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Abstract 

Composite embedded networks are evolving day by day. Such kinds of networks 

achieved through networking two or more heterogeneous networks. 

Heterogeneity leads to the requirement of too many conversions leading to too 

heavy time delays resulting in wastage of time than effective usage of the time 

for transmission. Choice of proper communication speeds on both sides of 

reception and transmission is the most crucial aspects to ensure that the time 

delays reduced. In this paper, a multi-buffer-based system presented that 

implements concurrent transmission process with output streaming through a 

single dedicate process. In this paper, experimental results presented, which 

prove that any combination of speed selection considering the I2C and CAN, 

latency cannot be avoided. Bridging the sub-nets in composite ES networks will 

reduce the latency heavily. The experimental results prove the latency is 

minimum when transmission speeds of CAN and I2C are multiples of each other. 

CAN (500 kbps), and I2C (1 Mbps) lead to multiples of 2 while the transmission 

speed: CAN (125 kbps), I2C (400 kbps) leads to multiple of 4. In both cases, the 

delay time is minimum. Idealistically both CAN and I2C driven using 1 Mbps 

speed, however, exact speed matching is not possible. 

Keywords: Communication bridge, Concurrent processing, Heterogeneous 

embedded systems, Serial transmission through streaming. 
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1. Introduction 

Embedded systems are designed to be adaptive systems. A single embedded system 

generally used for sensing, monitoring, and controlling the behaviour of the 

external environment. Some of the embedded systems are designed to achieve real-

time controlling of the actuating devices. Over the days, one can observe that many 

of the embedded systems must be selected and networked to cater for a composite 

application that caters varied processes that involve sensing and actuating. 

Networking of several embedded systems is employed to implement 

applications that have multi-node sensing and actuating. Many networking 

protocols are in use, which includes I2C, CAN, USB, and RS485 that is bus-

based and effects serial communication. All the devices that can communicate 

using the same protocol can be connected and implement a homogeneous 

communication system. 

For implementing some of the applications such as automotive systems, 

aerospace systems, there are requirements of interconnecting several embedded 

networks as they keep evolving. The sub-nets that need to be interconnected to form 

composite networking are generally heterogeneous especially the variations in the 

networking systems that lead to many differences in the communication speeds, 

handling heterogeneous issues, error detection and control, arbitration, timing, 

addressing, etc. The heterogeneous embedded systems differ in many ways 

considering network length, the number of devices that can be connected, Timing, 

arbitration, address resolution, synchronization, data and message formats, and the 

message lengths. These stiff requirements do not allow devices that follow different 

protocols connected on to the same network. 

A complex ES based application requires connecting heterogeneous ES devices, 

into a set of sub-networks implemented using different communication systems. 

Hybrid networking carried to connect subnets developed over different 

communication systems. There are many ways to achieve hybridization at different 

levels of the IoT network say PIN level, Device-level, Gateway level, multi-master 

level, etc. In this paper, Device-level Hybridization is presented considering an 

application in the Automotive domain. 

Initially, at the beginning of 2000, Engine control systems, braking systems 

have been introduced, which are enabled through I2C networks using the embedded 

sensors. More and more sensing and actuating systems added over the days. Since 

2005 onwards the light-sensing, reverse braking, and door closing system 

introduced, which all required high speed in actuating the controlling mechanisms. 

I2C and CAN-based subnets have been used in the past to connect the devices with 

specific communication speeds.  CAN-based communication used when very high-

speed communication required among the devices connected in a sub-net. 

However, with the increase in automation, a need has raised in moving sensing 

inputs in between I2C and CAN making the systems more versatile and dependent. 

This aspect led to inventing and implementing a solution that bridge networks so 

that the data moved either way in between I2C and CAN. 

For the communication to take place between the two subnets that are 

heterogeneous, there can be many approaches, one of which, is the construction of 

a bridge, which acts as a channel between the two subsystems. There are many 

issues involved in effecting communication between heterogeneous networks.  
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Some of them include data transfer rates, addressing, packet format, 

synchronization, etc. 

The bridge must be intelligent and dynamic so that appropriate and relevant 

communication speeds for reception and transmission achieved, which leads to no 

delay in the entire data flow from sending to the reception. One such bridge that 

connects an I2C network to CAN network presented in this paper. 

2.  Related work  

New Devices developed every day by VLSI industry, which conforms to the latest 

communication standards released in the market. There are interfacing problems 

when these devices interfaced with the ongoing applications built on standard 

boards.  Generally, to interface new devices with standard boards, converters are 

developed that bridges the interface exposed by the devices to be converted into 

interfaces exposed by the standard boards. The conversions as such are complicated 

when huge diversity exits in building the interface or for that matter when 

communication interfaces are to be bridged as the communication standards are 

available in many different versions. 

Cao and Nymeyer [1] presented a theoretical model of a converter that will 

enable two given arbitrary protocols to communicate. The model presented by them 

includes buffers and correctness conditions and considers that the protocols to be 

non-deterministic. Verification of the conditions done in the process and valid data 

will only be allowed for transmission-model checkers used for verification of the 

conditions imposed during the process of conversion. 

Two standards are used, which include field bus and CAN bus for 

implementing industry-based applications. Field bus standards are not uniform 

and greatly differ from industry to industry while CAN bus is a standard 

communication system. Various applications implemented in the industry require 

communication between the field bus and CAN bus, which lead to the 

requirement of developing various convertees either hardware-based, software-

based, or by considering both hardware and software. Development of such a 

converter is complex as field bus is non-standard. 

Guohuan et al. [2] have presented an analysis of both the protocols and proposed 

an interfacing method, which considers the use of both Hardware and software and 

all the interacting ambiguities. ES networks are built using different 

communication protocols, especially using  

CAN-based system. At times these CAN-based system needs to be interfaced 

with PC to monitor and control various devices that get connected to the CAN 

network.  PCs not supported with CAN ports on the other hand RS232C ports 

mostly supported for interfacing with serial devices. When CAN networks are to 

be connected to PC converters are required to establish communication both 

ways, RS232C to CAN and vice versa. Wang and Guo [3] have presented a 

protocol converter that converts RS232C to CAN and Vice versa. The converter 

is developed using PIC18F2580 microcontroller that has native support within 

the controller. 

Field bus comes in different standards-many fields bus-based network built over 

the days for implementing different applications. At times, situations aroused that 
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requires interconnection between two networks that are built using different bus 

standards requiring the development of conversion from one filed bus standard to 

the other. Guohuan et al. [4] have developed a conversion method based on ARM 

technologies. The method is designed to convert from any field bus-based standard 

to any other field bus standard leading to the development of many to many fields 

bus-based protocol conversion. They have developed a gateway, which converts 

the data packets to release through different standards into a standard gateway 

packet, which is understandable to both the protocols. 

Profibus and Modbus are the protocols used for the development of ES based 

networking and communication, especially in the Industrial front. At times, needs 

have risen to establish communication between these two types of the network 

leading to the development of a converter that facilitates the conversion of the 

protocol either way. Zhang et al. [5] have developed a gateway based on AT895C52 

technologies released by ATMEL. In the gateway, a protocol chip Siemens SPC3 

is built to facilitate protocol conversions 

I2C communication represented as state machines. The data received from the 

I2C transmitter can be placed in a buffer, which can be picked up by CAN 

transmission system as proposed by Benachinamardi and Wali [6]. The conversion 

from I2C to CAN developed through Verilog.  The authors have not presented 

conversion from CAN to I2C. The authors have just tried to interface at the data 

level ignoring many aspects, which include speed matching, error detection, 

synchronization, timing, heterogeneity, etc. 

EPA (Ethernet for plant Automation) is developed for monitoring, 

controlling, and interconnecting plant mounted devices for implementation of 

industrial automation. MODBUS is also used simultaneously for 

interconnecting the devices, which follow MODBUS protocols. These two 

independent networks simultaneously mounted on a plant requiring 

communication between the devices that connected on either of the networks. 

Hui et al. [7] mentioned that a gateway developed using ARM technologies that 

provide the interface required to convert EPA to MODBUS and vice versa. The 

gateway proposed by them is claimed to be supporting real-time data 

requirements posed by either of the communication systems.  

IEC61850 is a standard used for automation of sub-station related systems. The 

online monitoring system developed by state Grid Corporation used for building 

smart grids.  A communication system designed based on IEC 61850 standard and 

the same used for effecting communication while building the smart grids. While 

that being the case, other types of networking systems based on MODBUS and 

CAN bus are implemented to support different parts of the automation system. This 

aspect necessitated establishing communication between IEC61850 and Modbus / 

CAN Bus leading to the development of a protocol conversion method. 

Zhang et al. [8] proposed conversion method between Modbus and IEC61850. 

Object-oriented technology used for information modelling on Modbus. The model 

mapping relationship between IEC61850 and Modbus based on the principle of the 

minimum information point, which maps to one to one correspondence with 

IEC61850.The protocol conversion method presented has been verified using 

interval controller. 
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SPI is the interface present on most of the embedded systems, which support 

full-duplex communication with high throughput, whereas I2C is a two-wire bus 

used for communication between two or more devices normally situated on the 

same board. And as technology is trending, many features are being built into single 

portable devices for which, the power is the main concern. Kiran and Vinilanagraj 

[9] have proposed conversion of SPI to I2C and vice versa and develop a protocol 

convertor with flexibility in interoperability and power concern. An effective low 

power technique like clock gating insertion and dynamic power gating 

implemented in this design. 

In recent days, many devices built with wireless technologies like RF, GSM, 

Bluetooth, and ZigBee for establishing alternate communication paths to achieve 

fault-less communication for transmission of sensed data. The sensed data needs to 

be transmitted to a remote location using a cellular communication system 

requiring translation of radio-based data to a cellular data. This kind of an issue 

aptly leads to conversion of wireless data to cellular data, thus, achieving 

integration of a local communication to a remote communication [10]. 

Networking of embedded system achieved through many protocols like 

RS232, RS485, I2C, CAN, SPI, and USB. Among these, RS485 is the most used 

protocol in the industry for effective communication. However, the major 

problem in implementing RS485 based communication system is lack of native 

support in individual microcontrollers. Sastry et al. [11] proposed RS485 based 

networking of distributed embedded systems by interfacing MAX485 to RS232C 

existing in a microcontroller.  

Sastry et al. [12] have proposed a method of concerting an RS232C based 

interface to I2C communication interface. A design flow method, which uses 

priority queues has been presented to affect the communication according to the 

flow required. In similar lines, Sastry et al. [13] and Shwetha and Karunavathi [14] 

presented the conversions from RS232C to CAN and USB. However, the methods 

proposed by them are limited to connecting a heterogeneous device to a selected 

network. These methods do not propose anything related to interconnecting sub-

networks built with the different communication system 

Due to the recent developments in communication protocols, interoperability 

problems are emerging. One such example is where client working on Ethernet, 

USB, and SPI and server is on RS232C protocol. Narayanan and Murthy [15], 

designed an interface for the conversion of multiple protocols into a single 

protocol. The design carried for the conversion of Ethernet, USB V2.0 and SPI 

to RS 232C using DSP processor. 

The numbers of wireless IoT devices in automation networks are growing 

rapidly. The concept of IIOT called Industry 4.0 is emerging, and many industries 

are striving to take benefits out of it. The first issue, which comes into mind is 

interoperability issues. Compatibility issues might arise while connecting standard 

and nonstandard equipment’s.  

Therefore, protocol conversion equipment is to be used. While using this, 

Overhead increased. Murty et al. [16] analysed accurate estimation of network 

performance in IIOT networks by taking Protocol conversion overhead during data 

transmission. Results obtained are used for forecasting the overhead while 

designing, thereby deploying efficient traffic flows.  
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Many hybridisation issues have been discussed in the literature for 

communication between a pair of devices [17-25] however, have not discussed the 

communication that must happen between two devices that were situated on two 

different networks. 

3.  Comparative Analysis of Approaches to Bridging ES sub-nets 

Comparison of the contributions made to the literature has been made considering 

the following parameters, which are the features required for bridging two ES based 

sub-networks implemented through different bus-based serial communication 

protocols. Table 1 shows a comparison. The features required include hardware 

conversion, software conversion, use of interfacing circuits, use of a Bridge, 

Gateway, conversion of protocols, and type of networking, which include either 

bus-based or peer to peer connection. The features further include use of 

middleware for handling heterogeneity issues, consideration to the data transfer 

speeds, bus synchronization, timing, data buffering, error detection and control, and 

use of conditions for verification of the data. 

From the comparison, one can see that the solutions proposed do not quite 

meet the requirements of developing a bridge that interconnects two embedded 

sub-networks. As such the bridge that connects two ES networks must address 

various issues that include data speed matching, data buffering, synchronization 

of data transfer, and timing of communication that must hold good at either of 

the sub-nets, error detection and control. The issue of connecting many protocols 

to one and versa is not required when it comes to developing a bridge that 

connects two sub-networks.  

In this report, investigations and findings presented that have led to the 

development of a bridge that comprehensively interfaces two different ES 

sub-networks. 

4.  Overview of an Application with Two Different Sub-Systems 

Many sectors evolved over a period implementing different technological solutions 

especially in the field of automobile Industry focussing on different aspects of 

monitoring and controlling starting from engine control to GPS systems that 

provide tracking of the movement of automobiles system. 

Many sensing, monitoring, and control systems have been introduced into 

automobile systems over the days through the introduction of several sub-systems 

that aim at sensing, monitoring, and controlling some partial aspects of the entire 

automobile systems. Many sophisticated gadgets added not only to function 

independently but also function as a part of either sub-system or the entire system. 

In a typical automobile domain, the system was chosen that got evolved, 

especially concerning automation, sensing, monitoring, and actuating. In the typical 

automobile system, two subsystems considered and implemented over time. One 

subsystem is built using I2C network, connected with engine temperature 

monitoring and control and a braking system. The network is built using 4 

Microcontroller based systems, which are heterogeneous and having inbuilt I2C 

native interface ports. Age the time progressed; a second CAN-based network 

introduced that has in it, the car reversing system, Interior lighting system, and door 

control system. 
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Table 1. Comparative analysis-bridging heterogeneous ES networks. 

A
u

th
o
r
 s

e
r
ia

l 

A
u

th
o
r
 n

a
m

e
 

H
a
rd

w
a
r
e
 c

o
n

v
e
r
si

o
n

 

S
o
ft

w
a
r
e
 c

o
n

v
e
r
si

o
n

 

U
se

 o
f 

in
te

r
fa

c
in

g
 

c
ir

c
u

it
s 

U
se

 o
f 

b
r
id

g
e
/g

a
te

w
a
y

 

P
r
o
to

c
o

l 
c
o
n

v
e
r
si

o
n

 

ty
p

e
 a

n
d

 m
a
p

p
in

g
 

T
y
p

e
 o

f 
in

te
r
fa

c
in

g
 

U
se

 o
f 

m
id

d
le

w
a
r
e
 

D
a
ta

 t
r
a
n

sf
e
r
 s

p
e
e
d

 

m
a
tc

h
in

g
 

B
u

s 
sy

n
c
h

r
o
n

is
a
ti

o
n

 

T
im

in
g
 

sy
n

c
h

r
o
n

is
a

ti
o
n

 
D

a
ta

 b
u

ff
e
r
in

g
 

E
r
r
o
r
 d

e
te

c
ti

o
n

 a
n

d
 

c
o
n

tr
o
l 

U
se

 c
o
n

d
it

io
n

s 
fo

r
 

v
e
r
if

ic
a
ti

o
n

 o
f 

d
a

ta
 

1 Jing Cao 
- - - Bridge 

One to 

one 
BUS - - 

- 
- √ - √ 

2 Lou Guohuan 
√ √ √ - 

One to 

one 
BUS - - 

- 
- - - - 

3 Xianjun Wang 

√ - - - 

One to 

one 

Peer to 

peer 

interfacing 

- - 

- 

- - - - 

4 Lou Guohuan 
- - - Gateway 

Many to 

many 
- - - 

- 
- - - - 

5 HaoZhanga 
√ - - Gateway 

One to 

one 
- - - 

- 
- - - - 

6 Anupama - - - - - Data level - - - - - - - 

7 Li Hui, Zhang 

Hao, 

PengDaogang 

- - - Gateway 
One to 

one 
- - - - - - - - 

8 Zhang 
- - - - 

One to 

one 
- - - - - - - √ 

9 Kiran 
√ - - - 

One to 

one  
- - - - - - - - 

10 Jaskirat Kaur 
- - - - 

One to 

one 
- - - - - - - - 

11 Sastry 
√ √ - - 

One to 

one 
- - - - - - - - 

12 Shwetha 
√ √ - - 

Many to 

one 
- - - - - - - - 

13 Revathy √ √ - - - - - - - - - - - 

4.1. Overview of prototype sub-system development of I2C network for 

experimentation and results 

4.1.1. Operational description of the network 

Figure 1 shows the topology of the I2C networked embedded system. The I2C 

network built with a single master and multiple slaves based on four 

microcontroller-based systems.  

One microcontroller-based system developed for monitoring the temperature 

within a motor car engine through a temperature sensor (LM35) interfaced with 

the master.  

The master directs another microcontroller-based system for actuating a 

PUMP or otherwise when the engine temperature is either within or outside the 

threshold value. The master device also keeps enquiring the status of a braking 

system, which is monitored and controlled through another microcontroller-

based system.  

The master also provides instructions to the decoupling system to either 

couple or decouple the engine from the brake shaft based on whether a brake is 

applied or not. 
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Fig. 1. I2C topology. 

4.1.2. Functional requirements of I2C based system 

The functional requirements of an I2C system shown in Table 2. 

Table 2. Functional requirements of an I2C system. 

Functional 

requirements 

number 

Functional description 

1 To sense the engine heat 

2 To actuate pumps when the sensed temperature > threshold 

value 

3 To receive the status of the braking system periodically 

4 To decouple the engine shaft and when a brake 

is applied 

4.1.3. Hardware description 

The hardware details of an I2C system shown in Table 3. 

Table 3. Hardware details of an I2C system. 

Hardware 

device 

number 

Hardware 

description 

Interface 

description 
Purpose of the device 

1 AT mega 328 I2C Sensing the engine temperature 

continuously 

2 Tm4c123GXL I2C Sensing the brake applied or not 

3 AT mega 2560 I2C Coolant control through the pump 

4 AT Mega 328 I2C Coupling control 

 

Atmega 328
Transmit engine 

Temperature 
monitoring[ECM]

TM4C123GXL
Transmit

Brake applied info[ABS]

ATmega2560
Coolant Control (FLOW 

Control)

LM35

Sensor Pump

ATmega328
Coupling Control

Relay Coupler

Slaves

Master

I2C BUS
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4.1.4. Software architecture 

The software architecture implemented within the I2C based embedded systems 

shown in Fig. 2. 

In every microcontroller-based system, a task designed for effecting 

communication between the master and the slave. Every slave system has an 

application that either senses or actuates the controlling parameter. The 

communication through an I2C system routed from the master system. The 

breaking, coupling, and pump actuating systems shall perform as per the directions 

initiated by the master. 

Temp Sensing and 
Monitoring Sofwatre

I2C Communication 
System

(Engine Side)

I2C Communication 
System

(Pump Control)

Pump Actuating System) Breaking System

I2C Communication 
System

(Breaking)

I2C Communication 
System

(Coupling)

Coupling System

 

Fig. 2. Software architecture for I2C system. 

4.2. Overview of prototype development of CAN network for 

experimentation and results 

Figure 3 shows the CAN-based networking topology. 
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Arduino Uno
Car Reversing  System 

ATmega328
Interior Light Control System

ATmega2560
Door Control Unit

Ultrasonic 
sensor/
Distance

Light actuator Door sensor
Door 

Actuator

CAN BUS

 

Fig. 3. CAN topology. 

4.2.1 Operational description of the network 

The CAN network has been built considering three microcontroller-based systems. 

One microcontroller-based system developed for monitoring the distance between 

a vehicle and a back obstacle through ultrasonic sensor interfaced to a specific 

controller while the vehicle is in reverse gear. When the distance value is not in 

threshold limit, the master sends a signal to the controller, which deals with the 

internal lighting system so that a flashlight is invoked to indicate short object 

distance. Another microcontroller-based system developed for checking the door 

status continuously and actuating in terms of the door closing and opening. 

4.2.2. Functional requirements 

The functional requirements of a CAN-based system shown in Table 4. 

Table 4. Functional requirements of the CAN-based system. 

Requirement 

serial 
Functional description 

1 To sense the distance of the obstacle from the car while 

reversing and flashing an internal light when the distance is 

beyond the threshold value 

2 To check the door status continuously and activate a buzzer if a 

door opened while on the run 

3 To check the status of the door and control the lighting system 

based on whether the door is closed or open and when 

continuous lighting is on for some time 
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4.2.3. Hardware description 

The hardware details of the CAN system shown in Table 5. 

Table 5. Hardware details of a CAN system. 

Hardware 

device 

number 

Hardware 

description 

Interface 

description 
Purpose of the device 

1 AT Mega 328 CAN To sense the distance while 

reversing and sending the 

information to the bus 

2 AT Mega 2560 CAN To sense the door status 

3 AT Mega 328 CAN To control the interior lightening 

system 

4.2.4. Software architecture 

The software architecture implemented within the CAN-based embedded systems 

shown in Fig. 4. A specific microcontroller, which acts as master implements as 

car reversing system in this CAN network. The Reversing system computes the 

distance between a nearby sighted object and the car. In the case that the car is 

nearing a back object while reversing an amplified light is triggered through another 

micro controller-based system. Another master designed for controlling the Car 

doors. The lighting system is controlled based on the status of doors (open or 

closed) or the longevity of the lights emitted. 

Distance Sensing and 
Monitoring Software

CAN Communication 
System

Reversing System

Interior Lighting System

CAN Communication 
System

Door Control Unit

CAN Communication 
System 

(Door Status)

 

Fig. 4. Software architecture for CAN system. 

4.3.Communication requirements for bridging the heterogeneous 

networks 

While both the subsystems implemented, it is noticed that there existed a 

dependency between both the subsystems. The need to open the car doors as the 

temperature of the car engine raise beyond a threshold limit and the need to braking 

while the car is reversing.  

These dependencies lead to the development of a “BRIDGE” between both the 

networks so that data can move either way. This requirement necessitated the 
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development of a device that is common to both the networks through which, the 

data flow can be achieved both ways and use the same for controlling and actuating 

purpose. Table 6 below shows the data flow requirements of the composite 

networked embedded system built using two subnets while one being I2C based, 

the other developed based CAN protocol. There could be many more such data 

flow requirements, as stated in Table 6 below: Figure 5 shows the Bridge 

networking topology. 

Table 6. Functional requirements of bridge. 

Data 

flow 

serial 

From 

network 

To 

network 
Purpose 

1 I2C CAN To receive the temperature data from an engine 

monitoring system for controlling the doors accordingly 

2 CAN I2C To send the distance data while car reversing for 

actuating breaking 

 

Atmega 328
Transmit engine 

Temperature 
monitoring[EC

M]

TM4C123GXL
Transmit

Brake applied 
info[ABS]

PIC16F877A
Car Reversing  

System 

ATmega2560
Transmit door 

info[DCU]

I2C CAN

LM35

Sensor

Ultrasonic 
/ Distance  

Door 
sensor

Bridge controller

Door 
Actuator

 

Fig. 5. Bridge topology. 

5.  Investigations and findings 

The design and implementation of the bridge involve many factors, which 

include word addressing, conversion of numbering systems, application-

specific message flow system, synchronisation of application-specific 

messages mapping to bus arbitration system, error detection and control, the 

timing of the process involved in sensing and actuating implemented on the two 

sides of the network. Response time management, data pocketing and de-

pocketing, management of data transfer rates. 



Building Composite Embedded Systems based Networks through . . . . 870 

 
 
Journal of Engineering Science and Technology               April 2020, Vol. 15(2) 

 

Heterogeneity due to endian handled through converting big-endian to small 

endian and vice versa. Converting from one number system to others is another 

heterogeneity issue that one must handle. Every application needs that messages 

must flow across as per the priority attached to the message. The priority as such is 

attached based on the criticality of the message. The message flowing across must 

match the bus arbitration system so that the device receives the most important 

message that has higher priority 

Error detection and correction process implemented in different layers of each 

communication system. There is no uniformity as such. Transformations and 

translations required for building error detection and correction method 

implemented in one layer of communication protocol into another layer of a 

different communication protocol. Data transfer rates differ between two different 

communication protocols such as I2C and CAN. In I2C data can be communicated 

at 100 kbps, 400 kbps, 1 Mbps, 3.4 Mbps and in the case of CAN communication 

speeds achieved ranging from 40 kbps to 1 Mbps 

One of the important aspects to be achieved is timing and completing the tasks 

within acceptable response times. Sensing data from a system in a network must 

be sent to another system in a different network for controlling a process 

parameter. The entire process from sensing to actuating completed within 

accessible responsible times. The data communication protocols defined for I2C 

and CAN are different. The data packet design and the type of data packets that 

must be transmitted vary greatly considering both the protocols. There is a great 

variance in the speed of transmission of data. The data processing in the reception 

and the transmission side also differ greatly. Many heterogeneity issues need 

consideration at the reception and transmission side of the communication 

system, some of which, include word addressing, number conversions, endian, 

parity, error detection, and control. 

In this paper, a novel data flow and synchronization method considering the 

communication systems implemented within the sub-systems presented that 

considers the issues of heterogeneity. The method attempts to solve the major 

problem of matching the speeds of data communication and synchronization 

between the reception and transmission sides and vice versa. 

5.1.  Matching data transfer speeds 

Three different data transfer rates are achieved through I2C network @ 100 kbps, 

400 kbps, 1 Mbps, and 3.4 Mbps speeds and similarly different transfer speeds 

achieved through CAN, which includes 40 kbps to 1 Mbps. One of the major 

considerations is to select two speeds from the speeds supported by I2C and CAN 

such that the data transfer synchronized without any delay caused between 

reception and transmission. An analysis of different speeds of I2C with speeds 

supported by CAN considering maximum data packet size supported by either of 

the protocols carried.  

Analysis carried by changing various parameters like the number of bytes, 

speeds, and the time per packet for storing or retrieving. Total time taken per 

packet computed by taking the number of bytes transmitted say 4, 5,6,7,8 bytes 

and fixing the speed for I2C protocol and varying the speeds of the CAN 

protocol. Similarly, by fixing the speed of CAN and varying the speeds of I 2C 
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total time taken per packet is computed and plotted-five hundred packets 

considered for transmission and reception. Analysis has been carried 

considering different CAN speeds (125 kbps, 250 kbps, 500 kbps, 1 Mbps) 

keeping the speed on the I2C side being 1 Mbps and considering data packet 

sizes. The data rates computed in terms of milliseconds.  

5.2.  Analysis of data flow-I2C side reception-CAN transmission 

Data analysis is carried by fixing I2C speed at a constant rate and carrying 

transmission on CAN side at different rates, varying the data packet sizes.  The 

details of data transmission rates considering I2C speed of 1 Mbps and CAN speed 

of 1mbps, 500 kbps, 250 kbps, 125 kbps are varying the data packet size from 4 

bytes to 8 bytes shown in Table 7, and the behaviour of the same shown in Fig. 6. 

From the figure, one can see that none of the CAN speed with varying data packet 

size converges to the data transmission speeds of I2C. 

The details of data transmission times considering I2C speed of 400 kbps and 

CAN speed of 1 Mbps, 500 kbps, 250 kbps, 125 kbps varying the data packet size 

from 4 bytes to 8 bytes shown in Table 8, and the behaviour of the same shown in 

Fig. 7. From the figure, one can see that none of the CAN speed with varying data 

packet size converges to the data transmission speeds of I2C. The details of data 

transmission times considering I2C speed of 100 kbps and CAN speed of 1 Mbps, 

500 kbps, 250 kbps, 125 kbps varying the data packet size from 4 bytes to 8 Bytes 

shown in Table 9, and the behaviour of the same shown in Fig. 8. From the figure, 

one can see that none of the CAN speed with varying data packet size converges to 

the data transmission speeds of I2C. 

From the above analysis, one can conclude that none of the CAN speeds 

converges to fixed I2C transmission speed even when data packet sizes varied. 

Table 7. Data transfer time @ data transmission rates:  

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @1 Mbps. 

Number 

of bytes 

Speed of 

I2C 

1 Mbps 

Speed of 

CAN 

1 Mbps 

Speed of 

CAN 

500 kbps 

Speed of 

CAN 

250 kbps 

Speed of 

CAN 

125 kbps 

4 0.129 0.172 0.265 0.451 0.822 

5 0.137 0.180 0.281 0.482 0.884 

6 0.145 0.188 0.296 0.513 0.947 

7 0.153 0.196 0.312 0.544 1.009 

8 0.161 0.204 0.328 0.576 1.072 

Table 8. Data transfer time @ data transmission rates:  

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @ 400 kbps. 

Number 

of bytes 

Speed of 

I2C 

400 kbps 

Speed 

of CAN 

1 Mbps 

Speed of 

CAN 

500 kbps 

Speed of 

CAN 

250 kbps 

Speed of  

CAN 

125 kbps 

4 0.204 0.172 0.265 0.451 0.822 

5 0.224 0.180 0.281 0.482 0.884 

6 0.243 0.188 0.296 0.513 0.947 

7 0.263 0.196 0.312 0.544 1.009 

8 0.282 0.204 0.328 0.576 1.072 
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Table 9. Data transfer time @ data transmission rates:  

CAN @ 1 Mbps, 500 kbps, 250 kbps, 125 kbps, and I2C @100 kbps. 

Number 

of bytes 

Speed of  

I2C 

100 kbps 

Speed of 

CAN 

1 Mbps 

Speed of 

CAN 

500 kbps 

Speed of 

CAN 

250 kbps 

Speed of 

CAN 

125 kbps 

4 0.578 0.172 0.265 0.451 0.822 

5 0.656 0.180 0.281 0.482 0.884 

6 0.734 0.188 0.296 0.513 0.947 

7 0.812 0.196 0.312 0.544 1.009 

8 0.890 0.204 0.328 0.576 1.072 

 

 

Fig. 6. Variance of data transmission times keeping I2C at a  

constant rate and varying CAN data rates and data packet sizes. 

 

Fig. 7. Variance of data transmission times keeping I2C at a 

constant rate and varying CAN data rates and data packet sizes 
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Fig. 8. Variance of data transmission times keeping I2C at a  

constant rate and varying CAN data rates and data packet sizes. 

5.3. Analysis of data flow-CAN side reception-I2C Transmission 

Data analysis is carried by fixing CAN speed at a constant rate and carrying 

transmission on I2C side at different rates, varying the data packet sizes. The details 

of data transmission times considering CAN speed of 40 kbps, and I2C speed of 

100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes to 8 bytes 

shown in Table 10, and the behaviour of the same shown in Fig. 9. From the figure, 

one can see that none of the I2C speeds with varying data packet size converges to 

the data transmission speeds of CAN. 

Table 10. Data transfer time @ data transmission rates: 

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @40 kbps. 

Number 

of bytes 

Speed of 

CAN 

40 kbps 

Speed of  

I2C 

100 kbps 

Speed of  

I2C 

400 kbps 

Speed of 

 I2C 

1 Mbps 

4 2.399 0.578 0.204 0.129 

5 2.594 0.656 0.224 0.137 

6 2.789 0.734 0.243 0.145 

7 2.980 0.812 0.263 0.153 

8 3.180 0.890 0.282 0.161 

 

 
Fig. 9. Variance of data transmission times keeping CAN at a  

constant rate and varying I2C data rates and data packet sizes. 
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The details of data transmission times considering CAN speed of 125 kbps and 

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes 

to 8 bytes shown in Table 11, and the behaviour of the same shown in Fig. 10. From 

the figure, one can see that none of the I2C speeds with varying data packet size 

converges to the data transmission speeds of CAN. 

The details of data transmission times considering CAN speed of 250kbps and 

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes 

to 8 bytes shown in Table 12, and the behaviour of the same shown in Fig. 11. From 

the figure, one can see that none of the I2C speeds with varying data packet size 

converges to the data transmission speeds of CAN. 

The details of data transmission times considering CAN speed of 500 kbps and 

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes 

to 8 bytes shown in Table 13, and the behaviour of the same shown in Fig. 12. From 

the figure, one can see that none of the I2C speeds with varying data packet size 

converges to the data transmission speeds of CAN. 

Table 11. Data transfer time @ data transmission rates: 

I2C @ 1 Mbps, 400 kbps, 100 kbps, and CAN @125 kbps. 

Number 

of bytes 

Speed of 

CAN 

125 kbps 

Speed of 

I2C 

100 kbps 

Speed of 

I2C 

400 kbps 

Speed of 

I2C 

1 Mbps 

4 0.822 0.578 0.204 0.129 

5 0.884 0.656 0.224 0.137 

6 0.947 0.734 0.243 0.145 

7 1.009 0.812 0.263 0.153 

8 1.072 0.890 0.282 0.161 

Table 12. Data transfer time @ data transmission rates: 

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @ 250 kbps. 

Number 

of bytes 

Speed of 

CAN 

250 kbps 

Speed of 

I2C 

100 kbps 

Speed of 

I2C 

400 kbps 

Speed of 

I2C 

1 Mbps 

4 0.451 0.578 0.204 0.129 

5 0.482 0.656 0.224 0.137 

6 0.513 0.734 0.243 0.145 

7 0.544 0.812 0.263 0.153 

8 0.576 0.890 0.282 0.161 

Table 13. Data transfer time @ data transmission rates: 

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @ 500 kbps. 

Number 

of bytes 

Speed of 

CAN 

500 kbps 

Speed of  

I2C 

100 kbps 

Speed of 

 I2C 

400 kbps 

Speed of  

I2C 

1 Mbps 

4 0.265 0.578 0.204 0.129 

5 0.281 0.656 0.224 0.137 

6 0.296 0.734 0.243 0.145 

7 0.312 0.812 0.263 0.153 

8 0.328 0.890 0.282 0.161 
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Fig. 10. Variance of data transmission times keeping CAN at 

a constant rate and varying I2C data rates and data packet sizes. 

 

Fig. 11. Variance of data transmission times keeping CAN at 

a constant rate and varying I2C data rates and data packet sizes. 

 

Fig. 12. Variance of data transmission times keeping CAN at 

a constant rate and varying I2C data rates and data packet sizes. 

0

0.2

0.4

0.6

0.8

1

1.2

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r 

p
ac

ke
t

CAN_125KBPS and Different I2C speeds

CAN_125kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

0

0.2

0.4

0.6

0.8

1

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r 

p
ac

ke
t

CAN_250KBPS and different I2C speeds

CAN_250kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps

0

0.2

0.4

0.6

0.8

1

4 bytes 5 bytes 6 bytes 7 bytes 8 bytes

To
ta

l t
im

e
 p

e
r 

p
ac

ke
t

CAN_500 KBPS and different I2C speeds

CAN_500kbps

I2C_100kbps

I2C_400kbps

I2C_1000kbps



Building Composite Embedded Systems based Networks through . . . . 876 

 
 
Journal of Engineering Science and Technology               April 2020, Vol. 15(2) 

 

The details of data transmission times considering CAN speed of 1mbps and 

I2C speed of 100 kbps, 400 kbps, 1 Mbps varying the data packet size from 4 bytes 

to 8 bytes shown in Table 14, and the behaviour of the same shown in Fig. 13. From 

the figure, one can see that none of the I2C speeds with varying data packet size 

converges to the data transmission speeds of CAN. 

Table 14. Data transfer time @ data transmission rates: 

I2C @ 1 Mbps, 400 kbps, 100 kbps and CAN @1 Mbps. 

Number 

of bytes 

Speed of 

CAN 

1 Mbps 

Speed of 

I2C 

100 kbps 

Speed of 

I2C 

400 kbps 

Speed of 

I2C 

1 Mbps 

4 0.172 0.578 0.204 0.129 

5 0.180 0.656 0.224 0.137 

6 0.188 0.734 0.243 0.145 

7 0.196 0.812 0.263 0.153 

8 0.204 0.890 0.282 0.161 

 

Fig. 13. Variance of data transmission times keeping CAN at  

a constant rate and varying I2C data rates and data packet sizes. 

5.3.  Data buffering within the bridge 

From the data analysis presented in section 5.2 and 5.3 that varying either the 
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without any time delay achieved considering any combination of data 

transmission speeds and packet sizes. It is obvious from the analysis that there 

will be some delays caused between the reception and delay and there should be 

a proper buffering strategy to minimize or eliminate time delay between data 

reception and transmission and vice versa considering both sides of CAN and 

I2C. For achieving time convergence, the next strategy could be considering the 

multiplying effect, which means considering the data transmission speeds that 

lead to the timing of one in terms of multiple of the time of the other even 

considering the variance in the data size. The details of a multiplicity of timing 
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5.4.1. I2C side reception and CAN side transmission 

One of the best strategies is to select the communication speeds of the transmission 

and reception in such a way that time taken to receive and transmit the same failing 

which, one must try multiple of times of the other. Reviewing the details provided 

in Tables 15 to 18 considering I2C side reception and CAN side transmission, the 

minimum delay of 0.043 milliseconds caused when the transmission speed set to 1 

Mbps. However, no guarantee assured that the transmission speeds would be exact 

due to several reasons. 

Table 15. Transmission timing: CAN (1 Mbps), I2C (1 Mbps). 

Number 

of bytes 

Speed 

of 

I2C 

Time taken 

receiving 

into buffer 

(ms) 

Speed 

of 

CAN 

Time taken for 

transmission 

from the buffer 

(ms) 

Delay Multiples 

4 1 Mbps 0.129 1 Mbps 0.172 0.043 - 

5 1 Mbps 0.137 1 Mbps 0.180 0.043 - 

6 1 Mbps 0.145 1 Mbps 0.188 0.043 - 
7 1 Mbps 0.153 1 Mbps 0.196 0.043 - 

8 1 Mbps 0.161 1 Mbps 0.204 0.043 - 

Table 16. Transmission timing: CAN (500 kbps), I2C (1 Mbps). 

Number 

of bytes 

Speed 

of I2C 

Time for 

receiving 

into the 

buffer (ms) 

Speed 

of CAN 

Time taken for 

transmission 

from the buffer 

(ms) 

Delay Multiples 

4 1 Mbps 0.129 500 kbps 0.265 0.136 0.129*2=0.258 
5 1 Mbps 0.137 500 kbps 0.281 0.144 0.137*2=0.274 

6 1 Mbps 0.145 500 kbps 0.296 0.151 0.145*2=0.290 

7 1 Mbps 0.153 500 kbps 0.312 0.159 0.153*2=0.306 
8 1 Mbps 0.161 500 kbps 0.328 0.167 0.161*2=0.322 

Table 17. Transmission timing: CAN (125 kbps), I2C (500 kbps). 

Number 

of bytes 

Speed of 

I2C 

Time to 

receive 

into the 

buffer (ms) 

Speed of 

CAN 

Time to 

transmit 

from the 

buffer (ms) 

Delay Multiples 

4 500 kbps 0.204 125 kbps 0.822 0.618 0.204*4=0.816 
5 500 kbps 0.224 125 kbps 0.884 0.660 0.224*4=0.896 

6 500 kbps 0.243 125 kbps 0.947 0.704 0.243*4=0.972 

7 500 kbps 0.263 125 kbps 1.009 0.746 0.263*4=1.052 
8 500 kbps 0.282 125 kbps 1.072 0.790 0.282*4=1.120 

Table 18. Transmission timing: CAN (1 Mbps), I2C (100 kbps). 

Number 

of bytes 

Speed of 

I2C 

Time to receive 

into the buffer 

(ms) 

Speed of 

CAN 

Time for 

transmission 

from the 

buffer (ms) 

Delay Multiples 

4 100 kbps 0.578 1 Mbps 0.822 0.244 - 
5 100 kbps 0.656 1 Mbps 0.884 0.228 - 

6 100 kbps 0.734 1 Mbps 0.947 0.213 - 

7 100 kbps 0.812 1 Mbps 1.009 0.197 - 

8 100 kbps 0.890 1 Mbps 1.072 0.182 - 

The second approach is to select the transmission speeds such that the response 

time for transmission and reception will be multiples of each other in which, case 



Building Composite Embedded Systems based Networks through . . . . 878 

 
 
Journal of Engineering Science and Technology               April 2020, Vol. 15(2) 

 

the delay time eliminated by introducing the buffers equivalent to the multiplying 

factor. For example, if the multiplying factor is two, then two buffers can be used. 

Separate software architecture followed such that the Input buffers when get filled, 

the same is emptied concurrently by using multiple transmission processes. The 

transmission speed CAN (500 kbps), and I2C (1 Mbps) lead to multiples of 2 while 

the transmission speed: CAN (125 kbps), I2C (500 kbps) leads to multiple of 4. In 

any case, the delay as such eliminated by using specific software architecture.  

Figure 14 shows the proposed software architecture of the Bridge. The receiving 

side process keeps receiving the data and fills up the buffers serially one after the 

other in a cyclic fashion. Simultaneously, several transmitting processes equivalent 

to the number of buffers will concurrently read the data and place the same to output 

buffers. Further, a separate process continually and serially streams the data into 

output transmission lines, thereby eliminating any delay that exists between the 

reception and transmission. 

Reception

P1

P2

P3

P4

Transmission
(streaming)

I2C - 
Reception

CAN Transmission

 

Fig. 14. Software architecture of bridge. 

5.4.2. CAN side reception and I2C side transmission 

The above reception and transmission process equally applicable even in the case 

when CAN is on receiving side and I2C is on the transmission side. 

6.  Conclusions 

Composite embedded systems generally developed as the time evolves and through 

the interconnection of several sub-nets implemented through different 

communication systems. In such a case, networking becomes quite complex due to 

the existence of heterogeneity, especially selecting communication speeds. There 

is a requirement of reducing the time delay between the reception and transmission 

so that the network will like continuous traffic without any time delay. 
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It is not possible to match the speeds of the sub-nets contained in a composite 

network without causing a time delay. Multiplicity effect of the communication 

speeds can be conveniently used to match the transmission rates and to reduce the 

latency that exists between the reception and transmission. The multiplicity effect 

can be tackled through the concurrent transmission process and streaming the 

output into output channels continuously without the need for either stopover or 

wait times. An intelligent bridge that dynamically gets configured by choice of 

proper communication speeds and use of local buffers proposed and presented in 

this paper makes the heterogeneous sub-nets get interconnected seamlessly as if a 

single homogenous network is functioning 

The minimum delay time is 0.129 milliseconds considering any combination of 

speeds selected for effecting the communication through CAN and I2C. The delay 

time is negligible when the speed of CAN is multiples of I2C and vice versa. When 

1 Mbps speed selected for both CAN and I2C, the delay is 0.043 milliseconds, 

which is the least delay caused. However, in practice, it is quite tough to match 

exact speeds. 

The transmission speed CAN (500 kbps), and I2C (1Mbps) lead to multiples of 

2 while the transmission speed: CAN (125 kbps), I2C (500 kbps) leads to multiple 

of 4. The delay caused when multiple of 2 is selected is 0.136 milliseconds while 

0.618 milliseconds of delay caused when multiple of 4 is selected. The delay as 

such, avoided by selecting as many concurrent processes for transmission 

equivalent to the number of buffers chosen. The number of buffers the same as the 

multiples is the best choice. 

 

Abbreviations 

 

CAN Controller Area Network  

ES Embedded System 

GPS Global Positioning System 

I2C Inter-Integrated Circuit 

IIOT Industrial Internet of Things 

IoT Internet of Things 

RS232C Standard Serial Interface 

RS485 Standard defining the electrical characteristics of drivers and 

receivers for use in serial communications 

SPI Serial Peripheral Interface 

USB Universal Serial Bus 

VLSI Very Large-Scale Integration 
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