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Abstract 

Groundwater salinity level is one of the most important considerations for 

monitoring soil degradation that threat some regions in the southwest of Basra 

Province, Iraq. The aim of this research is to assign the appropriate and 

effective image processing techniques to be implemented for monitoring, and 

then to evaluate groundwater salinity level map. Landsat TM 2000 and ETM 

2015 images respectively have been selected, as well as ancillary data of the 

available salinity field measurements have been used. Spatial overlay analysis 

between salt affected areas and water table were made to assess spatial 

distribution as well as relationships with these features. The result shows that 

about 47.8% of the areas were low-saline in 2000. This gradually decreased to 

35.9% in 2015. Large area change was observed in the slightly and moderately 

saline soil categories. High sensitive areas of saline soil were about 13.3% in 

2000 and this increased to 19.4% in 2015. Areas highly vulnerable to 

salinization were related to the groundwater salinity level that normally 

occurred on the soil sediment in this location of study. 
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1.  Introduction 

Groundwater salinity level is one of the main problems of soil degradation; it is 

an environmental hazard that causes losing the agricultural productivity. Surface 

salinity processes are highly dynamic, so using multi-date images are a suitable 

way to detect the changing state of soil, as well as the technology development 

and extent of environmental change over the last 20th century has given a new  
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Nomenclatures 
 

E Longitude, degree 

N Latitude, degree 

pH Potential of hydrogen 

TH Total hardness, mg/L 

TDS Total dissolved solids, mg/L 

SO4 Sulfate or sulphate, mg/L 

Na Sodium, mg/L 

Ca Calcium, mg/L 

NO3 Nitrate, mg/L 
 

Abbreviations 

ETM Enhanced Thematic Mapper 

FAO Food and Agriculture Organization 

GIS Geographic Information System  

MLC Maximum Likelihood Classifier 

RS Remote Sensing 

SI Salinity Index  

TM Thematic Mapper 
WRS Worldwide Reference System 

urgency for monitoring this change. Wide ranges of processing techniques are 

available to discriminate the spectral response in regard to the different soil 

quality [1-3]. 

There are numerous studies on groundwater-associated salinity, but more 

information is required on the effects of groundwater dynamics on soil 

salinization. Frequent irrigation with small quantities of water is effective to 

reduce soil surface salt accumulation induced by saline shallow groundwater. Salt 

excess in soils has detrimental effect on crop yields and agricultural production 

due to poor land and water management, and results in substantial losses of arable 

soils, especially in the arid and semi-arid areas [4]. Furthermore, salinity also 

affects other major soil degradation phenomena such as soil dispersion, increased 

soil erosion, and engineering problems [5]. 

However, soil salinity is quite time and space dynamic as salinization is the 

consequence of different complex processes of salt redistribution that depends on 

natural conditions, system features, agricultural practices and drainage 

management. In addition, observing the returns and benefits of drainage takes a 

long time (often more than 25 years) that instantaneous measurements of salinity 

do not reflect current conditions [6]. Observations of many irrigated areas in the 

world also shows that water logging and salinization typically appear only 10-50 

years after the beginning of the project, depending on the initial depth and 

recharge rate of the water table and on drainage conditions. 

Large scale and multi temporal studies of salinity, especially long term 

changes in salinity help to understand the nature of salinization and to evaluate 

the effectiveness of salinity control practices. Remote sensing and GIS techniques 

have become tools for the purpose of identifying and classifying saline soils [3, 

7]. This technique is efficient, cost effective, fast, labor saving and accurate for 
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delineating salt affected soils. The integration of remote sensing data, in the form 

of satellite imagery, with GIS has boosted up the ability of delineating and 

mapping soil salinity. Several studies have proved that remote sensing is a 

promising method to identify salt affected soils, especially those with moderate 

and high salinity levels [8, 9]. 

 

2. Materials and Methods 

2.1. Study area 

The study area located in the southern parts of Iraq, lies within longitude  

47
o
 43′ to 47

o
 45′ E and from latitude 30

o
 18′ to 30

o
 21′ N with the total area: 

17.792 sq.km (Fig. 1). The soil of Iraq is considered as sedimentary soil, 

especially in the central and southern parts. The annual humidity is less than 50% 

and remains less than 30% during the daytime. The average evaporation exceeds 

2450 mm/year with average annual rainfall less than 100 mm. 

 

Fig. 1. Location of study area in the southern part of Iraq.  

2.2. Methods 

This research used different analyses, which involves remote sensing for salinity 

change detection, GIS assisted spatial modeling, regression analysis and finally 

validation and comparison of the methods. It involves the integration of thematic 

layers such as geological information, elevation, groundwater salinity level (Table 

1), soil texture and vegetation density in mapping soil salinity. 
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Table 1. Some physical and chemical properties of groundwater. 

Well 

No. 
E N EC TDS Cl SO4 Na Mg Ca NO3 

1 47.74401 30.31809 11300 8528 2850 2000 2510 230 592 51.19 

2 47.74331 30.32003 7900 6000 1805 1500 1550 163 544 41.29 

3  47.73203 30.33773 7580 5926 1710 1100 1500 528 800 22.2 

4 47.73604 30.33841 15750 13000 4750 1500 4500 579 1280 51.49 

5 47.74075 30.32178 8510 6688 1353 1400 1700 235 562 53.79 

6 47.74677 30.32113 9210 7226 2233 1500 2130 221 608 29.3 

7 47.74558 30.31972 8770 5948 1552 1800 1400 197 530 16.63 

8 47.74912 30.30631 7190 5902 1455 1600 1200 207 562 13.48 

9 47.72943 30.33897 7940 5610 1710 1150 1500 207 546 51.08 

10 47.74113 30.32837 9420 6628 2090 1450 1800 160 499 29.95 

Landsat images of TM 2000 and ETM 2015 were acquired for the study area 

(Table 2). Layer staking was made for all six bands excluding the thermal band. 

Geometric correction for the three Landsat images was accomplished using a 

topographic map of the study area [9]. Landsat images were registered to the 

topographic map using control points, which were easily recognizable on the 

satellite image. Image enhancement was made to improve the interpretability of 

the images. 

Table 2. Remote sensing data that used in the study. 

Location Satellite Sensor 
*WRS 

Path/Row 
Date 

Al Basra- Al-

Zubair 

Landsat-5 TM  

 Landsat-7 ETM 

166/40 

166/40 

July 10, 2000 

July 18, 2015 
* WRS is the Worldwide Reference System (WRS), which is a global notation system for 

Landsat data. 

In this research, a maximum likelihood classifier (MLC) was used to retrieve 

urban cover areas water bodies, bare land, vegetation density, and sand land area. 

Because the assemblages are mixed in the class to be mapped, they will generally 

be referred to as land use/cover class. Supervised methods proved superior and 

are covered below. Density maps were created by correlating several test land 

use/cover detection to ground data from published classification map about the 

location area. Urbanization properties, water bodies, bare land, vegetation density, 

and sand land area can be delineated on an image to gather the spectral response 

for similar areas in the rest of the image. By gaining a prior knowledge of an area 

on the image to be classified, response across all bands was matched using 

supervised methods to produce desirable output classes. Salt affected areas were 

clearly identified from other features by higher reflectance in many bands. 

However, it was difficult to differentiate salt affected area from sand soils. 

Salinity Index (S.I.) proposed by Tripathi et al. [10] was applied, which gives 

relatively good results in the re-classification of salt-affected soils. The S.I is 

calculated as 

 ½31. BandBandIS                                                                   (1) 

where, band1 and band3 represent the spectral bands of the Landsat images. 

Therefore, sample sites identified as salt affected were used for image 

analysis, followed by site verification. Topographic maps of 1:50,000, were used 

in digitizing thematic layers for the overlay analysis. A soil map of 1:10,000 and 
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geology map of 1:250,000 of the area were obtained from FAO soil classification 

and Geological Survey of Basra Province, respectively. To assess the spatial 

distribution of salt affected area with respect to groundwater table. For the 

purpose of interpolation, 10 wells and soil sample data were selected and 

interpolated to generate a continuous surface distributed throughout the study area 

were used. A total of 10-point data with coordinate references were acquired and 

converted in to point shape file in GIS environment. For the spatial overlay 

analysis, the groundwater table point data were interpolated to generate 

continuous surface water table using spatial analysis tools in GIS environment. 

During interpolation, the raster data were sampled to 28.5 sq.m cell size to be 

made compatible with other layers in the analysis [11, 12]. After interpolation, the 

continuous surface water table data were reclassified into three classes based on 

its contribution to the salinization process [1, 4, 13]. According to the soil salinity 

data, extents of soil salinization were graded as series of > 5% (I), 2%-5% (II), 

0.5-2% (III), < 0.5% (IV), which denote high salinization, medium salinization, 

low salinization, unaffected, respectively (Table 3) [11-13]. All the thematic 

layers were generated in GIS environment at a scale of 1:250,000. The software’s 

packages used for this study were (ERDAS ver. 9.1) and GIS (ArcGIS ver. 9.2). 

Table 3. Land surface features of pure pixels. 

Surface  

features 

Biomass 

(kg/30 m
2
) 

Soil moisture 

(%) 

Soil salinity 

(%) 

Salinity 

grades 

Sand area 0.09 0.1 0.05 IV 

Sparse vegetation area 14.5 8.9 1.96 III 

Luxuriant vegetation area 26.6 18.5 0.42 IV 

Wet salty crust 1.3 21.9 9.18 I 

Dry puffy salty crust 2.2 4.6 7.94 I 

Salty meadow 4.9 5.8 3.67 II 

Many models and indicators exist that are used to analyse the magnitude, rate 

and trend of land degradation risk [14-16]. In order to quantify land use/cover 

changes and their regional disparity, Land Degradation Risk (LDR) was 

calculated using the following equation [17]: 

%100)( SS 1
n

1i

12ij-i  



 
n

ij

ttLDR                                              (2) 

where LDRk stands for annual detection of land degradation for study area from 

time t1 to t2, Si is the area of land use/cover type at time t1, Si-j is the change in 

area for a land parcel whose cover type changed from i to j between t1 and t2 (I,j= 

1,2,3,4 i≠j); n represents the total number of land use/cover types which is four. 

Able to show dynamics of land use/cover changes and their variation across 

different regions [18]. 

The land use/cover change map derived from the satellite image was digitized 

and edited in ArcGIS. Other derived attribute data, viz., and population pressure, 

were incorporated into the GIS database using FoxPro
®
. Final tally of land 

use/cover change for study area was determined by merging all ranks of change 

associated with the land use/cover indicators. Prior to the merging, each rank 

level was converted into a numerical value according to an established linear and 

continuous mathematical equation. The area of land use/cover detection at each 
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overall level of change within study area was ascertained by overlaying the final 

land use/cover change map with the administrative boundary map using ArcGIS. 

 

3.  Results and Discussion 

Table 4 shows significant changes in the LULC can be recognized and type of 

LULC conversion taking place can be identified. From 2000 to 2015 sand land, 

urban areas, and bare lands saw a relatively dramatic increase. The areas that 

contributed the most to this change were vegetation land. This may suggest 

logging and development. During the same time span, urban areas also increased 

in size. The majority of this change came from the development of vegetation 

land into an urban class. Water bodies saw a decrease 10.6%
 
in size. Some of the 

water bodies converted to unused land, while some of it was converted to urban. 

Vegetation areas also saw a decrease in size. Most of it was converted to sand 

cover area, while a smaller but significant portion was developed into urban areas.  

Table 4. (LULC) classes monitored from satellite image for the study area. 

(LULC) classes Area 2000 Area 2015 Amount Change 

Vegetation land km
2
 % km

2
 % km

2
 % 

Sand land 5.32 29.9 4.68 26.3 -0.64 -12.0 

Urban area 5.64 31.7 6.03 33.9 0.39 6.9 

Unused land 1.83 10.3 2.12 11.9 0.29 15.8 

Water bodies 2.75 15.5 2.95 16.6 0.20 7.2 

Vegetation land 2.25 12.6 2.01 11.3 -0.24 -10.6 

Two scenes for each of Landsat TM and ETM+ for the period 2000 and 

2015 respectively have been used to create an image index of Salinity Index 

(SI) depending on the spectral response of the soil. This index reveals an 

increase in salt-affected area during the mentioned period. Ancillary data is 

accurate strategy that indicators different salinity level in the term of spectral 

response. The results show the incorporation of the EC relationship with Na
+
, 

Ca
++

, and Mg
+
 content which provides a better and more objective indicator of 

soil salinity and indicates that there is greater soil salinity with increasing Cl, 

SO4, and NO3 content. Accordingly, many information layers of the salinity 

elements have been created as shown in Figs. 2 and 3. As well as there is good 

contribution between EC and spectral response in Landsat images specifically 

in Band 1 and Band 3 which is considered the most accurate band to detect and 

evaluate soil salinity. 

The salinity index (SI) was used to enhance the saline zones and suppressing the 

vegetation, which was calculated as the ratio of the difference of red band to NIR 

band. The values of the salinity index (SI) ranged between 1 and –1, from these 

areas with value 0 and less than 0 were classified as none saline. About 47.8% of 

the study area was low sensitive areas in 2000, which gradually decreased to 35.9% 

in 2015 (Table 5). Out of this, 8.50 km
2
 under low sensitive areas in 2000, whereas 

the rest area was changed in to slightly saline. Moderately saline soil was about 

38.9% in 2000, which was increased to 44.7% in 2015, respectively. 
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Fig. 2. Information layers of Na, Ca, and Mg as contours line. 

Table 5. Salt affected area class derived  

from SI and change rate for 2000 and 2015. 

Salt affected area class 
Area 2000 Area 2015 Rate of Change 

km
2
 % km

2
 % km

2
 % 

Low sensitive areas 8.50 47.8 6.39 35.9 -2.11 -11.9 

Moderately sensitive areas 6.92 38.9 7.95 44.7 5.80 32.6 

High sensitive areas 2.37 13.3 3.45 19.4 6.10 34.3 

Total 17.792 100 17.792 100 - - 

The results indicate that salt affected areas were distributed throughout the study 

area. In the central and in many of the northern parts of the farm was moderately 

saline. As illustrated in Fig. 4, the north-western parts of the location were of high 

salinity. A map of salt affected soil for the two different study years revealed that 

moderately and slightly saline soils were concentrated in the central area of the 

study location. Figure 4 shows the area ratios and statistics characteristics of soil 

salinity of different groundwater depth types in the study area. There are clear 
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differences of soil salinity among them. As soil salinity problem was closely related 

with salt water concentration, the salt affected areas mapped were overlaid with the 

groundwater table depth. The Groundwater table depth of the area was within 10-30 

m below the ground surface. About 54% of the salt affected area of groundwater 

salinity level. The classification of groundwater table depth with different level 

class and risk salt water concentration indicated that groundwater salt content is the 

major problem of the occurrences of soil salinity especially in critical areas. From 

the prediction model, the total area identified as salt affected soil was 25%. Out of 

this, 11% is lying within critical areas and 64% was lying in potentially area classes 

of the total salt affected soil exists (Fig . 4). 

 

Fig. 3. Information layers of Cl, SO4, and NO3 as contours line. 

Since salinity is a dynamic process it is important to monitor salinity process 

and map its spatial distribution regularly. Although geostatistical technique is 

available to see the spatial structure it takes lots of effort in collecting sufficient 

soil samples and their laboratory analysis (Fig. 5). In this respect combination of 

geopedologic interpretation of the area and incorporation of band rotation seems 

to be useful in accessing salinity problem quickly. Results, using spatial analysis 

methods, showed that 11.2% of land had no risk of land degradation by soil 
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salinity, 26.1% had moderate, and 62.7% of the total land area was at a high risk 

of land degradation by soil salinity. In conclusion, the study area is exposed to a 

high risk of soil salinity. The results of the statistical analysis showed that saline 

area has a significant correlation with vegetation cover negative change (0.89). 

 

Fig. 4. Created salinity index (SI) for the periods 2000 and 2015. 

The area of salt affected soils that resides within 100 m and 300 m distance of 

wells are found to be only 40.8% and 29.3%, respectively (Fig. 5). The result 

indicated that poor irrigation and water management systems and small canal 

structures lead to secondary salinization. Secondary salinity resulting from 

modern irrigation occurs due to accelerated redistribution of salt in the profile by 

high water table. Irrigation was the main cause of rise in shallow groundwater 

table under intense evapo-transpiration conditions and this led indirectly to soil 

salinization. In general, stretching from the wells buffer, soil salinity shows 

decreasing tendency with the decrease in distance from the wells buffer. It reflects 

the significant influence on soil salinity by the salt water around. . The statistical 

analysis showed this index (SI) has a significant correlation with water bodies’ 

positive change (0.92). 
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Fig. 5. Geostatistical distribution of salt affected area in the study area. 

Factors causing soil salinity include inappropriate and excessive irrigation 

without adequate drainage system, irrigation water quality, rising saline water 

table, climate, rainfall history, local topography and soil composition and farming 

practices. Therefore, increasing soil salinity at the surface is most likely to vary 

according to the distribution of these different factors across the landscape. It was 

revealed that the spatial distribution was not highly influenced by the features 

considered except groundwater table. The results demonstrate that modeling and 

mapping spatial variation of soil salinity based on remote sensing data is a 

promising approach. Based on this view, to assess the distribution of saline soils, 

the water table map was overlaid with a map of salt affected soils. The rising 

water table brings salt from deep in the soil up to the surface, causing salt 

accumulation. The present results also suggested that a rising water table and salt 

accumulation at the surface combined with a high evaporation rate are likely 

factors that have resulted in the spatial variation in soil salinity of the area. This 

study shows how regression analysis, coupled with remote sensing images, could 

successfully predict and map spatial variation in soil salinity over an area 

vegetated. Thus, the information presented can help farmers, scientists and 

engineers to manage soil salinity problems affecting the ecosystem. Additionally, 

the simplicity of this approach, with its satisfactory accuracy, can contribute to 

soil salinity prediction and mapping at lower costs than conventional approaches. 
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Figure 6 and Table 6 shows the distribution of land degradation risk areas  in 

study location, it is clear that the sensitive areas to land degradation in study area, 

where the soil quality, climatic quality and management quality are low; these 

areas represent 12.8 % of the study location area (i.e. 2.28 km
2
). The areas of high 

to moderate sensitive for land degradation exhibit the rest of the parts of the study 

location as it represent 87.2 % of the total area (i.e. 15.51 km
2
). The northern 

parts of the study location are characterized by a high risk for land degradation as 

they represent 61.9 % of the total area (i.e.11.01). The low risk for land 

degradation is due to the good vegetation cover and soil quality. The results of 

this study indicated that land degradation results from natural and anthropogenic 

factors. Overlay of  land degradation processes layers interpreted from multi-

temporal remotely sensed materials in a GIS, in conjunction with field 

investigation, revealed that the spatial extent of sandy desertified land in the area 

has drastically expanded during the fifteen-year study period (2000-2015). 

 

Fig. 6. Land degradation risk assessment in study area. 

Land degradation processes in the study area was assessed through 

consideration of both natural (vegetative index, soil index, climatic index, drifting 

sand) and anthropogenic (Land use change) factors in the study. It was found that 

most of the study locations were highly land degradation. The overall sensitivity 

of land degradation change has worsened during the study period with degraded 

areas accounting for 61.9% of the total area in 2015.  There is a clear trend in the 

spatial distribution of the land degradation direction within the study area, which 

goes from the Northwest toward the Southeast. The risk has risen considerably, 

on an average, by 40% for all western parts of study location between 2000 and 
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2015. In particular, the risk has increased considerably for those areas not 

previously considered highly vulnerable to degradation. Consequently, the 

disparity of land degradation hazard among the study locations has shrunk as all 

of them are at a higher risk in 2015 than ever before. The accentuation of land 

degradation is attributed to conflicts among human interest, limited land resource, 

and fragile ecosystems. Inappropriate human activities such as excessive 

exploitation of natural resource and mismanagement of land, to a certain extent, 

have contributed to the land destruction.  

Table 6. The categories of land degradation  

and the proportion of each category 

Class Area (km
2
) % 

Low land degradation areas 2.28 12.8 

Moderately land degradation areas 4.50 25.3 

High land degradation areas 11.01 61.9 

Total 17.792 100 

4.  Conclusions 

This study proposed a system depends on satellite images as the most important 

input data to the GIS, and it is ready to be imposed by other promoted required data 

for updating or any other environmental study in order to reduce the expense that is 

needed to construct other related study. It provides a tool more easily to manage the 

immediate attention with greater monitoring. Remote sensing and GIS based 

integration and spatial overlay soil salinity model using multivariate analysis results 

showed that most of the moderately saline soils are on saline water table depth. 

Intensive irrigation practices and excessive use of water and poor irrigation 

management can cause soil salinization. Areas where groundwater table lay above 

critical depth increased as a result of higher evaporation and this has contributed 

directly to the occurrence of moderate and slight salt accumulation in the area. The 

model has good predictability as it considers most of the factors, which contribute to 

soil salinization. Modeling and mapping spatial variation in soil salinity based on 

GIS analysis and remote sensing data are promising approaches, as it facilitates 

timely detection with a low-cost procedure and allow decision makers to decide on 

necessary actions, to be taken in the early stages to control soil salinity and to 

conserve agricultural lands and natural ecosystems.  

Acknowledgments 

The authors are grateful to the anonymous reviewers for their critical review and 

comments on drafts of this manuscript.  

References 

1. Allbed, A.; Kumar, L.; and Sinha P. (2014). Mapping and modelling spatial 

variation in soil salinity in the Al Hassa oasis based on remote sensing indicators 

and regression techniques. Journal of Remote Sensing, 6(2), 1137-1157. 

2. Bilgili, A.V. (2013). Spatial assessment of soil salinity in the Harran plain 

using multiple kriging techniques. Environmental Monitoring and 

Assessment, 185(1), 777-795. 



Effect of Groundwater Salinity Level on Soil using Remote Sensing and . . . . 989 

 
 
Journal of Engineering Science and Technology                April 2018, Vol. 13(4) 

 

3. Dehni, A; and Lounis, M. (2012). Remote sensing techniques for salt affected 

soil mapping: application to the Oran region of Algeria. Procedia 

Engineering, 33,188-198. 

4. Douaik, A.; Vanmeirvenne, M.; and Toth, T. (2005). Soil salinity mapping 

using spatiotemporal kriging Bayesian maximum entropy with interval soft 

data. Geoderma, 128(3-4), 234-248. 

5. Metternicht, G.; and Zinck, J.A. (2003). Remote sensing of soil salinity: 

potentials and constraints. Remote sensing of Environment, 85(1),1-20. 

6. Wu, J.; Vincent, B.; Yang, J.; Bouarfa, S.; and Vidal, A. (2008). Remote 

sensing monitoring of changes in soil salinity: a case study in Inner 

Mongolia, China. Sensors, 8(11), 7035-7049. 

7. Wang, D.; Wilson, C.; and Shannon, M.C. (2002). Interpretation of salinity and 

irrigation effects on soybean canopy reflectance in visible and near-infrared 

spectrum domain. International Journal of Remote Sensing, 23(5), 811-824. 

8. Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; and Shiozawa, S. (2005). 

Assessment of hydrosaline land degradation by using a simple approach of 

remote sensing indicators. Agricultural Water Management, 77(1-3), 96-109. 

9. Jabbar, M.T.; and Zhou, J. (2012). Assessment of soil salinity risk on the 

agricultural area in Basrah province, Iraq: using remote sensing and GIS 

techniques. Journal of Earth Science, 23(6), 881-891. 

10. Tripathi, N.K.; Rai, B.K.; and Dwivedi, P. (1997). Spatial modeling of soil 

alkalinity in GIS environment using IRS data. Proceedings of the 18th Asian 

Conference on Remote Sensing, Kualalampur, 81-86. 

11. Farifteh, J. (2007). Imaging spectroscopy of salt-affected soils: Model-based 

integrated method . Utrecht University, 143, (pp. 160). 

12. Eldeiry, A.; and Garcia, L.A. (2008). Detecting soil salinity in alfalfa fields 

using spatial modeling and remote sensing. Soil Science Society of America 

Journal, 72(1), 201-211. 

13. Royston, P.; and Sauerbrei, W. (2008). Multivariable model-building: a 

pragmatic approach to regression analysis based on fractional polynomials 

for modeling continuous variables, John Wiley & Sons Chichester, 777. 

14. Awasthi, K.D.; Sitaula, B.K.; Singh, B.R.; and Bajacharaya, R.M. (2002). 

Land-use change in two Nepalese watersheds: GIS and geomorphometric 

analysis. Land Degradation and Development, 13(6), 495-513. 

15. Velázquez, A.; Durán, E.; Ramı́rez, I.; Mas, J.F.; Bocco, G.; Ramı́rez, G.; 

and Palacio, J.L. (2003). Land use-cover change processes in highly 

biodiverse areas: the case of Oaxaca, Mexico. Global Environmental 

Change, 13(3), 175-184. 

16. Al-Awadhi, J.M.; Omar, S.A.; and Misak, R.F. (2005). Land degradation 

indicators in Kuwait. Land degradation and development, 16(2), 163-176. 

17. Gao, J.; Liu, Y.; and Chen, Y. (2006). Land cover changes during agrarian 

restructuring in northeast China. Applied Geography, 26(3-4), 312-322. 

18. Liu, Y. ; Gao, J.; and Yang, Y. (2003). A Holistic approach towards 

assessment of Severity of land degradation along the great wall in northern 

Shaanxi province, China. Environmental Monitoring and Assessment, 

82(2),187-202. 


