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Abstract 

This paper deals with the application of the multivariable linear system Matrix 

Fraction Description (MFD) theory for the identification of the Left Linear 

MIMO ARX turbo-compressor model based on Extended Least Square (ELS) 

estimator. Indeed, the identification of studied system model parameters is 

achieved using the experimental (inputs/outputs) data, which have been obtained 

by measurement on site where the main aim is to ensure the selection of the best 

model with minimum order. For the validation of the obtained results, a 

comparative study has been performed with the Hammerstein-Wiener model 

based on validation criteria where the reliability of the obtained model is taken 

into account. Finally, a right/left block solvent in several canonical forms have 

been assigned to present a comparative study, where the objective to ensure the 

stability enhancement of the dynamic behaviour of the studied turbo-compressor. 

Keywords: ARX, Extended Least Square, Gas Turbo-compressor, Hammerstein-

Wiener model, Linear system, Matrix Fraction Description (MFD), 

Solvents, Stability, System identification. 

 

 

1.  Introduction 

The rotating machines used in oil & gas industrials are presenting the backbone of 

the whole production processes used in these important industrial plants. In this 

context, the centrifugal compressors that are among the vital rotating machines 

driven by gas turbines, whereas these machines are designed to operate 

continuously over a long period of time. A centrifugal compressor is a high-speed 
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Nomenclatures 
 

A Dynamic (system) matrix  

B Controllability matrix 

C Observability matrix 

D Coupling matrix 

d Number of estimated parameters  

l Number of blocks  

m Model inputs 

n Model order 

N Number of values in the estimation data set 

P1 Aspiration pressure, kg/cm2  

P2 Discharge pressure, kg/cm2  

P Model outputs 

q-1 Delay operator   

R Real numbers 

T1 Aspiration temperature, °C 

T2 Discharge temperature, °C  

V Loss function 

x State 

y Output signals 

ŷ  Estimate output signals 

 

Greek Symbols 

 Matrix of parameters  

 Matrix of information  
 

Abbreviations 

ARX Autoregressive with exogenous excitation 

AIC Information criteria  

ELS Information criteria  

FPE Final prediction error 

LMFD Left matrix fraction description 

MFD Matrix fraction description 

MIMO Multi inputs multi outputs  

NLHW Nonlinear Hammerstein-wiener model 

RMSE Normalized root mean squared error 

VAF Variance accounting for 

rotating machine (approximately 6,000 to 30,000 rpm) in which one or more wheels 

provide the energy required to transfer the gas. When this energy has to be 

important, it is necessary to provide several wheels (multi-cellular), this sometimes 

leads to multi-stage machine solutions. The speed of rotation of the wheel subjects 

the gas to a centrifugal force, which results in an increase in speed, pressure and 

temperature in the wheel. The diffuser and the return channel allow to bring the gas 

back into the next wheel by gaining more pressure compared to that of the wheel 

outlet by slowing down the speed of the gas. Before applying any control law to 

the centrifugal compressor, it is important to find their mathematical model, which 

represent all the behaviour dynamics.  
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More recent research have been done and published along the recent years about 

the modelling and the stability of the centrifugal gas compressor dynamics such as  

the analytical model of centrifugal compressor validation based on experimental data 

[1], the turbulence model predictions assessment for an aero-engine centrifugal 

compressor [2], the prediction and measurement of centrifugal compressor axial 

forces during surge  part 2 [3], the centrifugal compressor stability prediction using a 

new physics based approach [4], the analysis of the effects of pulsations on the 

operational stability of centrifugal compressors in mixed reciprocating and 

centrifugal compressor stations [5], the control of an ultrahigh-speed centrifugal 

compressor for the air management of fuel cell systems [6], the stability improvement 

of high-pressure-ratio turbocharger centrifugal compressor by asymmetric flow 

control in centrifugal compressor [7], and the design improvement of a high pressure 

casing with the help of finite element analysis to ensure the rotor dynamic stability of 

a high pressure centrifugal compressor equipped with a hole pattern seal [8]. 

The use of physical or mechanical laws is not always obviously, and is not the 

objective of this work. However the system identification presented in this paper 

focuses on the problem of obtaining "approximate" models of dynamic systems 

based on real measured input/output data, which is often sufficient to achieve 

control goals in advanced engineering application. The majority of the researches 

that have been done on modelling the gas turbo-compressor are mainly based on 

the artificial intelligence theory (Fuzzy Logic, ANFIS and Neural Network, etc.). 

Among the disadvantages of these models are the control difficulty and the 

instability problem, furthermore, there are limitations of applying the advanced 

control theories due to the lack of the mathematical model. Indeed, there are many 

results that have been published in the recent years on the modelling of the gas 

turbo-compressor the and gas turbine such as the modelling of gas turbine based on 

fuzzy clustering algorithm via experimental data [9], the centrifugal compressor 

control and modelling used in gas transportation systems [10], the modelling of the 

centrifugal compressor using fuzzy logic [11], the adaptive control of centrifugal 

compressors [12], and others [13, 14]. On the other hand, the parametric system 

identification based on the estimation theory is the main tool which is used in this 

paper, where the main objective to find an approximate model that represents all 

the behaviour of the inputs/outputs signals of the studied gas turbo-compressor.  

A recent paper has been published on MIMO system identification methods 

using the left and right matrix fraction description such as, optimal instrumental 

variable identification method for LMFD models [15], extending the SRIV 

algorithm to LMFD models [16], MIMO discrete-time systems identification using 

an observable canonical-form [17], and others [18, 19]. In the same time, there are 

many theories research that are focusing on the nonlinear systems parametric 

identification, as an example, the nonlinear ARX model and the parametric 

identification based on the Hammerstein-Wiener model, which produces a 

nonlinear model that will be used in this study as comparison example. Some 

interesting papers published in this area such as the nonlinear ARMAX 

Hammerstein systems identification [20], the parametric identification of parallel 

Hammerstein systems [21], the wiener Hammerstein system Identification based 

on the polynomial nonlinear state space algorithm [22], and others [23-25].  

This work aims to identify and model the behaviour of gas turbo-compressor, 

which is installed in the natural gas field of Hassi R’Mel located at the south of 
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Algeria. The used parametric multivariable ARX model is obtained via the extended 

least square estimator based on Left matrix fraction description theory (LMFD) using 

experimental data, this multivariable model consists of two inputs, the aspiration 

temperature and pressure (T1, P1) and two outputs, the discharge temperature and 

pressure (T2, P2). The validity of the model order has been achieved with the 

checking of many criteria validations such as AIC/FPE and RMSE/VAF [26, 27]. In 

this paper to achieve the objective of ensuring the control and the stability of the 

dynamic behaviour, the block solvents placement based on the theory of the MFD 

has been applied [28, 29]. Furthermore, has been presented for the selection of the 

best form of the solvents in the left or right block Vandermonde. 

The present paper is organized as follows: firstly, some preliminaries about 

Matrix Faction Description (MFD) are presented in the second section. The theory 

of extended Least Square based on MFD is presented in third section, whereas the 

fourth section introduces briefly the Hammerstein-Wiener model identification, 

and some validations criteria formulas. Finally, the last section presents the 

obtained results discussions and comments, the perspectives and a conclusion. 

2.  Matrix Fraction Description based method 

Matrix Faction Description (MFD) is a representation of a matrix transfer function 

of a multivariable system as a ratio of two polynomial matrices. An introduction to 

matrix polynomials and MFD properties are given in [30-33]. The MFD approach 

is based on the fact that the Transfer Function Matrices and a MIMO system which 

can be described by the vector equation can be represented as ratio of two 

polynomial matrices. 

1 1[ ] ( ) [ ] ( ) [ ]y k G q u k H q e k                                                                              (1) 

However, because matrices do not commute in general, it is noted that there are 

two representations for the transfer function matrix or 1( )H q as a ratio of 

two polynomial matrices, which are: 

 Right Matrix Fraction Description (RMFD) 

1 1 1 1( ) ( ) ( )G q C q D q                                                                                            (2) 

 Left Matrix Fraction Description (LMFD) 

1 1 1 1( ) ( ) ( )G q A q B q                                                                                                (3) 

and 1 1( )A q  , 1( )C q and 1( )D q are matrix polynomials, which have the  

following structures: 

1 1

1

1 1

0 1

1 1

0 1

1 1

1
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( )   

( )   

( )   

na

p na

nb
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nc

nd

m nd

A q I A q A q

B q B B q B q

C q C C q C q

D q I D q D q

  

  

  

  

   

   

   

  










                                                                     (4) 

and the matrix coefficients have the following dimensions:  

, ,p p p m m p

i i i
A R B R C R     And m m

i
D R   

1( )G q
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3.  Extended Least Squares Based on Left MFD 

A MIMO ARX (Autoregressive with Exogenous Excitation) model is given by: 

1 1( ) [ ] ( ) [ ] [ ]A q y k B q u k e k                                                                                  (5) 

which can be rewritten in Left MFD form as: 

1 1 1 1 1[ ] ( ) ( ) [ ] ( ) [ ]y k A q B q u k A q e k                                                                   (6) 

where [ ] mu k R  and p m

i
B R   are inputs and outputs vectors of the system 

respectively, while [ ] pe k R is a white-noise signal and the polynomial matrices

1 1( )A q  , 1( )B q  have the following structures: 

1 1

1
( )    na

p na
A q I Aq A q                                                                               (7) 

1 1

1
( )   nb

nb
B q B q B q                                                                                       (8) 

The objective is to identify the matrix coefficients p p

i
A R   and p m

i
B R  of 

the matrix polynomials 1 1( )
p

qC I   and 1( )B q assuming in this case that 

1 1( )
p

qC I   . Taking the transpose of Eq. (5) and expanding 1 1( )A q  and     

1( )B q , the following expressions are obtained: 

   1 1
[ ]    [ ] [ 1] [ ] [ 1] [ ]

[ ]    [ ] [ ]

T T T T T T T T T T

na nb

T T T

e k y k y k A y k na A u k B u k nb B

e k y k k 

        

 

    (9)  

where 

[ ] [ [ 1] ... [ ], [ 1] ... [ ]]T T T T T

a b
k y k y k n u k u k n         

1 1
,

T
T T T T

na nb
A A B B      

The estimator is based on least squares, which is given as follows: 

 
1ˆ T T

ls
Y



                                                                                                (10) 

where, Y and  are functions of y and u, Hence: 
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    

 
 

  

                                                  (11) 

where,
a

n and M are the numbers of (Inputs/Outputs) data. 

4.  Hammerstein-Wiener Model Identification  

A relatively simple way to represent the nonlinear behavior of a system based on 

the use of base models of structured blocks i.e. the combination of two basic blocks: 
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a nonlinear static element and a linear dynamic element. Among these models, there 

are the Hammerstein model, the Wiener model, the model of Wiener-Hammerstein, 

the Hammerstein-Wiener model [24]. The Hammerstein model presented in Fig. 1 

(surrounded with blue), is composed of a nonlinear static element in cascade with 

a linear dynamic block. The input signal begins with the nonlinear static model to 

give the intermediate output signal, where itself is transformed by the linear 

dynamic part to give the output of the model. The non-linear element can explain 

the type of the actuator non-linearity and other effects that can be placed at the input 

of the model. Despite their simplicity, the Hammerstein models has been proved to 

have the ability to represent a large variety of nonlinear systems, for example, a 

chemical reactor, power amplifier, etc.  

The permutation of linear and non-linear in the Hammerstein model leads to 

Wiener models. Its structure is shown in Fig. 1 (surrounded with green). Wiener 

models has been proved suitable for characterizing and using a linear model of the 

dynamic behavior of a system in which the sensor has a nonlinear character. The 

combination of a Hammerstein model and a model of Wiener, develops a new type 

of structure, Hammerstein-Wiener Fig. 1. A Wiener-Hammerstein model type can 

also be obtained on the same principle but in reverse order models. Hammerstein-

Wiener models has been proved to be suitable for characterizing a system in which 

the actuator and sensor have a nonlinear character [25]. It has been successfully 

applied to the modelling of several industrial systems and process among them the 

turbo-compressor that is the subject of the study presented in this work.  

 

Fig. 1. Schematic block diagram of a Hammerstein-Wiener model. 

In Fig. 1, the input data u(k) is  transformed by a nonlinear function which yields 

to ( ) ( ( ))w k f u k , ( )w k is of the same size as ( )u t which is transformed once more 

to a linear  function ( ) ( )
B

x k w k
F

 , where ( )x t is of the same size as ( )y k , B and F 

are two  linear polynomials in the  output-error model, the transfer function matrix 

is  a linear block of ny outputs and nu inputs containing entries: 

( )

( )

jj

jj

B z

F z
, where j =1,2 ,... ,ny and i=1,2,...,nu.                                                     (12) 

the output of the system is obtained by: ( ) ( ( ))y k h x k which has a nonlinear behaviour. 

Furthermore ( )w k and ( )x k  present the input/output of the linear block internal 

variables [34].  

The Hammerstein-Wiener model calculates the output y in three steps: 

a. Computes ( ) ( ( ))w k f u k which presents the nonlinear input configured 

from the input data, it can take many functions forms as dead zone, 

saturation, wavelet network, sigmoid network, piecewise linear function, a 

custom network or one-dimensional polynomial. 
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b. Calculates the output of the linear block and using the initial conditions 

based on the signal ( )w k : ( ) ( )
B

x k w k
F

 , the linear block configured by 

adjusting the numerator B /denominator F polynomials orders. 

c. Transforms the output of the linear block ( )x k  in order to compute the model 

output, using the nonlinear function h: ( ) ( ( ))y k h x k , Similar to the input 

nonlinearity, the output nonlinearity is a static function. The output 

nonlinearity can be configured in the same way as the input nonlinearity. 

Whereas, the output nonlinearity can be removed, such that ( ) ( )y k x k . 

The model obtained with Hammerstein Wiener model can be written in the form 

of nonlinear State-space: 

       

       

1x k Ax k Bu k Ke k

y k Cx k Du k e k

   


  
                                                                      (13) 

5.  Model Validation 

In literatures many important validations criteria can be found such as [26, 27]: 

5.1.  AIC 

The Akaike Information Criterion for an estimated model: 

2
( )

d
AIC Ln V

N
                                                                                                (14) 

V is the loss function, d is the number of estimated parameters and N is the number 

of samples in the estimation data set. 

5.2. FPE 

The Akaike’s Final Prediction Error (FPE) is defined by: 

1

1

d

NFPE V
d

N

 
 

  
  
 

                                                                                                 (15) 

d and N are the same as in Eq. (14) 

5.3.  RMSE  

The normalized root mean squared error, which is given by the following expression: 

 
2

1
ˆ

n

i
y y

RMSE
N







                                                                                 (16) 

5.4.  VAF 

Variance Accounting for (VAF) is defined as follows:  

ˆ( )
100% 1

( )

var y y
VAF

var y

 
  

 
                                                                           (17) 



Parametric Identification and Stabilization of Turbo-Compressor Plant . . . . 1857 

 
 
Journal of Engineering Science and Technology               June 2018, Vol. 13(6) 

 

The best system order n corresponding to minima of AIC, FPE, RMSE and 

maximum of VAF. 

 

6.  Application and Results 

The system under study is a gas Turbo-compressor which is installed in Hassi R'mel 

Natural gas pumping station, it is composed  of two inputs  T1 and P1 (aspiration 

temperature and pressure) and two outputs T2 and P2 (discharge temperature and 

pressure), Fig. 2 shows the schematic bloc diagram of the inputs/outputs signals 

and the turbine which drives the studied compressor, and the internal detailed 

description with the fundamental components are shown in Fig. 3. The size of the 

real data obtained in site and which is used for the identification is 1208 samples 

taken along a duration of 1208 hour, this data is obtained by measurement on site 

based on many experiments. 

6.1.  Validation and numerical model  

The parametric identification of the Left MIMO ARX model is obtained based on 

Extended Least Square estimator (LMFD_ARX) and (MFD) theory, where the 

model that has been selected must have an even order (2, 4, 6…) because each 

matrix block q have a dimension of 2×2. Table 1shown below clarifies the change 

of the orders n until the best one is reached. From the results shown in the Table 1, 

it can be concluded that the best model which fits the minima of AICs, FPEs, 

RMSEs, the maximum of VAF validations criteria, and the minimum loss function 

without Pole/Zero cancellation (left coprime) is the model shown in Table 1 (row 

5) which has an order n = 10 with number of blocks l = 5 and the second model is 

presented in presented (row 6), The best model is the one which has an order n =12 

with number of blocks l = 6. 

Table 1 Turbo-compressor system model  

orders with validations criteria respectively. 

           LMFD ARX                                  Hammerstein-Wiener 

l n 

L
o

ss
 F

u
n

 

A
IC

 

F
P

E
 

R
M

S
E

 

V
A

F
 (

%
) 

L
o

ss
 F

u
n

 

A
IC

 

F
P

E
 

R
M

S
E

 

V
A

F
 (

%
) 

N
o

rm
 

It
er

a
ti

o
n

s 

1       2 

2       4 

3       6 

4       8 

5      10 

6      12 

5.4385   1.7200     5.5826     1.7200       82.5000 

1.9967   0.7445     2.1024     1.7200       85.9050 

1.1045   0.1789     1.1923     1.7200       87.6550 

1.0263   0.1319     1.1350     1.7200       87.7750 

0.9927   0.1251     1.1242     1.7200       87.8050 

0.9932   0.1420     1.1395     1.7200       87.0010 

8.1532     2.2610   9.5732   2.8534    56.7800   90.1462    20 

6.0217     2.1033   7.8760   1.7350    79.8000  53.0829    20 

4.1530     1.6401   5.1214   1.6531    81.1214  70.1324    20 

3.6337     1.6247   4.8489   1.4921    82.7300  85.4198    20 

1.6788     0.7503   2.1134   1.1786    85.4100  20.6605    20 

0.9541      0.3139   1.2984   0.9902   87.6550   16.1805    20 

The comparison study between the two models, the linear and the nonlinear 

models based on the validations criteria leads to the results shown in Table 1. From 

Fig. 4, 5, 8 and 9, it can be seen clearly that the two models are approximately 

equal, due to the absence effect of the nonlinearity phenomena in acquired data. 

Hence, the linear model is preferable to the nonlinear one, and the low order model 

(n=10) is more suitable to the model of the high order (n=12). 
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The selected model of the studied gas turbo-compressor system from the 

comparison study is a linear model, which is presented, in state space block 

observable canonical form, it is given as follow: 

5

4

3

2

1

Z Z Z Z A

I Z Z Z A

A Z I Z Z A

Z Z I Z A

Z Z Z I A

 
 

 
  
 

 
  

, 

5

4

3

2

1

B

B

B B

B

B

 
 
 
 
 
 
 
 

, 
T

Z

Z

C Z

Z

I

 
 
 
 
 
 
  

, D Z , 
1    0

0   1 
I

 
  
 

0    0

0    0
Z

 
  
 

 

yield,  

0 0 0 0 0 0 0 0 0.0152 0.0185

0 0 0 0 0 0 0 0 0.0389 0.0436

1 0 0 0 0 0 0 0 0.0666 0.0696

0 1 0 0 0 0 0 0 0.0881 0.1080

0 0 1 0 0 0 0 0 0.0959 0.0784

0 0 0 1 0 0 0 0 0.0508 0.0701

0 0 0 0 1 0 0 0 0.0171 0.0319

0 0 0 0 0 1 0 0 0.1294 0.0158

0 0 0 0 0 0 1 0 0.0052 0.0145

0 0 0 0 0 0 0 1 0.0699 0

A









.0038

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,

0.0245 0.0262

0.0686 0.0045

0.0219 0.0425

0.0199 0.0710

0.0820 0.2317

0.1615 0.1233

0.1762 0.0941

0.3274 0.1871

0.0857 0.2576

0.0801 0.0413
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 
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 
 
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 
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 
 
 
   

,

0 0
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Fig. 2. Schematic bloc diagram of gas turbo-compressor  

with inputs/outputs model identification. 

 
Fig. 3. The studied gas turbo-compressor, internal viewing  

with detailed description of their fundamental components. 
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6.2.  Inputs outputs and error signals 

Through the measured and the estimated outputs signals shown in Figs. 4 and 5, it 

can be seen clearly that the estimated discharge Pressure P2 tracks the measured along 

the time of measurement, from 0 kg/cm2 up to 100 kg/cm2 during 40 hours. The same 

thing is obtained for the estimated discharge Temperature T2 which tracks the 

measured signal, from 0 °C up to 120 °C during 50 hours. Figure 6 represents the 

signal input T1, where variation of the aspiration temperature is shown from 58 °C 

up to 65 °C, and Fig. 7 represents the aspiration pressure (P1) variation from 55 

kg/cm2 up to 68 kg/cm2. The outputs errors signal validation shown in Figs. 8 and 9, 

it is clear that the signal error of discharge pressure is bounded between ± 2.5 kg/cm2, 

and converges when the time reaches it maximum, the signal error of discharge 

temperature is bounded between ± 2.5 °C, where it converges. 

The effects of aging or failure of mechanical components in dynamical systems 

through time appear randomly. Indeed; in the field of turbo-machinery, especially 

in turbo-compressor where the loss in modelling phenomena due to the degradation 

in the components and also the difficult climatic conditions in the desert which 

affect the dynamics of this system. Thus, the stability and the performance 

robustness of the obtained dynamical model of the turbo-compressor under 

structural uncertainties have been analysed using zero-pole map analysis method in 

order to measure the robustness of the obtained model against the uncertainties. The 

system under the injection of the 10% uncertainty to the nominal model the pole-

zero map in Fig. 10 shows that the system maintains all-important keys where the 

real part of the poles rest in the left half plan and the system controllability and 

observability are also maintains, this study shows that the robustness of the 

proposed model is well suitable. 

 
Fig. 4. Outputs signals of estimated/        Fig. 5. Outputs signals of estimated/              

     measure discharge Temperature.                measured discharge pressure. 

 
Fig. 6. Input signal of aspiration                     Fig. 7. Input signal of aspiration 

                    temperature.                                                      pressure. 
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Fig. 8. Error signal of measured                Fig. 9. Error signal of measured/     

      / estimated discharge pressure.                   discharge temperature. 

 

Fig. 10. Pole-zero map of the nominal and the  

uncertain model of the turbo-compressor system. 

7.  Block Solvents Assignment Dynamic Control 

This algorithm is an extension of classical pole placement using the theory of 

matrix fraction description, this numerical application   gives the necessary steps 

and results without equations [28, 29]. 

Consider the system, which is described by the following dynamic equation: 

( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t Du t

 


 
                                                                                         (18) 

where, n nA R  , n mB R  , p nC R  and p mD R  , n=10, m=2and p=2. 

The system can be transformed to a block controllable form, where: 

 The number 
10

5
2

n
l

m
   is an integer. 

 The matrix  2 3 4           
c

W A AB A B A B A B  is of full rank 10. 
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  

1

1
2 2 3 4

3

4

,  

cl

cl

c cl cl

cl

cl

T

T A

T T A T Z Z Z Z I B AB A B A B A B

T A

T A



 
 
 
  
 
 
 
 

 

The new system becomes: 

( ) ( ) ( )

( ) ( )

c c

c

x t A x t B u t

y t C x t

 



 

with, 1 1, ,
c c c c c c c

A T AT B T B C CT     

5 4 3 2 1

,  
c c

Z I Z Z Z Z

Z Z I Z Z Z

A Z Z Z I Z B Z

Z Z Z Z I Z

Ac Ac Ac Ac Ac I

   
   
   
    
   
   

         

,  5 4 3 2 1c
C Cc Cc Cc Cc Cc  

where, 

4.4447  3.9169
1

12.6792 15.7734
Ac

 
 
   ,  

15.4001 34.8676
2

106.9661 75.4377
Ac

 
 
   , 

138.4403   1  16.2885
3

255.8348 125.7872
Ac

 
 
    

  262.4191     1  33.4632
4

248.7160 96.1883
Ac

 
 
   , 

 1  12.8116   38.7745
5

101.0696 29.5472
Ac

 
 
   ,

0.0556    2.8720
1

0.0274 0.7992
Cc

 
 

   

   33.8989    28.2277
2

21.853 11.3608
Cc

 
 

   ,

    1  05.8492  54.7677
3

19.2074 11.5656
Cc

 
 

  ,

122.0492  49.0349
4

48.6800 21.1917
Cc

 
 
   

   58.5562     13.1484
5

10.6175 7.7350
Cc

 
 
   ,  ,

    1  05.8492  54.7677
3

19.2074 11.5656
Cc

 
 

  ,

122.0492  49.0349
4

48.6800 21.1917
Cc

 
 
   

   58.5562     13.1484
5

10.6175 7.7350
Cc

 
 
   ,  

1    0

0   1 
I
 

 
  ,  

0    0

0    0
Z

 
 
   

 Block Solvents in diagonal form 

.5    0

1 0 .2
S

 
  

 
,

2

.35    0

0 1
S

 
  

 
,

3

.75    0

0 .65
S

 
  

 
,

4

.07    0

0 .09
S

 
  

 
, 

5

.8    0

0 1.5
S

 
  

 
 

 Block Solvents in controllable form 

1

.7 .1

1 0
S

  
  
 

,
2

1.35 .35

1 0
S

  
  
 

,
3

1.4 0.48

1 0
S

  
  
 

,
4

0 1

0.063 0.79
S

 
  

  
,

5

0 1 

1.2 2.3
S

 
  

  
 

 Block Solvents in observable form 

1

0 .1

1 .7
S

 
  

 
,

2

0 .35

1 1.35
S

 
  

 
,

3

0 0.487

1 1.4
S

 
  

 
, 4

0 0.063

1 0.79
S

 
  

 
, 5

0 1.2

1 2.3
S

 
  

 
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7.1.  Constructing right block solvents: 

Consider a complete set of right solvents  1 2 3 4 5
, , , ,S S S S S   for the matrix 

polynomial ( )D  , If 
i

S  is a right solvent of ( )D   so: 

 

 

 

Replacing i from 1 to 5, yields to: 

   5 5 5 5 5 1

5 4 3 2 1 1 2 3 4 5d d d d d R
D D D D D S S S S S V    

where 
R

V  is the right block Vandermonde matrix. 

1 1 1 1 1

1 2 3 4 5

2 2 2 2 2

1 2 3 4 5

3 3 3 3 3

1 2 3 4 5

4 4 4 4 4

1 2 3 4 5

           

           

           

           

R

I I I I I

S S S S S

V S S S S S

S S S S S

S S S S S

 
 
 
 
 
 
 
 

 

7.2.  Constructing left block solvents 

Consider a complete set of left solvents  1 2 3 4 5
, , , ,S S S S S for the matrix polynomial 

( )D  If 
i

S is a left solvent of ( )D  so:  

5 4 3 2

4 5

4 3 2

1 2

5

4

3

1 2 3 5

i i i i i

i i i i i

S S D S D S D S D D Z

S D S D S D S D D S

      





     

 

Replacing i from 1 to 5, yields to: 

5

15

5
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5

3 3

5
2 4

5
1 5

1

d L

d

d

d

d
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SD

D S

D S

D S
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



 
  
  
      
  
       

, where 
L

V  is the left block Vandermonde matrix. 

and  
2 3 4

1 1 1 1

2 3 4

2 22
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3
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3 4

3 3 3

2 4

4 4 4

2 3
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5 4 3 2

1 2 3 4 5

4 3 2 5

1 2 3 4 5

i i i i i

i i i i i

S D S D S D S D S D Z

D S D S D S D S D S
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7.3.  State Feedback matrix gain 

Consider the linear system of turbo-compressor described by Eq. (21), the state 

feedback ( )u Kx t  , K is a 2×10 gain matrix, after the transformation into the 

block controllable form, the following expression is obtained: 

  ( )
c c

u K x t . 

 (5) (4) (3) (2) (1)
, , , ,

c c c c c c c
K K T K K K K K   

c
T  and m m

ci
K R  For i = 1...,5, the closed loop system is shown below: 

 c c c c c

c c c

x A B K x

y C x

 



 

where, 

 

         5 5 4 134 3 12 2

c c c

c c c c c

Z I Z Z Z

Z Z I Z Z

Z Z Z I ZA B K

Z Z Z Z I

A K A K A K A K A K

 
 
 
  
 
 
           

 

The characteristic matrix polynomial of this closed loop system is: 

     5 4

1 1 5 5c c
D I A K A K        

From a set of desired eigenvalues, the set of Block poles can be constructed. 

The desired characteristic matrix polynomial of the block poles in the right form, 

by putting, ( ) ( )
d

D D  . The coefficients 
ci di i

K D A  are obtained as follows: 

Feedback Static Gain Matrix in right diagonal form 

45.5831  - 28.8103   28.3961  - 10.1292  - 16.6398   11.9460    - 7.0725   - 3.8599     9.7949    0.9209

38.5295  - 42.7067  - 57.2365   56.3219  - 10.9989  - 19.9014   31.8083    2.9674  - 12.7137   - 0.9948
K






 



 

Feedback Static Gain Matrix in right controllable form 

14.2953  -15.3840    31.4307  -13.2777  -9.2161     8.6137   -10.0276   -2.3323    8.1703    0.9247

59.0194  -52.2588  -64.2053   62.1368  -14.8935  -19.7696   35.4016    2.2845  -12.7636  -0.9837
K


 




  

Feedback Static Gain Matrix in right observable form 

-78.6152   22.2683   39.6588  -20.6924   12.3512    -0.7257  -17.7800   2.2566   2.7699   0.3594

-136.057   29.0071  -42.2787   42.1001   29.9653  -38.569     16.9891  11.740  -22.726   -1.6352
K

 
  
   

Feedback Static Gain Matrix in left diagonal form 

 45.5831  -28.8103   28.3961  -10.1292  -16.6398   11.9460   -7.0725   -3.8599    9.7949    0.9209

 38.5295  -42.7067  -57.2365   56.3219  -10.9989  -19.9014   31.8083   2.9674  -12.7137 -0.9948
K

 
 
 


 

Feedback Static Gain Matrix in left controllable form 

-227.3410  126.3244 -238.8049  141.9400  125.2135  -98.0163   45.1448   7.6374  -64.5548   1.5484

 267.1105 -180.6756  207.6107  -95.6571 -141.1419   82.8652  -22.4126  -5.7331   57.8859  -1.6456
K

 
 



  
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Feedback Static Gain Matrix in left observable form 

-6.1938    -0.6851     9.7471    -1.9941      2.4590   1.8022    -6.1898    -2.3837   2.3253     0.7784

 30.3769  -36.0879  -67.4850   61.5009   -5.7573  -23.3141   33.5945    2.9327  -15.2838  -0.90
K 

22

 
 
   

8.  Discussion  

Based on the results shown in Tables 1, 2, 3 and 4 it can be concluded that: 

a. From Table 2 which represents different norms of different feedback static 

matrix gain it can be said that: 

 The observable block solvents in the left is enough. 

 The diagonal block solvents left/right are equals and more enough. 

 The controllable block solvents in the right is enough. 

 The right/left observable/controllable block solvents respectively are not suitable. 

These provisions are not sufficient to determine the optimal controller so the 

results obtained in Table 3 has to be checked. 

b. From the Table 3 which represents the time specifications of different 

feedback static matrix gain, it can be said that: 

 The left and the right of the observable block solvents form give bad results 

and this form is not valid in this study. 

  The right controllable block solvents form is more suitable then left in all 

the time specifications. 

 The left/ right diagonal block solvents form gives the same results and are enough. 

Based on the discussion of the results and from the comparative study shown in 

the Table 4, the static feedback matrix gain of the right controllable block solvents 

form is the best and where the stability is ensured by the controller, because it 

collects the high performance, best time specifications results with minimum and 

reasonable consumption of energy control. 

Table 2. The norms (1, 2, inf and fro) of feedback matrix gain K. 

 
1

K  
2

K  
inf

K  
fro

K  

Diagonal 

Block 

Solvents 

Right 85.6326 107.1288 274.1790 125.9162 

Left 85.6326 107.1288 274.1790 125.9162 

Controllable 

Block 

Solvents 

Right 95.6360 128.1819 323.7167 181.2496 

Left 494.4515 599.1810 1.0765e+3 602.7345 

Observable 

Block 

Solvents 

Right 214.6730 173.2175 371.0688 150.8790 

Left 77.2321 112.4092 277.2353 112.7257 

 

Table 3. Time specifications of the two outputs affected by the inputs. 

 

 
 

Diagonal form Controllable form Observable form 

Right Left Right Left Right Left 

T
1

 

P
2

 Rise Time 10.0206 10.0206 7.9990 23.9312 26.6525 14.8913 

Settling Time 17.4065 17.4065 12.4987 46.4843 62.3504 38.1158 

Settling Min 718.1322 718.1322 694.6842 2.7623e+4 339.0753 -173.7579 
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Settling Max 796.6862 796.6862 784.9853 3.0684e+4 376.4863 -156.6178 

Over shoot 1.9196e-9 0 1.8657 0 0 0 

Under shoot 0 0 0 0 34.7490 121.6249 

Peak 796.6862 796.6862 784.9853 3.0684e+4 376.4863 211.5268 

Peak Time 85.9621 85.9621 17.8359 107.8399 105.5467 7.1828 

T
2

 

Rise Time 8.6857 8.6857 13.2644 22.6812 67.2990 32.2554 

Settling Time 21.8839 21.8839 29.9263 52.3163 68.7731 46.8101 

Settling Min -144.2570 -144.2570 -453.1357 -2.3814e+3 -22.2499 92.2824 

Settling Max -130.0222 -130.0222 -408.1791 -2.1448e+3 -20.0949 102.3481 

Over shoot 8.2295e-9 0 0 0 0 0 

Under shoot 24.3631 24.3631 11.0453 23.1327 496.2182 39.8958 

Peak 144.2570 144.2570 453.1357 2.3814e+3 110.8922 102.3481 

Peak Time 85.9621 85.9621 83.8530 107.8399 17.9059 77.3966 

P
1

 

P
2

 

Rise Time 27.8101 27.8101 23.8351 25.6268 23.0097 15.5562 

Settling Time 49.4637 49.4637 54.7473 48.8321 44.1733 28.2406 

Settling Min 674.0113 674.0113 -126.0195 3.1809e+4 2.4089e+3 3.6767e+3 

Settling Max 748.2657 748.2657 -113.9484 3.5324e+4 2.6753e+3 4.0799e+3 

Over shoot 0 0 0 0 0 0 

Under shoot 0.0495 0.0495 150.6509 0.0010 0.0139 0.0091 

Peak 748.2657 748.2657 190.5437 3.5324e+4 2.6753e+3 4.0799e+3 

Peak Time 85.9621 85.9621 8.6355 107.8399 105.5467 77.3966 

T
2

 

Rise Time 27.8615 27.8615 9.4850 24.3230 22.0021 14.4579 

Settling Time 55.3850 55.3850 42.0721 54.8745 48.3289 33.1389 

Settling Min -440.0054 -440.0054 -251.6543 -2.7495e+3 -804.7499 -1.0036e+3 

Settling Max -396.6555 -396.6555 -216.8959 -2.4763e+3 -724.5549 -903.5474 

Over shoot 0 0 4.4752 0 0 0 

Under shoot 3.9441 3.9441 10.2244 20.4546 7.2138 8.3428 

Peak 440.0054 440.0054 251.6543 2.7495e+3 804.7499 1.0036e+3 

Peak Time 85.9621 85.9621 28.7312 107.8399 105.5467 77.3966 

Table 4. Comparative study results. 

  Diagonal form Controllable form 
Observable 

form 

  Right Left Right Left Right Left 

T
h

e 
n
o

rm
s 

1
K  Right = Left Right Left 

2
K  Right = Left Right Left 

inf
K  Right = Left Right Left 

fro
K  Right = Left Right Left 

T
im

e 
sp

ec
if

ic
at

io
n

s Rise Time Right = Left Right Left 

Settling Time Right = Left Right Left 

Settling Min Right = Left Right Right 

Settling Max Right = Left Right Right 

Over shoot Right = Left Right = Left Right = Left 

Under shoot Right = Left Right = Left Right = Left 

Peak Right = Left Right Right = Left 

Peak Time Right = Left Right Right = Left 

9.  Conclusions 

In this paper, the application of the Left Matrix Fraction Description (LMFD) 

theory is proposed for the parametric identification of a turbo-compressor driven 

by a gas turbine, which is used, in an important power plant. Indeed, this system 

presents a high dimension ARX model; where the application of the LMFD in such 
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case in proposed here in this paper for the first time as a new original work. 

Furthermore, this proposed parametric identification is based on real 

(inputs/outputs) data that have been measured on-site, where the extended least 

square (ELS) estimator due to its main merits, such as the reliability (unbiased 

estimator in this case) compared with the recursive estimators, the ease 

implementation due to its simple mathematical structure and the richness of the 

data versus the frequency, this last allows facilitating the design of the estimator.  

For the validation of the obtained dynamical model and its robustness, four testing 

criteria are used such as the two robust criteria (AIC and FPE) and two other criteria 

(RMSE and VAF), where the main objective is to achieve the selection requirement 

of the best model order without Pole/Zero cancellation (left coprime). On the other 

side, the Hammerstein-Wiener model identification is used as comparative model 

based on the obtained reliability. Finally, in order to improve the stability of the 

studied system which is used in a very vital and sensible power plant for ensuring the 

transporting the natural gas under high pressure, the block solvents placement based 

on MFD theory is proposed in different forms to make the dynamic behaviour of the 

turbo-compressor more stable. As a perspective for the present work, is the 

implementation of the dynamic model proposed in this paper on the diagnostics and 

fault tolerant control applications of the studied system. 
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