapping to bus arbitration system, error detection and control, the

timing of the process involved in sensing and actuating implemented on the two

sides of the network. Response time management, data pocketing and de-

pocketing, management of data transfer rates.

Building Composite Embedded Systems based Networks through 870

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Heterogeneity due to endian handled through converting big-endian to small

endian and vice versa. Converting from one number system to others is another

heterogeneity issue that one must handle. Every application needs that messages

must flow across as per the priority attached to the message. The priority as such is

attached based on the criticality of the message. The message flowing across must

match the bus arbitration system so that the device receives the most important

message that has higher priority

Error detection and correction process implemented in different layers of each

communication system. There is no uniformity as such. Transformations and

translations required for building error detection and correction method

implemented in one layer of communication protocol into another layer of a

different communication protocol. Data transfer rates differ between two different

communication protocols such as I2C and CAN. In I2C data can be communicated

at 100 kbps, 400 kbps, 1 Mbps, 3.4 Mbps and in the case of CAN communication

speeds achieved ranging from 40 kbps to 1 Mbps

One of the important aspects to be achieved is timing and completing the tasks

within acceptable response times. Sensing data from a system in a network must

be sent to another system in a different network for controlling a process

parameter. The entire process from sensing to actuating completed within

accessible responsible times. The data communication protocols defined for I2C

and CAN are different. The data packet design and the type of data packets that

must be transmitted vary greatly considering both the protocols. There is a great

variance in the speed of transmission of data. The data processing in the reception

and the transmission side also differ greatly. Many heterogeneity issues need

consideration at the reception and transmission side of the communication

system, some of which, include word addressing, number conversions, endian,

parity, error detection, and control.

In this paper, a novel data flow and synchronization method considering the

communication systems implemented within the sub-systems presented that

considers the issues of heterogeneity. The method attempts to solve the major

problem of matching the speeds of data communication and synchronization

between the reception and transmission sides and vice versa.

5.1. Matching data transfer speeds

Three different data transfer rates are achieved through I2C network @ 100 kbps,

400 kbps, 1 Mbps, and 3.4 Mbps speeds and similarly different transfer speeds

achieved through CAN, which includes 40 kbps to 1 Mbps. One of the major

considerations is to select two speeds from the speeds supported by I2C and CAN

such that the data transfer synchronized without any delay caused between

reception and transmission. An analysis of different speeds of I2C with speeds

supported by CAN considering maximum data packet size supported by either of

the protocols carried.

Analysis carried by changing various parameters like the number of bytes,

speeds, and the time per packet for storing or retrieving. Total time taken per

packet computed by taking the number of bytes transmitted say 4, 5,6,7,8 bytes

and fixing the speed for I2C protocol and varying the speeds of the CAN

protocol. Similarly, by fixing the speed of CAN and varying the speeds of I 2C

871 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

total time taken per packet is computed and plotted-five hundred packets

considered for transmission and reception. Analysis has been carried

considering different CAN speeds (125 kbps, 250 kbps, 500 kbps, 1 Mbps)

keeping the speed on the I2C side being 1 Mbps and considering data packet

sizes. The data rates computed in terms of milliseconds.

5.2. Analysis of data flow-I2C side reception-CAN transmission

Data analysis is carried by fixing I2C speed at a constant rate and carrying

transmission on CAN side at different rates, varying the data packet sizes. The

details of data transmission rates considering I2C speed of 1 Mbps and CAN speed

of 1mbps, 500 kbps, 250 kbps, 125 kbps are varying the data packet size from 4

bytes to 8 bytes shown in Table 7, and the behaviour of the same shown in Fig. 6.

From the figure, one can see that none of the CAN speed with varying data packet

size converges to the data transmission speeds of I2C.

The details of data transmission times considering I2C speed of 400 kbps and

CAN speed of 1 Mbps, 500 kbps, 250 kbps, 125 kbps varying the data packet size

from 4 bytes to 8 bytes shown in Table 8, and the behaviour of the same shown in

Fig. 7. From the figure, one can see that none of the CAN speed with varying data

packet size converges to the data transmission speeds of I2C. The details of data

transmission times considering I2C speed of 100 kbps and CAN speed of 1 Mbps,

500 kbps, 250 kbps, 125 kbps varying the data packet size from 4 bytes to 8 Bytes

shown in Table 9, and the behaviour of the same shown in Fig. 8. From the figure,

one can see that none of the CAN speed with varying data packet size converges to

the data transmission speeds of I2C.

From the above analysis, one can conclude that none of the CAN speeds

converges to fixed I2C transmission speed even when data packet sizes varied.

Table 7. Data transfer time @ data transmission rates:

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @1 Mbps.

Number

of bytes

Speed of

I2C

1 Mbps

Speed of

CAN

1 Mbps

Speed of

CAN

500 kbps

Speed of

CAN

250 kbps

Speed of

CAN

125 kbps

4 0.129 0.172 0.265 0.451 0.822

5 0.137 0.180 0.281 0.482 0.884

6 0.145 0.188 0.296 0.513 0.947

7 0.153 0.196 0.312 0.544 1.009

8 0.161 0.204 0.328 0.576 1.072

Table 8. Data transfer time @ data transmission rates:

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @ 400 kbps.

Number

of bytes

Speed of

I2C

400 kbps

Speed

of CAN

1 Mbps

Speed of

CAN

500 kbps

Speed of

CAN

250 kbps

Speed of

CAN

125 kbps

4 0.204 0.172 0.265 0.451 0.822

5 0.224 0.180 0.281 0.482 0.884

6 0.243 0.188 0.296 0.513 0.947

7 0.263 0.196 0.312 0.544 1.009

8 0.282 0.204 0.328 0.576 1.072

Building Composite Embedded Systems based Networks through 872

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Table 9. Data transfer time @ data transmission rates:

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @100 kbps.

Number

of bytes

Speed of

I2C

100 kbps

Speed of

CAN

1 Mbps

Speed of

CAN

500 kbps

Speed of

CAN

250 kbps

Speed of

CAN

125 kbps

4 0.578 0.172 0.265 0.451 0.822

5 0.656 0.180 0.281 0.482 0.884

6 0.734 0.188 0.296 0.513 0.947

7 0.812 0.196 0.312 0.544 1.009

8 0.890 0.204 0.328 0.576 1.072

Fig. 6. Variance of data transmission times keeping I2C at a

constant rate and varying CAN data rates and data packet sizes.

Fig. 7. Variance of data transmission times keeping I2C at a

constant rate and varying CAN data rates and data packet sizes

0

0.2

0.4

0.6

0.8

1

1.2

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

I2C_1MBPS and different CAN speeds

I2C_1mbps

CAN_1mbps

CAN_500kbps

CAN_250kbps

CAN_125kbps

0

0.2

0.4

0.6

0.8

1

1.2

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

I2C_400KBPS and different CAN speeds

I2C_400kbps

CAN_1mbps

CAN_500kbps

CAN_250kbps

CAN_125kbps

873 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 8. Variance of data transmission times keeping I2C at a

constant rate and varying CAN data rates and data packet sizes.

5.3. Analysis of data flow-CAN side reception-I2C Transmission

Data analysis is carried by fixing CAN speed at a constant rate and carrying

transmission on I2C side at different rates, varying the data packet sizes. The details

of data transmission times considering CAN speed of 40 kbps, and I2C speed of

100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes to 8 bytes

shown in Table 10, and the behaviour of the same shown in Fig. 9. From the figure,

one can see that none of the I2C speeds with varying data packet size converges to

the data transmission speeds of CAN.

Table 10. Data transfer time @ data transmission rates:

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @40 kbps.

Number

of bytes

Speed of

CAN

40 kbps

Speed of

I2C

100 kbps

Speed of

I2C

400 kbps

Speed of

 I2C

1 Mbps

4 2.399 0.578 0.204 0.129

5 2.594 0.656 0.224 0.137

6 2.789 0.734 0.243 0.145

7 2.980 0.812 0.263 0.153

8 3.180 0.890 0.282 0.161

Fig. 9. Variance of data transmission times keeping CAN at a

constant rate and varying I2C data rates and data packet sizes.

0

0.2

0.4

0.6

0.8

1

1.2

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

I2C_100 KBPS and different CAN speeds

I2C_100kbps

CAN_1mbps

CAN_500kbps

CAN_250kbps

CAN_125kbps

0

0.5

1

1.5

2

2.5

3

3.5

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

CAN_40 KBPS and different I2C speeds

CAN_40kbps

I2C_100kbps

I2C_400kbps

I2C_1mbps

Building Composite Embedded Systems based Networks through 874

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

The details of data transmission times considering CAN speed of 125 kbps and

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes

to 8 bytes shown in Table 11, and the behaviour of the same shown in Fig. 10. From

the figure, one can see that none of the I2C speeds with varying data packet size

converges to the data transmission speeds of CAN.

The details of data transmission times considering CAN speed of 250kbps and

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes

to 8 bytes shown in Table 12, and the behaviour of the same shown in Fig. 11. From

the figure, one can see that none of the I2C speeds with varying data packet size

converges to the data transmission speeds of CAN.

The details of data transmission times considering CAN speed of 500 kbps and

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes

to 8 bytes shown in Table 13, and the behaviour of the same shown in Fig. 12. From

the figure, one can see that none of the I2C speeds with varying data packet size

converges to the data transmission speeds of CAN.

Table 11. Data transfer time @ data transmission rates:

I2C @ 1 Mbps, 400 kbps, 100 kbps, and CAN @125 kbps.

Number

of bytes

Speed of

CAN

125 kbps

Speed of

I2C

100 kbps

Speed of

I2C

400 kbps

Speed of

I2C

1 Mbps

4 0.822 0.578 0.204 0.129

5 0.884 0.656 0.224 0.137

6 0.947 0.734 0.243 0.145

7 1.009 0.812 0.263 0.153

8 1.072 0.890 0.282 0.161

Table 12. Data transfer time @ data transmission rates:

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @ 250 kbps.

Number

of bytes

Speed of

CAN

250 kbps

Speed of

I2C

100 kbps

Speed of

I2C

400 kbps

Speed of

I2C

1 Mbps

4 0.451 0.578 0.204 0.129

5 0.482 0.656 0.224 0.137

6 0.513 0.734 0.243 0.145

7 0.544 0.812 0.263 0.153

8 0.576 0.890 0.282 0.161

Table 13. Data transfer time @ data transmission rates:

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @ 500 kbps.

Number

of bytes

Speed of

CAN

500 kbps

Speed of

I2C

100 kbps

Speed of

 I2C

400 kbps

Speed of

I2C

1 Mbps

4 0.265 0.578 0.204 0.129

5 0.281 0.656 0.224 0.137

6 0.296 0.734 0.243 0.145

7 0.312 0.812 0.263 0.153

8 0.328 0.890 0.282 0.161

875 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

Fig. 10. Variance of data transmission times keeping CAN at

a constant rate and varying I2C data rates and data packet sizes.

Fig. 11. Variance of data transmission times keeping CAN at

a constant rate and varying I2C data rates and data packet sizes.

Fig. 12. Variance of data transmission times keeping CAN at

a constant rate and varying I2C data rates and data packet sizes.

0

0.2

0.4

0.6

0.8

1

1.2

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

CAN_125KBPS and Different I2C speeds

CAN_125kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

0

0.2

0.4

0.6

0.8

1

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

CAN_250KBPS and different I2C speeds

CAN_250kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

0

0.2

0.4

0.6

0.8

1

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

CAN_500 KBPS and different I2C speeds

CAN_500kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

Building Composite Embedded Systems based Networks through 876

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

The details of data transmission times considering CAN speed of 1mbps and

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes

to 8 bytes shown in Table 14, and the behaviour of the same shown in Fig. 13. From

the figure, one can see that none of the I2C speeds with varying data packet size

converges to the data transmission speeds of CAN.

Table 14. Data transfer time @ data transmission rates:

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @1 Mbps.

Number

of bytes

Speed of

CAN

1 Mbps

Speed of

I2C

100 kbps

Speed of

I2C

400 kbps

Speed of

I2C

1 Mbps

4 0.172 0.578 0.204 0.129

5 0.180 0.656 0.224 0.137

6 0.188 0.734 0.243 0.145

7 0.196 0.812 0.263 0.153

8 0.204 0.890 0.282 0.161

Fig. 13. Variance of data transmission times keeping CAN at

a constant rate and varying I2C data rates and data packet sizes.

5.3. Data buffering within the bridge

From the data analysis presented in section 5.2 and 5.3 that varying either the

CAN speeds or I2C speeds and also varying the data size, no time matching

without any time delay achieved considering any combination of data

transmission speeds and packet sizes. It is obvious from the analysis that there

will be some delays caused between the reception and delay and there should be

a proper buffering strategy to minimize or eliminate time delay between data

reception and transmission and vice versa considering both sides of CAN and

I2C. For achieving time convergence, the next strategy could be considering the

multiplying effect, which means considering the data transmission speeds that

lead to the timing of one in terms of multiple of the time of the other even

considering the variance in the data size. The details of a multiplicity of timing

considering I2C to CAN and vice versa are shown in Tables 15 to 18.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r

p
ac

ke
t

CAN_1 MBPS and different I2C speeds

CAN_1mbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

877 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

5.4.1. I2C side reception and CAN side transmission

One of the best strategies is to select the communication speeds of the transmission

and reception in such a way that time taken to receive and transmit the same failing

which, one must try multiple of times of the other. Reviewing the details provided

in Tables 15 to 18 considering I2C side reception and CAN side transmission, the

minimum delay of 0.043 milliseconds caused when the transmission speed set to 1

Mbps. However, no guarantee assured that the transmission speeds would be exact

due to several reasons.

Table 15. Transmission timing: CAN (1 Mbps), I2C (1 Mbps).

Number

of bytes

Speed

of

I2C

Time taken

receiving

into buffer

(ms)

Speed

of

CAN

Time taken for

transmission

from the buffer

(ms)

Delay Multiples

4 1 Mbps 0.129 1 Mbps 0.172 0.043 -

5 1 Mbps 0.137 1 Mbps 0.180 0.043 -

6 1 Mbps 0.145 1 Mbps 0.188 0.043 -
7 1 Mbps 0.153 1 Mbps 0.196 0.043 -

8 1 Mbps 0.161 1 Mbps 0.204 0.043 -

Table 16. Transmission timing: CAN (500 kbps), I2C (1 Mbps).

Number

of bytes

Speed

of I2C

Time for

receiving

into the

buffer (ms)

Speed

of CAN

Time taken for

transmission

from the buffer

(ms)

Delay Multiples

4 1 Mbps 0.129 500 kbps 0.265 0.136 0.129*2=0.258
5 1 Mbps 0.137 500 kbps 0.281 0.144 0.137*2=0.274

6 1 Mbps 0.145 500 kbps 0.296 0.151 0.145*2=0.290

7 1 Mbps 0.153 500 kbps 0.312 0.159 0.153*2=0.306
8 1 Mbps 0.161 500 kbps 0.328 0.167 0.161*2=0.322

Table 17. Transmission timing: CAN (125 kbps), I2C (500 kbps).

Number

of bytes

Speed of

I2C

Time to

receive

into the

buffer (ms)

Speed of

CAN

Time to

transmit

from the

buffer (ms)

Delay Multiples

4 500 kbps 0.204 125 kbps 0.822 0.618 0.204*4=0.816
5 500 kbps 0.224 125 kbps 0.884 0.660 0.224*4=0.896

6 500 kbps 0.243 125 kbps 0.947 0.704 0.243*4=0.972

7 500 kbps 0.263 125 kbps 1.009 0.746 0.263*4=1.052
8 500 kbps 0.282 125 kbps 1.072 0.790 0.282*4=1.120

Table 18. Transmission timing: CAN (1 Mbps), I2C (100 kbps).

Number

of bytes

Speed of

I2C

Time to receive

into the buffer

(ms)

Speed of

CAN

Time for

transmission

from the

buffer (ms)

Delay Multiples

4 100 kbps 0.578 1 Mbps 0.822 0.244 -
5 100 kbps 0.656 1 Mbps 0.884 0.228 -

6 100 kbps 0.734 1 Mbps 0.947 0.213 -

7 100 kbps 0.812 1 Mbps 1.009 0.197 -

8 100 kbps 0.890 1 Mbps 1.072 0.182 -

The second approach is to select the transmission speeds such that the response

time for transmission and reception will be multiples of each other in which, case

Building Composite Embedded Systems based Networks through 878

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

the delay time eliminated by introducing the buffers equivalent to the multiplying

factor. For example, if the multiplying factor is two, then two buffers can be used.

Separate software architecture followed such that the Input buffers when get filled,

the same is emptied concurrently by using multiple transmission processes. The

transmission speed CAN (500 kbps), and I2C (1 Mbps) lead to multiples of 2 while

the transmission speed: CAN (125 kbps), I2C (500 kbps) leads to multiple of 4. In

any case, the delay as such eliminated by using specific software architecture.

Figure 14 shows the proposed software architecture of the Bridge. The receiving

side process keeps receiving the data and fills up the buffers serially one after the

other in a cyclic fashion. Simultaneously, several transmitting processes equivalent

to the number of buffers will concurrently read the data and place the same to output

buffers. Further, a separate process continually and serially streams the data into

output transmission lines, thereby eliminating any delay that exists between the

reception and transmission.

Reception

P1

P2

P3

P4

Transmission
(streaming)

I2C -
Reception

CAN Transmission

Fig. 14. Software architecture of bridge.

5.4.2. CAN side reception and I2C side transmission

The above reception and transmission process equally applicable even in the case

when CAN is on receiving side and I2C is on the transmission side.

6. Conclusions

Composite embedded systems generally developed as the time evolves and through

the interconnection of several sub-nets implemented through different

communication systems. In such a case, networking becomes quite complex due to

the existence of heterogeneity, especially selecting communication speeds. There

is a requirement of reducing the time delay between the reception and transmission

so that the network will like continuous traffic without any time delay.

879 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

It is not possible to match the speeds of the sub-nets contained in a composite

network without causing a time delay. Multiplicity effect of the communication

speeds can be conveniently used to match the transmission rates and to reduce the

latency that exists between the reception and transmission. The multiplicity effect

can be tackled through the concurrent transmission process and streaming the

output into output channels continuously without the need for either stopover or

wait times. An intelligent bridge that dynamically gets configured by choice of

proper communication speeds and use of local buffers proposed and presented in

this paper makes the heterogeneous sub-nets get interconnected seamlessly as if a

single homogenous network is functioning

The minimum delay time is 0.129 milliseconds considering any combination of

speeds selected for effecting the communication through CAN and I2C. The delay

time is negligible when the speed of CAN is multiples of I2C and vice versa. When

1 Mbps speed selected for both CAN and I2C, the delay is 0.043 milliseconds,

which is the least delay caused. However, in practice, it is quite tough to match

exact speeds.

The transmission speed CAN (500 kbps), and I2C (1Mbps) lead to multiples of

2 while the transmission speed: CAN (125 kbps), I2C (500 kbps) leads to multiple

of 4. The delay caused when multiple of 2 is selected is 0.136 milliseconds while

0.618 milliseconds of delay caused when multiple of 4 is selected. The delay as

such, avoided by selecting as many concurrent processes for transmission

equivalent to the number of buffers chosen. The number of buffers the same as the

multiples is the best choice.

Abbreviations

CAN Controller Area Network

ES Embedded System

GPS Global Positioning System

I2C Inter-Integrated Circuit

IIOT Industrial Internet of Things

IoT Internet of Things

RS232C Standard Serial Interface

RS485 Standard defining the electrical characteristics of drivers and

receivers for use in serial communications

SPI Serial Peripheral Interface

USB Universal Serial Bus

VLSI Very Large-Scale Integration

References

1. Cao, J.; and Nymeyer, A. (2009). Formal model of a protocol converter.

Proceedings of Fifteenth Australasian Theory Symposium on Computing

(CATS’ 09). Wellington, New Zealand, 109-120.

2. Guohuan, L.; Hao, Z.; and Wei, Z. (2009). Research on designing method of

CAN bus and Modbus protocol conversion interface. Proceedings of the

International Conference on Future on BioMedical Information Engineering

(FBIE). Sanya, China, 180-182.

https://en.wikipedia.org/wiki/Serial_communication

Building Composite Embedded Systems based Networks through 880

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

3. Wang, X.; and Guo, W. (2009). The design of RS232 and CAN protocol

converter based on PIC MCU. Computer and Information Science, 2(3),

176-181.

4. Guohuan, L.; Haiting, C.; and Shujie, L. (2010). Research and implementation

of ARM-based fieldbus protocol conversion method. Proceedings of the

International Conference on Computer and Communication Technologies in

Agriculture Engineering. Chengdu, China, 260-262.

5. Zhang, H.; Li, Y.; and Zhu, H. (2011). Development for protocol conversion

gateway of Profibus and Modbus. Procedia Engineering, 15, 767-771.

6. Benachinamardi, A.K.; and Wali, U.V. (2011). Design of CAN transmitter

with an I2C interface. International Journal of Computer Applications,

46(21), 6-10.

7. Hui, L.; Hao, Z.; and Daogang, P. (2012). Design and application of

communication gateway of EPA and MODBUS on electric power system.

Energy Procedia, 17(Part A), 286-292.

8. Zhang, F.; Zhu, Y.; Yan, C.; Bi, J.; Xiong, H.; and Yuan, S. (2013). A

realization method of protocol conversion between Modbus and IEC61850.

Open Journal of Applied Sciences, 3(2), 18-23.

9. Kiran, V.; and Vinilanagraj. (2013). Design of SPI to I2C protocol converter

and implementation of low power techniques. International Journal of

Advanced Research in Computer and Communication Engineering, 2(10),

3770-3774.

10. Kaur, J.; and Singh, M. (2013). Multiprotocol gateway for wireless

communication in embedded systems. International Journal of Computer

Applications, 72(18), 27-31.

11. Sastry, J.K.R.; Suresh, A.; and Sasi Bhanu, J. (2015). Building heterogeneous

distributed embedded systems through RS485 communication protocol. ARPN

Journal of Engineering and Applied Sciences, 10(16), 6793-6803.

12. Sastry, J.K.R; Ganesh, J.V.; and Bhanu, J.S. (2015). I2C based networking for

implementing heterogeneous microcontroller based distributed embedded

systems. Indian Journal of Science and Technology, 8(15), 1-10.

13. Sastry, J.K.R.; Lakshmi, M.V.; and Bhanu, S.J.S. (2015). Optimizing

communication between heterogeneous distributed embedded systems using

CAN protocol. ARPN Journal of Engineering and Applied Sciences, 10(18),

7900-7911.

14. Shwetha, S.; and Karunavathi, R.K. (2016). The design of multiprotocol

interface device. Proceedings in 2nd International Conference on Applied and

Theoretical Computing and Communication Technology (iCATccT).

Bangalore, India, 474-476.

15. Narayanan, R.; and Murthy, C.S.R. (2017). Information: A probabilistic

framework for protocol conversions in IIoT networks with heterogeneous

gateways. IEEE Communications Letters, 21(11), 2456-2459.

16. Murty, A.S.R.; Teja, K.; and Naveen, S. (2018). Lathe performance monitoring

using IoT. International Journal of Mechanical Engineering and Technology

(IJMET), 9(4), 494-501.

17. Rambabu, K.; and Venkatram, N. (2018). Traffic flow features as metrics

(TFFM): Detection of application layer level DDOS attack scope of IoT traffic

881 J. Rajasekhar and J. Sastry

Journal of Engineering Science and Technology April 2020, Vol. 15(2)

flows. International Journal of Engineering and Technology (UAE), 7(2.7),

203-208.

18. Manasa, K.V.; Prabu, A.V.; Prathyusha, M.S.; and Varakumari, S. (2018).

Performance monitoring of UPS battery using IoT. International Journal of

Engineering and Technology, 7(2.7), 352-355.

19. Poonam, J.S.; Pooja, S.; Sripath Roy, K.; Abhilash, K.; and Arvind, B.V.

(2018). Implementation of asymmetric processing on multi-core processors to

implement IOT applications on GNU/Linux framework. International Journal

of Engineering and Technology, 7(2.7), 710-713.

20. Naidu, G.R.; and VenkatRam, N. (2018). Urban climate monitoring system

with IoT data analytics. International Journal of Engineering and Technology,

7(2), 5-9.

21. Gupta, P.; Satyanarayan, K.V.V.; and Shah, D.D. (2018). Development and

testing of message scheduling middleware algorithm with SOA for message

traffic control in IoT environment. International Journal of Intelligent

Engineering and Systems, 11(5), 301-313.

22. Gupta, P.; Satyanarayan, K.V.V.; and Shah, D.D. (2018). IoT multitasking

development of hybrid execution service-oriented architecture (HESOA) to

reduce response time for IoT application. Journal of Theoretical and Applied

Information Technology, 96(5), 1398-1407.

23. Yasaswini, A.; DayaSagar, K.V.; ShriVishnu, K.; Hari Nandan, V.; and

Prasadara Rao, P.V.R.D. (2018). Automation of an IoT hub using artificial

intelligence techniques. International Journal of Engineering and Technology,

7(2.7), 25-27.

24. Ramaiah, C.H.; Parimala, V.S.; Kumar, S.P.; Reddy, G.; and Rahul, Y. (2018).

Remote monitoring through a tab. International Journal of Mechanical

Engineering and Technology, 9(1), 490-498.

25. Sai, Y.S.; and Kumar, K.K. (2018). Internet of things and its applications.

International Journal of Engineering and Technology, 7(2.7), 422-427.

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57193241794&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=57201300619&zone=
https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=55576264100&zone=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85055418568&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=6d0f8ecede6486623a80ca95bbbfbafd&sot=aff&sdt=cl&cluster=scopubyr%2c%222018%22%2ct%2c%222017%22%2ct%2c%222016%22%2ct&sl=56&s=AF-ID%28%22Koneru+Lakshmaiah+Education+Foundation%22+60079446%29&ref=%28IoT%29&relpos=4&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85055418568&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=6d0f8ecede6486623a80ca95bbbfbafd&sot=aff&sdt=cl&cluster=scopubyr%2c%222018%22%2ct%2c%222017%22%2ct%2c%222016%22%2ct&sl=56&s=AF-ID%28%22Koneru+Lakshmaiah+Education+Foundation%22+60079446%29&ref=%28IoT%29&relpos=4&citeCnt=0&searchTerm=
https://www.scopus.com/record/display.uri?eid=2-s2.0-85055418568&origin=resultslist&sort=plf-f&src=s&nlo=&nlr=&nls=&sid=6d0f8ecede6486623a80ca95bbbfbafd&sot=aff&sdt=cl&cluster=scopubyr%2c%222018%22%2ct%2c%222017%22%2ct%2c%222016%22%2ct&sl=56&s=AF-ID%28%22Koneru+Lakshmaiah+Education+Foundation%22+60079446%29&ref=%28IoT%29&relpos=4&citeCnt=0&searchTerm=
https://www.scopus.com/sourceid/21100199790?origin=resultslist
https://www.scopus.com/sourceid/21100199790?origin=resultslist

