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Abstract 

Uncertainty analysis was developed in the TRISO TRIAC-BATAN fuel 
performance code including the Latin Hypercube Sampling (LHS) and Standard 
Random Sampling (SRS). The study of the comparison of the two uncertainty 
analyses was also carried out. One of the main challenges for improving the 
performance of Tristructural-Isotropic (TRISO) fuels is the ability to 
accommodate uncertainties related to TRISO fuel design. In addition to SRS, the 
LHS method was added because it allows for the extraction of information in 
sufficient quantities with a relatively small sample size that is suitable for 
challenges in analysing the performance of TRISO fuels. In this study, LHS and 
SRS are used as sampling methods, while uniform and triangle probability 
density (PDF) functions are used to represent the characteristics of uncertainty 
from design data. It was found that LHS was better than SRS in terms of 
representing PDF uncertainty. However, in the TRISO fuel performance analysis, 
the LHS results with a higher standard deviation compared to the SRS method. 

Keywords: Latin hypercube sampling, Standard random sampling, TRISO 
fuel performance. 
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1.  Introduction 
In designing the Experimental Power Reactor (RDE) [1], the Indonesian National 
Nuclear Energy Agency (BATAN) must also pay attention to fuel safety analysis. 
Therefore, the safety analysis code for the performance of tristructural-isotropic 
(TRISO) based fuels has been developed [2]. The code is equipped with a Latin 
Hypercube Sampling (LHS) module for uncertainty analysis. This module is 
applied because of the characteristics of TRISO-based fuel design that have 
uncertainty in its dimensions [3] and are based on earlier versions developed 
using Java [4]. Therefore, it is important to analyse how uncertainty will affect 
fuel failure fraction. 

In terms of uncertainty analysis, several previous studies have been carried out 
in various fields. Chen et al. [5] analysed randomness of gravel flow in the HTR 
type reactor and its effect on reactor key parameters. In addition, Chen et al. [6] 
also investigated the uncertainty of the filling fraction of gravel beds. This 
uncertainty will also affect key parameters. In the research activity, Chen et al. [6] 
used the uncertainty probability distribution function of the experimental results in 
conjunction with theoretical analysis using several sampling methods namely 
important sampling, simple random sampling (SRS) and LHS. 

Uncertainty analysis has also been applied to the aerospace industry for design 
optimization [7], geological disposal of radioactive waste [8], as well as land 
mapping [9-11]. Among many applications, the LHS method in various types 
shows excellence among other sampling methods. By using LHS, a small number 
of samples are sufficient to run the simulation [12]. This is due to the ability of LHS 
in taking samples, which are distributed evenly throughout the area of interest [13]. 

In general, the uncertainty analysis can be classified into forward and inverse 
analysis [14]. Forward analysis (uncertainty propagation) concern on quantifying 
the output as a consequence of the uncertainties in the input. On the other hand, 
inverse analysis (model calibration) is used to identify the unknown variables at 
the input using the mathematical models. From this perspective, TRIAC-BATAN 
equipped by the sampling module concerns only on investigating the failure 
fraction of the TRISO-based fuel due to the uncertainties in its dimensions. 
Because of TRIAC-BATAN [2] was developed based on PANAMA [15, 16], 
consequently, only dimensional characteristics of TRISO particle are suitable for 
uncertainty analysis. 

2.  Design of the Uncertainty Module 
The sampling module applied in the TRIAC-BATAN provides uniform and 
triangle types of distributions. Before the main TRIAC-BATAN calculation is 
conducted, the user must choose the option whether or not sampling will be used. 
The user is also required to provide an option whether LHS or SRS will be used.  

The difference between LHS and SRS in TRIAC-BATAN lies in the Pm 
calculation. Only LHS needs to calculate Pm. If the sampling module is used, 
TRIAC-BATAN will generate samples as required.  

For each sample, TRIAC-BATAN calculates a single value of the TRISO failed 
fraction. Then TRIAC-BATAN will produce failed fraction as many as samples 
that are inserted by the user. 
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Interaction between the additional uncertainty sampling method and the main 
TRIAC-BATAN calculation is shown in Fig. 1. The green line in Fig. 1 represents 
the sampling module. Though the sampling module is drawn in an integrated 
manner with the main TRIAC-BATAN calculation, it can be used separately for 
other purposes if there is a suitable interface provided. 

 
Fig. 1. Flow chart of TRIAC-BATAN with 
additional uncertainty sampling module. 
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Variable Pm is intended to distribute the sample along the physical parameters 
containing uncertainty. It can be denoted as Eq. (1). r is the random number 
between 0 and 1, i is the sequence of sample and n is the number of samples 
involved. The index i has the possible value of 0 up to n. 

𝑃𝑃𝑚𝑚 = 𝑟𝑟+𝑖𝑖
𝑛𝑛

                                                                                                                (1) 

After that, the value of Pm will be converted to x, which is the sampling value. 
Converting function will vary from one distribution to another distribution. In the 
case of uniform distribution, where the sample will be distributed equally along 
with the range of uncertainty, the converting function is denoted as Eq. (2). Max 
and min are the maximum and minimum value of the uncertainty range 
respectively, with x as the resulting sample value. 

𝑥𝑥 = 𝑃𝑃𝑚𝑚(𝑀𝑀𝑀𝑀𝑥𝑥 −𝑀𝑀𝑀𝑀𝑀𝑀) + 𝑀𝑀𝑀𝑀𝑀𝑀                                                                                  (2) 

For triangular distributions, there are two areas that must be represented by 
different equations, namely the left and right sides of the midpoint, as shown in Fig. 
2(a). Whether the sample is assigned to the left or right of that point depends on the 
distribution itself. The distribution of triangles can be represented by the parameter k. 
If Min = Mid, then k = 0.0 and the triangle will have the shape, which is shown in 
Fig. 2(b). On the other hand, if Mid = Max, then k = 1.0 and the triangle will have the 
shape, which is shown in Fig. 2(c). Otherwise, k will be denoted as Eq. (3). 

 
Fig. 1. Variation in a triangular shape that affects the value of k. 

𝒌𝒌 = (𝑴𝑴𝑴𝑴𝑴𝑴−𝑴𝑴𝑴𝑴𝑴𝑴)
(𝑴𝑴𝑴𝑴𝑴𝑴−𝑴𝑴𝑴𝑴𝑴𝑴)

                                                                                                                 (3) 

If Pm ≤ K, then the value of x equal to Eq. (4). On the other hand, if Pm > K, then 
the value of x equal to Eq. (5).  

𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑀𝑀 + �𝑃𝑃𝑚𝑚(𝑀𝑀𝑀𝑀𝑥𝑥 −𝑀𝑀𝑀𝑀𝑀𝑀)(𝑀𝑀𝑀𝑀𝑀𝑀 −𝑀𝑀𝑀𝑀𝑀𝑀)                                                          (4) 

𝑥𝑥 = 𝑀𝑀𝑀𝑀𝑀𝑀 + �(1 − 𝑃𝑃𝑚𝑚)(𝑀𝑀𝑀𝑀𝑥𝑥 −𝑀𝑀𝑀𝑀𝑀𝑀)(𝑀𝑀𝑀𝑀𝑥𝑥 −𝑀𝑀𝑀𝑀𝑀𝑀)                                             (5) 

Figures 3(a) and (b) present the distribution of 1000 samples using a uniform 
distribution. They are sampled with LHS and SRS respectively. The 1000 samples 
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are then divided into 50 classes with 20 samples for each class. The figures show 
the number of samples exists in each class. Figure 3(a) shows that each class 
contains 20 samples. While Fig. 3(b) shows that only the 32nd, 48th and 50th classes 
contain 20 samples. 

While Figs. 4(a) and (b) show the distribution of 1000 samples using triangle 
distribution, which is sampled with LHS and SRS respectively. The 1000 samples 
are also divided into 50 classes as previously shown in Figs. 3(a) and (b). From 
Figs. 3 and 4, we can conclude that LHS performs better in sampling with certain 
distribution than SRS does.  

Figure 5 presents the structural relationship between the distribution class of 
Uniform and Triangle with their superclass triac LHS. While Fig. 6 presents the 
interaction between main TRIAC-BATAN class with the sampling module shown 
in Fig. 5. The LHS calculation is an interface to the sampling module, even when 
we do not use TRIAC-BATAN application. 

 
Fig. 3. Distribution of 1000 samples using uniform distribution: 

(a) LHS and (b) SRS. 

 
Fig. 4. Distribution of samples using triangle distribution: 

(a) LHS and (b) SRS. 
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Fig. 5. Class diagram of the TRIAC-BATAN sampling module. 

 
Fig. 6. Interaction between main TRIAC-BATAN 

class with the sampling module. 

Based on Fig. 6, the user must provide the nominal physical parameters that 
contain uncertainty. In the case of TRIAC-BATAN, the only physical parameters 
that have uncertainty are those related to the dimensions of the TRISO particles. 
Then, the nominal values supplied to the sampling module are the dimensions of 
OPyC, SiC, IPyC, buffer and kernel layer as illustrated in Fig. 7. In Fig. 6, this 
condition is represented by the sequence of number 3 to 7. 

To use TRIAC-BATAN with sampling module, the user is required to supply 
several parameters related to the uncertainty of the physical parameter in addition 
with several samples and the type of distribution. The parameters are supplied 
through the same input file as described by Waskita and Setiadipura [2] with 
additional uncertainty value. For each nominal value, there are three additional 
values, namely the value of uncertainty, the type of distribution (uniform or 
triangular) and variance (in case the user needs to use a normal distribution). 
However, the normal distribution has not been implemented and will be added in 
the next version of this sampling module. The last value is the number of samples 
that is necessary to be simulated. Consequently, if using the sampling module is 
selected, each TRISO particle will be simulated with the same number of samples. 
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Fig. 7. The illustration of TRISO particle [17]. 

3.  Results and Discussion 
In this study, irradiation and accident history were used as previously simulated [2]. 
Additional data was the uncertainty of the thickness of the TRISO layer as 
described in the simulation that was conducted with 100 samples. Each TRISO 
layer was given the same treatment. This means that in one simulation, each TRISO 
layer will have the same distribution and sampling method. The distribution of 
nominal and uncertainty of each TRISO layer are presented in Table 1. 

Table 1. Nominal and uncertainty of each TRISO layer. 
 Nominal Uncertainty 
Kernel 2.55e-04 5.00e-06 
Buffer 3.45e-04 4.40e-06 
IPyC 3.85e-04 1.00e-05 
SiC 4.20e-04 2.60e-06 
OPyC 4.60e-04 1.00e-05 

The TRISO fraction that fails will vary from time to time, based on the timeline 
of the accident [2]. As a result, different samples will produce different failed 
fractions at different times. The following figures show the average value of a failed 
fraction with a standard deviation. In this study, the authors assume that each 
TRISO layer will have distribution in their own uncertainty. Using 100 samples, 
failed fraction of TRISO particles with uniform distribution either with LHS or SRS 
are depicted in Figs. 8(a) and (b). They represent failed fraction mean value and its 
standard deviation (σ) respectively. The value of σ shown in Fig. 8 is presented 
numerically in each timeline. It shows that LHS produce higher σ than SRS for 
uniform distribution. 

On the other hand, failed fraction of TRISO particles with triangle distribution 
either with LHS or SRS are depicted in Figs. 9(a) and (b). They represent failed 
fraction mean value and its σ value respectively. The value of σ shown in Fig. 10 
is presented numerically in each timeline. It shows that LHS produce higher σ than 
SRS for uniform distribution. With two different distributions, LHS and SRS show 
the same result. The standard deviation of failed fraction obtained by using LHS is 
larger than SRS and uncertainty data with triangle distribution will have a smaller 
standard deviation compared to uniform distribution as shown in Fig. 10. These 
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results are different from the utilization of LHS and SRS on uncertainty analysis 
on pebble bed loss of cooling accident [17, 18]. 

 
Fig. 8. Failed fuel fraction using uniform distribution: (a) LHS and (b) SRS. 

 
Fig. 9. Failed fuel fraction using triangle distribution: (a) LHS and (b) SRS. 

 
Fig. 10. Comparison of standard deviation from different 

sampling method and uncertainty data distribution. 
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The following data plot is obtained by using a much larger number of samples 
each about 10000, 50000 and 100000. Figures 11(a) and (b) concern on how the 
distribution of samples affects the TRISO failed fraction.  

Based on the above results, we can conclude that the fuel performance of the 
equipment is typically good. This can solve the current problems regarding non-
renewable energy [19, 20]. However, the analysis must be further done to make 
optimum condition and applicable for realistic apparatus [21, 22]. 

 
Fig. 11. Failed fuel fraction with higher sample data: 

(a) LHS and (b) SRS. 

4.  Conclusions 
Development of uncertainty analysis in the TRISO fuel performance analysis, 
TRIAC-BATAN, has been successfully conducted. By using the sampling 
module, either LHS or SRS, the obtained samples can be adjusted to follow the 
certain distribution, which is well-fitted with the physical parameter considered. 
When the sampling module was integrated with TRIAC-BATAN, it can be used 
to examine how the failed fuel fraction of a TRISO will work with the uncertainty 
on the TRISO design parameter. It was found that the LHS method will give a 
higher standard deviation compared to SRS, although LHS is better in 
representing the probability density function of the uncertainty data. With the 
uncertainty analysis module, TRIAC-BATAN is ready to be used as a better 
simulation tool for TRISO fuel performance analysis by accommodating the 
uncertainty data of the fuel design. 
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