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Abstract 

In the present work, the vibration characteristics of a Timoshenko beam are 

examined using Differential Transform Method (DTM) with the end conditions 

hinge-hinge, fix-hinge, fix-fix and fix-free. The frequencies are computed for 

the beam with the length to depth ratio (L/H) of 2, 3, 5, 10 and 20. The results 

obtained from the DTM are compared with exact values and finite element 

results. DTM analysis shows that the second spectrum of frequency is observed 

in beams which are comparatively thick (L/H  10), with hinge-hinge end 

condition. Eigenfunctions for both frequency spectra are derived using this 

method. The convergence analysis of frequencies of a Timoshenko beam 

obtained using DTM is also presented. The second set of frequencies are not 

reflected in the vibration of beams with end conditions other than hinge-hinge. 

The mode shapes are presented for the pure shear mode and the first three 

bending and shear modes of hinge-hinge supported Timoshenko beam. 

Keywords: Timoshenko beam, Second spectrum, Differential transform method, 

Bending spectrum, Shear spectrum. 

 

 

1.  Introduction 

Several mathematical models are available to study the vibration characteristics of 

beams. Among them, the classical Euler-Bernoulli theory, which neglects shear 

strain and rotary inertia and the Timoshenko beam theory (TBT) which considers 

both shear strain and rotary inertia are quite commonly used in practice. The 

former one is accurate to model slender beam vibrations, but becomes erroneous  
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Nomenclatures 
 

A 

An 

D1, D2 

E 

f(x) 

F[k] 

Sectional area of beam, m 

Amplitude of n
th

 mode 

Arbitrary constants 

Young’s Modulus, N/m
2
 

Function of x 

Differential Transform of f(x) 

G Shear Modulus, N/m
2
 

I Moment of Inertia, m
4 

Ks 

k 

L 

L/H 

n 

N 

Q 

R 

S 

t 

Shear Correction factor 

Number of terms taken in the polynomial 

Length of beam, m 

Length to Depth ratio 

Mode number 

The value of k for the convergence 

Dimensionless parameter for material properties 

Dimensionless parameter for geometry of beam 

Rotation Amplitude, rad 

Time, s 

w 

W(x) 

W  

Deflection of the beam, m 

Modeshape for displacement 

Dimensionless displacement 

x Spatial coordinate 


dx

dw   

Shear Strain 
 

Greek Symbols 

 Dimensionless spatial co-ordinate (x /L) 

 Density of the material, kg/m
3
 

 Slope of deflection curve 

 Non-dimensional frequency 

 Frequency of vibration, rad/s 
 

Abbreviations 

DTM Differential Transform Method 

FEM Finite Element Method 

TBT Timoshenko Beam Theory 

 

while modelling thick beams. On the other hand, latter is accurate in both thin and 

thick beam conditions. However, the Timoshenko beam model is difficult to solve 

analytically even for simple end conditions, such as fix-free, fix-fix, etc. Hence, 

engineers employ numerical techniques to solve Timoshenko beam model for 

most practical applications. They are successfully used to model aircraft wing 

vibrations, turbine blade vibrations, etc. 
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The vibration characteristics of beams under various structural conditions 

using TBT have been examined by researchers in the past using analytical and 

numerical methods. It has been shown by several investigators that the 

Timoshenko theory for straight beams offers two spectra for natural frequencies, 

the flexural (bending) dominated first spectra and the shear dominated second 

spectra. Even though the second spectrum is only of academic interest at present, 

the authors assume that the knowledge of the frequency spectrum of Timoshenko 

beam is essential in the case of the analysis of rotating beam wherein the shear 

effect and the rotary inertia cannot be neglected and for the design of aircraft 

components which are prone to instabilities like flutter which is attributed to the 

coupling of flexural and torsional mode of the structure. However, the exact 

implications of these frequency curves on real life applications are yet to be 

explored with further studies. 

Analytical solutions for simple end conditions are available in the literatures. 

The existence of the second spectra was first reported by Traill-Nash and Collar 

[1] for the cases of hinge-hinge and free-free end conditions. Later, Anderson and 

Dolph [2, 3] confirmed the existence of the second spectra for the hinge-hinge 

beam. Tobe and Sato [4] investigated the existence of the second spectra for the 

cantilever beam and experienced difficulty in classifying the frequencies. Abbas 

and Thomas [5] argued that the second spectrum of frequencies is the result of 

coupling between pure shear and simple shear modes and concluded that the 

second frequency spectrum exists only for the special case of hinge-hinge beam. 

Bhashyam and Prathap [6] exclusively studied the second frequency spectrum of 

Timoshenko beams using the Finite Element Method (FEM). The study 

confirmed that the second frequency spectrum exist for Timoshenko beams with 

any end conditions. Vibration characteristics of Timoshenko beam using FEM 

was done by Jafarali et al. [7, 8] and it was shown that the second spectrum will 

not be present in Timoshenko beam vibration model without rotary inertia.  The 

experimental study conducted by Diaz-de-Anda et al. [9] using the 

electromagnetic acoustic transducer set up, confirmed the existence of second 

spectrum for Timoshenko beam with free-free boundary condition. Recently, an 

extensive re-assessment of the Timoshenko beam theory has been published [10].  

The wave propagation analysis using the Timoshenko beam theory by Ufuk 

and Metin [11], obtained two dispersion curves whereas only one curve was 

observed for Euler-Bernoulli beam theory. Among the different analytical beam 

models used to find the natural frequency of classical beams, there are nonlinear 

beam formulations which consider the effect of different parameters more 

accurately. These nonlinearities were successfully analysed by Hamid et al. [12-

15]. Differential Transform Method (DTM) was employed by researchers to solve 

linear and nonlinear differential equations. 

DTM was first proposed by Zhou for the solution of initial value problem in 

electric circuit analysis. Ho and Chen [16] analysed general elastically end 

restrained tapered beam using DTM. Free and forced vibration conditions were 

considered. Chen and Ho [17] obtained the closed form solution of a rotating 

twisted Timoshenko beam under axial loading with DTM. The effects of the twist 

angle, spinning speed, and axial force on the natural frequencies of a non-uniform 

Timoshenko beam were studied. DTM was used to solve Sturm–Liouville 

eigenvalue problem [18]. Chai and Wang [19] determined the critical buckling 

load of axially compressed heavy columns with various supports using DTM and 
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the accuracy of results were proved to be very good. DTM was used successfully 

to solve free vibration of beams resting on elastic foundation [20, 21]. Vibration 

analysis of pipelines resting on elastic foundations was modelled using Euler 

Bernoulli and Timoshenko model and solved using DTM
 
by Balkaya et al. [22]. It 

was observed that the DTM predicted eigenvalues converged to the exact solution 

and that the rate of convergence is also very good. The eigenvalue analysis on 

Timoshenko beams were conducted by using various other methods. Free 

vibration of Timoshenko beam and axisymmetric Mindlin plates based on the 

pseudospectral method using Chebyshev polynomial was done by Lee and 

Schultz [23]. This method avoided the process of calculating weighting 

coefficients and characteristic polynomial. 

It is observed that DTM is not been used for reporting second spectrum of 

Timoshenko beam. The objectives of this paper are to examine the existence of 

second spectrum of vibration of a Timoshenko beam using DTM and also 

analyse the mode shapes corresponding to each frequency. The existence of 

second frequency spectrum has been carefully examined for various end 

conditions and L/H ratios. The end conditions analysed are hinge-hinge, fix-fix, 

fix-hinge, and fix-free.  

2. Analytical Approach to Timoshenko Beam Elastodynamics  

The dynamic equation of equilibrium of a Timoshenko beam including the effects 

of transverse shear and rotary inertia is given by Eqs. (1) and (2). 

𝐾𝑠𝐺𝐴
𝜕

𝜕𝑥
(ψ −

𝜕𝑤

𝜕𝑥
) + 𝜌𝐴

𝜕2𝑤

𝜕𝑡2 = 0                    (1) 

 

𝐸𝐼
𝜕2𝜓

𝜕𝑥2 − 𝐾𝑠𝐺𝐴 (𝜓 −
𝜕𝑤

𝜕𝑥
) − 𝜌𝐼

𝜕2𝜓

𝜕𝑡2 = 0                (2) 

The general boundary conditions at x= 0, L are: 

𝜓 = 0                                                        (3) 

 𝐸𝐼
𝜕𝜓

𝜕𝑥
= 0                     (4) 

𝑤 = 0                                     (5) 

𝐾𝑠𝐺𝐴 (𝜓 −
𝜕𝑤

𝜕𝑥
) = 0                    (6) 

Here  is the slope of the deflection curve when the shear deformation is 

neglected and (dw/dx -) is the shear strain. E is the Young’s modulus, G is the 

shear modulus of the material of the beam, Ks is the shear correction factor, I and 

A are the moment of inertia and the sectional area of the beam respectively. L is 

the length of the beam. 

 

Analytical solution for hinge-hinge beam 

For a hinge–hinge case, Eqs. (1) and (2) can be easily coupled (with boundary 

conditions w=0 at x=0, L) to the form as in Eq. (7). 
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𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴
𝜕2𝑤

𝜕𝑡2 − 𝜌𝐼 (1 +
𝐸

𝐾𝑠𝐺
)

𝜕4𝑤

𝜕𝑡2𝜕𝑥2 +
𝜌2𝐼

𝐾𝑠𝐺
 
𝜕4𝑤

𝜕𝑡4 = 0               (7) 

Assuming the system is oscillating at a frequency  with mode shape W(x), a 

separation of variables can be assumed in the form w(x,t)=W(x) cost for the 

above equation. Then Eq. (7) is written as,    

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝐴𝜔2𝑊 − 𝜌𝐼 (1 +
𝐸

𝐾𝑠𝐺
) 𝜔2 𝜕2𝑊

𝜕𝑥2 +
𝜌2𝐼

𝐾𝑠𝐺
 𝜔4𝑊 = 0                   (8) 

A solution to this differential equation, shows two distinct spectra for the 

natural frequency of the structure, interpreted as, a basic flexural (bending 

dominated) spectra, and a shear dominated spectra.  

For a hinge-hinge beam, the trigonometric function W(x) = An sin (nx/L), 
satisfies the boundary conditions (w=0 at x=0, L); Eq. (8) reduces to a quadratic 

polynomial equation in 2
. 

𝜌2𝐿4

𝐸𝐾𝑠𝐺
𝜔𝑛

4 + (
𝜌𝐴𝐿4

𝐸𝐼
+

𝜌𝐿2

𝐸
(1 +

𝐸

𝐾𝑠𝐺
) (𝑛𝜋)2) 𝜔𝑛

2 − (𝑛𝜋)4 = 0               (9) 

Here n is the mode number and An is the amplitude for n
th

 mode. A solution to 

Eq. (9) shows two spectra of frequencies [1, 5, 6, 8]. In the present work, DTM is 

employed and analysed for the existence of second frequency spectra for 

Timoshenko beam elements with hinge-hinge and other boundary conditions. 

 

3.  Differential Transform Method 

Differential Transformation Method is based on the Taylor series expansion and, 

is a transformation technique to obtain analytical solutions of the ordinary and 

partial differential equations. In this method, the governing differential equation 

and boundary conditions are transformed into a set of algebraic equations 

according to certain transformation rules and the solution of these set of equations 

gives the required solution. Thus, DTM provides an iterative procedure to obtain 

higher order series in contrast with the Taylor series method where calculation of 

higher derivatives becomes difficult. 

Consider the function f(x) which is analytic in domain D. Let x=x0 represent 

any point within domain D, the differential transform of f(x) is given by Eq. (10). 

𝐹[𝑘] =
1

𝑘!
(

𝑑𝑘𝑓

𝑑𝑥𝑘)
𝑥=𝑥𝑜

                           (10) 

 

where f(x) is the original function and F[k] is the differential transform. The 

function f(x) can be defined by the inverse differential transform in Eq. (11). 

 

𝑓(𝑥) = ∑
1

𝑘!

∞
𝑘=0 (

𝑑𝑘𝑓

𝑑𝑥𝑘)
𝑥=𝑥𝑜

(𝑥 − 𝑥𝑜)𝑘                     (11) 

 

𝑓(𝑥) = ∑ 𝐹[𝑘]∞
𝑘=0 (𝑥 − 𝑥𝑜)𝑘                  (12) 

 

For practical problems, f(x) is represented by a finite series as given in Eq. (13).   

 

𝑓(𝑥) = ∑ 𝐹[𝑘]𝑁
𝑘=0 (𝑥 − 𝑥𝑜)𝑘                 (13) 
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which implies that 𝑓(𝑥) = ∑ 𝐹[𝑘]∞
𝑘=𝑁+1 (𝑥 − 𝑥𝑜)𝑘   is negligibly small. N is 

decided on the convergence of the eigenvalues. Fundamental theorems of 

differential transform are listed in [11].  

 

 

3.1. DTM formulation of Timoshenko Beam 

Assuming a periodic solution for the displacement and rotation, Eqs. (1) and (2) 

can be transformed into the eigenvalue problem as given in Eqs. (14) and (15) 

with w and   replaced by W and S respectively. 

𝑑

𝑑𝑥
[𝐺𝐴𝐾𝑠 (𝑆 −

𝑑𝑊

𝑑𝑥
)] − 𝜔2𝜌𝐴𝑊 = 0                (14) 

 
𝑑

𝑑𝑥
(𝐸𝐼

𝑑𝑆

𝑑𝑥
) − 𝐺𝐴𝐾𝑠 (𝑆 −

𝑑𝑊

𝑑𝑥
) + 𝜔2𝜌𝐼𝑆 = 0                (15) 

Introducing the dimensionless parameters in Eq. (16), the Eqs. (14) and (15) 

can be rewritten as Eqs. (17) and (18). 

𝑊 = 𝑊 ̅̅̅̅ 𝐿 ;  𝑥 = 𝜉𝐿 ;  
𝐾𝑠𝐺

𝐸
= 𝑄 ; √

𝐴𝐿2

𝐼
= 𝑟 ;  𝑄𝑟2 = 𝛽 ;  Ω = (

𝜌𝐴𝜔2𝐿4

𝐸𝐼
)

1
4⁄

          (16) 

 

𝛽 (−
𝑑2�̅�

𝑑𝜉2 +
𝑑𝑆

𝑑𝜉
) − Ω4�̅� = 0                  (17) 

 

𝑟2 𝑑2𝑆

𝑑𝜉2 + 𝛽𝑟2 𝑑�̅�

𝑑𝜉
+ (−𝛽𝑟2 + Ω4)𝑆 = 0              (18) 

Non-dimensional boundary conditions considered for the analysis for a hinge-

hinge, fix-fix, fix-hinge and fix-free are represented in Eqs. (19) to (26). 

     

Hinge-Hinge 

𝑊 ̅̅̅̅ (𝜉) = 0 ;   
𝑑𝑆

𝑑𝜉
= 0        𝑎𝑡  𝜉 = 0                (19) 

𝑊 ̅̅̅̅ (𝜉) = 0 ;   
𝑑𝑆

𝑑𝜉
= 0        𝑎𝑡  𝜉 = 1                (20) 

 

Fix-Fix  

𝑊 ̅̅̅̅ (𝜉) = 0 ;   𝑆(𝜉) = 0     𝑎𝑡  𝜉 = 0               (21) 

𝑊 ̅̅̅̅ (𝜉) = 0 ;   𝑆(𝜉) = 0     𝑎𝑡  𝜉 = 1              (22) 

 

Fix-Hinge   

 𝑊 ̅̅̅̅ (𝜉) = 0 ;   𝑆(𝜉) = 0                𝑎𝑡  𝜉 = 0                               (23) 

𝑊 ̅̅̅̅ (𝜉) = 0 ;   
𝑑𝑆

𝑑𝜉
= 0                     𝑎𝑡  𝜉 = 1              (24) 

Fix-Free     

 

𝑊 ̅̅̅̅ (𝜉) = 0 ;   𝑆(𝜉) = 0                 𝑎𝑡  𝜉 = 0                (25) 

 
𝑑𝑆

𝑑𝜉
= 0 ;   𝑆 −

𝑑�̅�

𝑑𝜉
= 0                   𝑎𝑡  𝜉 = 1                (26) 
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3.2. Solution procedure using DTM 

Applying the transformation rules of Differential Transform Method [16], Eqs. 

(17) and (18) can be rewritten as Eqs. (27) and (28) given below.  

 

𝑊[𝑘 + 2] =
Ω4𝑊[𝑘]−𝛽(𝑘+1)𝑆[𝑘+1]

−𝛽(𝑘+1)(𝑘+2)
                  (27) 

 

𝑆[𝑘 + 2] =
−𝛽𝑟2(𝑘+1)𝑊[𝑘+1]−(−𝛽𝑟2+Ω4)𝑆[𝑘]

𝑟2(𝑘+1)(𝑘+2)
               (28) 

And the boundary conditions in DTM are also transformed which are 

expressed in the following set of equations, Eqs. (29) to (36). 

 

Hinge-Hinge   

 
𝑊[0] = 0;      𝑆[1] = 0                                                      𝑎𝑡 𝜉 = 0              (29) 

 
∑ 𝑊[𝑘]∞

𝑘=0 = 0;   ∑ 𝑘𝑆[𝑘] = 0                                 𝑎𝑡  𝜉 = 1∞
𝑘=0           (30) 

 
Fix-Fix       

 

𝑊[0] = 0;      𝑆[0] = 0                                                      𝑎𝑡 𝜉 = 0           (31) 

 

∑ 𝑊[𝑘]∞
𝑘=0 = 0;   ∑ 𝑆[𝑘] = 0                                   𝑎𝑡  𝜉 = 1∞

𝑘=0              (32) 

      

Fix-Hinge  

 
𝑊[0] = 0;      𝑆[0] = 0                                                      𝑎𝑡 𝜉 = 0            (33) 

 
∑ 𝑊[𝑘]∞

𝑘=0 = 0;   ∑ 𝑘 𝑆[𝑘] = 0                                𝑎𝑡  𝜉 = 1∞
𝑘=0           (34) 

 

Fix-Free      

 

 𝑊[0] = 0;      𝑆[0] = 0                                                     𝑎𝑡 𝜉 = 0                (35) 

 

∑ 𝑆[𝑘]∞
𝑘=0 − ∑ 𝑘 𝑊[𝑘]∞

𝑘=0 = 0;   ∑ 𝑘 𝑆[𝑘] = 0    𝑎𝑡  𝜉 = 1∞
𝑘=0             (36) 

 

For the purpose of demonstration, the methodology of finding the eigenvalues 

using DTM is shown for a hinge-hinge end condition. Applying the first set of 

boundary conditions corresponding to  = 0, Eqs. (29) and (30) implies W [0] = 0, 

S [1] = 0. By substituting, W [1] = D1, S [0] = D2 where D1 and D2 are unknown 

constants and from Eqs. (27) and (28) for k = 0,1,2, 3…the subsequent values, of 

W [2], S [2], W [3], S [3] … etc. can be determined in terms of D1, D2, and . 

Substituting all W [k] and S [k] into the second set of boundary conditions 

corresponding to =1, results in two simultaneous equations in  corresponding 

to the N
th

 term. These equations can be rearranged to the matrix form as expressed 

in Eq. (37). 

 
[𝐴][𝐷] = [0]                  (37) 
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where, 

[𝐴] = [
𝑎11(Ω) 𝑎12(Ω)
𝑎21(Ω) 𝑎22(Ω)

]                 (38) 

 

[𝐷] = [
𝐷1

𝐷2
]                   (39) 

The system of equations in Eq. (37), which is linear in D1 and D2 will have a 

non-trivial solution only if determinant of A is zero, which reduces to the 

condition as in Eq. (40). 

|
𝑎11(Ω) 𝑎12(Ω)
𝑎21(Ω) 𝑎22(Ω)

|= 0               (40) 

The   thus obtained after solving Eq. (40) is the non-dimensional frequency 

of the beam. Therefore =N
j
 corresponds to the frequency of j

th
 mode. The 

value of N is decided based on the desirable accuracy required.  

|Ω𝑗
𝑁 − Ω𝑗

𝑁−1| ≤ 𝜖 , where  is a small value taken as 0.001. 

 

4.  Results and Discussions 

Free vibration analysis of Timoshenko beam with different end conditions are 

computed using DTM. Analysis is carried out with length to depth (L/H) ratios 2, 

3, 5, 10 and 20. For all these cases, the parameters used in the computations are 

Ks = 5/6, E = 1,  =1, A = 1 and the Poisson’s ratio = 0.3. The set of polynomials 

derived from the transformations are solved for the non-dimensional frequencies 

using Mathematica. 

FEM is a widely used numerical method for the vibration analysis of Euler 

Bernoulli and Timoshenko beams. Finite element analysis is also done using a two 

noded linear Timoshenko beam element with two degrees of freedom (transverse 

displacement w and rotation) at each node using MATLAB. Shear locking is 

eliminated using reduced integration [24]. The flexural and shear spectrum 

frequencies obtained using the DTM are compared with those obtained by finite 

element analysis and with exact solutions which is available for a hinge-hinge case. 

The bending spectra frequencies are also compared with the values obtained by 

pseudo spectral method for different boundary conditions and L/H ratios [23].  

4.1.  Non-dimensional frequencies of hinge-hinge beam 

The results of the free vibration analysis of Timoshenko beam with hinge-hinge 

boundary condition and having L/H ratios 2, 3, 5, 10 and 20 are listed in Table 1. 

The results clearly show two sets of frequencies, the first set is corresponding to 

the flexural spectrum (bending spectrum) and the second set is corresponding to 

the shear spectrum. 

However, for a thin beam condition where L/H = 20, the second set of 

frequencies were not reflected fully in the DTM solution (in mode3 and mode4) 

whereas, when L/H is 2, 3, 5 and 10, which refers to thick beams, second 

spectrum of frequencies are clearly evident. This is attributed to the dominant 

effect of shear in thick beams. The analysis using DTM also identified the pure 

shear frequency (Mode Zero) where the vibration of the beam is completely           
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in shear mode and no flexure occurs. The pure shear spectra frequency            

values corresponding to mode zero are observed to be converged fast for               

all L/H values. 

Table 1. Non-dimensional frequency for a hinge-hinge Timoshenko beam. 

Metho

d 

Pure 

Shea

r 

Mode 1 Mode 2 Mode 3 Mode 4 

Spectrum Spectrum Spectrum Spectrum 

1st
 2nd

 1st
 2nd

 1st
 2nd

 1st
 2nd

 

L/H=2 

DTM 5.21 2.72 6.01 4.49 7.3 5.77 8.52 6.80 9.63 

Exact 5.21 2.72 6.02 4.49 7.3 5.77 8.52 6.8 9.63 

FEM 5.21 2.72 6.02 4.49 7.3 5.77 8.52 6.80 9.64 

L/H=3 

DTM 7.82 2.91 8.44 5.09 9.66 6.73 10.94 8.06 12.18 

Exact 7.82 2.91 8.44 5.09 9.66 6.73 10.95 8.07 12.18 

FEM 7.82 2.91 8.44 5.09 9.66 6.74 10.95 8.07 12.18 
L/H=5 

DTM 13.03 3.05 13.44 5.67 14.43 7.84 15.66 9.66 16.96 

Exact 13.03 3.05 13.44 5.67 14.44 7.83 15.67 9.66 16.96 

FEM 13.03 3.05 13.44 5.67 14.44 7.84 15.67 9.66 16.96 
[23]  3.05  5.67    9.66  

L/H=10 

DTM 26.05 3.12 26.27 6.09 26.88 8.84 27.6 11.34 28.86 

Exact 26.07 3.12 26.28 6.09 26.89 8.84 27.79 11.34 28.88 

FEM 26.07 3.12 26.28 6.09 26.89 8.85 27.78 11.35 28.87 
[23]  3.12  6.09  8.84  11.34  

L/H=20 

DTM 52.11 3.14 52.22 6.23  9.26  12.18  

Exact 52.13 3.14 52.24 6.23 52.56 9.26 53.08 12.18 53.78 

FEM 52.13 3.14 52.24 6.23 52.56 9.26 53.08 12.19 53.76 
[23]  3.14  6.23  9.26  12.18  

 

     Table 2. Non-dimensional frequency for fix-fix condition. 

Method Mode-1 Mode-2 Mode-3 Mode-4 

L/H=2 

DTM 3.277 4.58 5.782 5.995 

FEM 3.278 4.581 5.785 5.996 

L/H=3 

DTM 3.762 5.419 6.862 8.025 

FEM 3.763 5.421 6.866 8.031 

L/H=5 

DTM 4.242 6.417 8.283 9.901 

FEM 4.243 6.42 8.289 9.909 

[23] 4.242 6.418 8.285 9.904 

L/H=10 

DTM 4.579 7.331 9.855 12.144 

FEM 4.58 7.334 9.862 12.156 

[23] 4.58 7.331 9.856 12.145 

Analysis results for other boundary conditions such as fix-fix, fix-hinge, and 

fix-free conditions for different L/H values are presented in Tables 2 to 4 

respectively. For these boundary conditions, DTM solution showed only one set 

of frequency and these are corresponding to the flexural vibrations. This 
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observation is consistent with Abbas and Thomas [5] who suggested that shear 

spectrum exists only for a Timoshenko beam with hinge-hinge condition. DTM 

clearly did not identify the shear spectrum for boundary conditions other than 

hinge-hinge case. 

                                          

Table 3. Non-dimensional frequency for fix-hinge condition. 

Method Mode-1 Mode-2 Mode-3 Mode-4 

L/H=2 

DTM 3.001 4.548 5.447 5.784 

FEM 3.002 4.55 5.449 5.787 

L/H=3 

DTM 3.359 5.273 6.795 7.964 

FEM 3.359 5.275 6.798 7.967 

L/H=5 

DTM 3.665 6.072 8.073 9.784 

FEM 3.666 6.074 8.078 9.792 

[23] 3.666 6.073 8.074 9.786 

L/H=10 

DTM 3.852 6.730 9.365 11.757 

FEM 3.852 6.733 9.371 11.768 

[23] 3.852 6.731 9.366 11.758 

 

Table 4. Non-dimensional frequency for fix-free condition. 

Method Mode-1 Mode-2 Mode-3 Mode-4 

L/H=2 

DTM 1.729 3.362 4.861 5.539 

FEM 1.729 3.363 4.863 5.541 

L/H=3 

DTM 1.802 3.845 5.688 7.045 

FEM 1.802 3.846 5.690 7.049 

L/H=5 

DTM 1.847 4.285 6.610 8.517 

FEM 1.847 4.286 6.613 8.522 

L/H=10 

DTM 1.868 4.572 7.415 9.986 

FEM 1.868 4.573 7.418 9.993 

 

4.2. Convergence analysis 

The convergence of the pure shear frequency and frequencies corresponding to 

the first and second mode of Timoshenko beam with hinge-hinge condition and 

L/H=2 is plotted in Fig. 1.  

The dimensionless frequency values are plotted against the value of N at 

which the convergence of eigenvalues occurred in DTM computation. The pure 

shear mode converged fast. The first mode of the bending spectra is converged 

next followed by the first mode of shear spectra. The convergence of 

frequencies in mode 3, mode 4 and mode 5 are shown in Fig. 2. The rate of 

convergence of shear spectrum frequency is found to be faster in the case of 

third and fourth mode. 
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Fig. 1. Convergence plot for dimensionless frequencies of  

Mode zero, Mode1 and Mode2 for hinge-hinge condition with L/H=2. 

 
Fig. 2. Convergence plot for dimensionless frequencies for  

Mode3, Mode4 and Mode5 for hinge-hinge condition with L/H=2. 

4.3. Comments on eigenfunctions of the two spectra 

For the further investigation of the flexural and shear spectrum of Timoshenko 

beam with hinge-hinge support condition, the mode shapes are plotted using 

DTM. The mode shapes are extracted from the fundamental definition of the 

differential transform given by the Eq. (13).  

From Table 1, it is observed that 1
1
= 2.723 which is the first spectrum 

dimensionless frequency of the first mode. The convergence of this value 

occurred with a value of N= 14. Substituting 1
1
 into F [0], F [1],, F [14] and 

using Eq. (13), we obtain the closed form series solution of the first spectrum of 

the first mode shape. Similarly, the mode shapes corresponding to each frequency 

are plotted. The mode shapes corresponding to bending spectra and shear spectra 

are presented for hinge-hinge case with L/H=2 in Figs. 3 to 6.  

It is observed that in the investigation of eigenfunction of the Timoshenko 

beam, there are two components, the displacement and rotation. The normalized 

eigenfunctions show that the displacement component corresponding to the 

frequency of a particular mode in bending spectra and shear spectra are similar. 
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The rotation components are also found to follow the same mode shape in both 

spectra. However, they differ in the relative values of the displacement and 

rotation component in both the spectra.  In the pure shear mode, as shown in Fig. 

3, the section rotates without any bending. In this mode, it can be seen that the 

displacement component is zero.  

The first mode for the bending and shear spectra are presented in Fig. 4. The 

mode shapes for the displacement components of the first spectrum (bending) and 

the displacement component of second spectrum(Shear) are found to be similar 

with different amplitude. Similar trend is seen for rotation components also. 

However, in the case of bending spectra, the ratio of displacement component to 

rotation component is more compared to the corresponding the values from the 

eigenfunction of the shear spectra frequency. Same observations could be made 

for other L/H ratios where the bending is less in shear spectra modes compared to 

the bending in the corresponding bending spectra modes. Second and third modes 

of the shear and bending spectra are presented in Figs. 5 and 6. As mentioned 

before, the shear is dominated in the shear spectra modes compared to the 

corresponding bending spectra modes.  

 
Fig. 3. Displacement and rotation components for  

hinge-hinge condition (L/H=2) for pure shear mode (mode zero). 

  

Fig. 4. Displacement and rotation modes of hinge-hinge  

condition (L/H=2) for Mode1 bending spectra and shear spectra. 
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Fig. 5. Displacement and rotation modes of hinge-hinge  

condition (L/H=2) for Mode2 bending spectra and shear spectra. 

  

Fig. 6. Displacement and rotation modes of hinge-hinge 

 condition (L/H=2) for Mode3 bending spectra and shear spectra. 

  

Fig. 7. Displacement and rotation modes of  

cantilever beam (L/H=2) for first and second modes. 
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The mode shapes of the beam with fix-free boundary conditions are also 

presented in Fig. 7 for L/H=2 where only the flexural mode of vibration is visible. 

The analysis is done with other support conditions like fix-hinge and fix-fix also, 

where the second spectra were not visible. Hence the second spectra are visible 

only for a Timoshenko beam with hinge-hinge support condition. 

 

5.  Conclusions 

The analytical existence of two spectra of frequency for a Timoshenko Beam is 

due to the factorization of the transcendental frequency equation for hinge-hinge 

condition [5]. For the case of hinge-hinge case, the strong coupling between the 

effects of shear and the rotation of the cross section leads to two family of 

frequency curves. Whereas in the case of fix-free, fix-fix and fix-hinge, even 

though the coupling exists, there is no discontinuity in the variation of frequency 

parameter with the rotary inertia parameter and hence there is no separation of 

frequency spectra. From the results of DTM analysis of Timoshenko beam, it seen 

that the shear and rotary inertia effects are of great importance in the case of 

Timoshenko beam. This fact is evident from the mode shapes plotted as in Figs. 4 

to 6, where the relative magnitude of the rotation component in the second 

spectrum is found to be predominant when compared to the bending spectrum.  

In the present study, free vibration of Timoshenko beam was examined using 

DTM. The eigenvalues and corresponding eigenfunctions were derived for 

various end conditions using the DTM. From the analysis it is evident that, DTM 

can capture the pure shear spectrum and two different frequency spectrum which 

arises in the case of a Timoshenko beam with hinge-hinge condition. Some 

concluding observations include: 

 Second spectrum of frequency is evident only for a Timoshenko beam with 

hinge-hinge end condition. 

 In pure shear spectrum, the bending component is absolutely zero. 

 The first set of frequency in each mode is attributed to the bending spectrum 

and the second set of frequency is attributed to the shear spectrum.  

 The two separate frequency sets are clearly evident in the frequency results as 

well as the mode shapes derived using the present method. The mode shapes 

are coupled with displacement and rotation components and the mode shapes 

of the corresponding frequencies of these two spectra are similar. They differ 

in the ratio of the rotation and displacement components in the respective 

eigenfunction set.   

 The existence of the second frequency set of values is clear only for small 

L/H ratios even for hinge-hinge case. For L/H ratio of 2, 3, 5 and 10 the 

second set of values were clearly determined. 

  As the L/H ratio is increased, in which case the beam is more idealized as a 

Euler Bernoulli beam, the second spectra disappears gradually. Hence it is 

seen that the second spectra which is dominated by shear, is characteristic to 

Timoshenko beam.  

 Existence of second spectrum was not observed in other end conditions like 

fix-fix, fix-hinge and fix-free.  
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The accuracy of results derived by the DTM shows a very good agreement 

with the analytical and numerical results. 
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