
Journal of Engineering Science and Technology
Vol. 13, No. 3 (2018) 778 - 789
© School of Engineering, Taylor’s University

778

AN EFFICIENT HASH
ALGORITHM TO PRESERVE DATA INTEGRITY

GURPREET K. SODHI, GURJOT S. GABA*

School of Electronics & Communication Engineering,

Lovely Professional University, Jalandhar, India - 144411

*Corresponding Author: er.gurjotgaba@gmail.com

Abstract

Recent advancements in the field of electronic commerce and internet banking

have led to the growing need for a secure communication system. Various other

areas including military require a highly reliable system so as to make sure that

the shared data is confidential and unaltered.A negligence over these factors can

lead to a huge and immutable loss. In this paper, a novel and Efficient Hash

Algorithm(EHA)is presented which inherits the basic architecture of SHA-160.

The performance of the proposed algorithm is evaluated by comparing it with

the existing techniques which include MD2, MD5, SHA-160, SHA-256, SHA-

384 and SHA-512. The comparison is done on the basis of NIST statistical test

suite for random numbers and avalanche criteria. The results reveal that the

suggested technique is more efficient in terms of randomness and throughput,

thus, it can be efficiently used in any data sensitive environments.

Keywords: Hash, Data integrity, Message digest, Message authentication code,

Security.

1. Introduction

The term communication is no longer confined to sharing of data between two of

more parties, rather it now focuses on the data being shared securely. Securely

here refers to retaining the confidentiality, integrity and authenticity of the shared

data. Generally, a communication system may comprise of some critical

information which is not to be disclosed to any unauthorized party, in order to

prevent that information from being misused [1].

Now-a-days, the need of data assurance has increased to a higher extent due to

the sensitivity of data and its usage in critical applications, where there is no com-

An Efficient Hash Algorithm to Preserve Data Integrity 779

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

Nomenclatures

f Function

K Constant derived from Sin function

W Word

Abbreviations

CDF Check Determinant Factor

DFT Discrete Fourier Transform

FIPS Federal Information Processing Standard

MAC Message Authentication Code

MD Message Digest

NIST National Institute of Standards and Technology

NSA National Security Agency

SHA Secure Hash Algorithm

promise with the data security [2]. Various schemes have been developed to

verify that the received data is unaltered [1]. Also different security measures

have been suggested in the literature [2] involving measures to retain

confidentiality, integrity, authenticity and availability. Authenticity is of two

types: Source Authentication & Message Authentication where the former assures

the identity of the user and the latter assures the reception of unaltered data.

Hayouni et al. [3], proposed various encryption and decryption algorithms to

ensure confidentiality and authenticity.

Data integrity being of prime concern can be achieved using numerous

hashing algorithms available. A Hash function maps an input of arbitrary length

to a fixed output by using a noninvertible compression function. Hash functions

have a property of being hard to reverse, which makes them efficient enough to

be used for providing security services such as data integrity. They are widely

used in applications such as emailing, digital signatures, electronic voting, e-

commerce and online transactions. As compared to the cryptographic primitives

such as symmetric and asymmetric ciphers, hash functions are better, in terms

of efficiency [4].

Al-Mashhadi et al. [5] introduced changes in the existing Hash Algorithms in

order to enhance the strength of security. There are basically two existing families

used for calculating Hash: One-way Hash such as MD family, which constitutes

of MD2, MD4, and MD5 [2] and SHA family, which constitutes of SHA-160,

SHA-256, SHA-384, and SHA-512 [5]. The advancement here is the use of key

for the purpose of producing the message digest. They are referred to as Message

Authentication Code (MAC) [6] and Digital Signatures [5]. Message Digest

produced by a hash algorithm is to be appended with original message, which is

then compared with the value obtained at the receiver end; if both the values are

same then data integrity is assured [5]. Hashing algorithms are considered to be

highly secure, as for a given algorithm it is computationally impossible to find a

message which is accurately same as the given message digest, or to find two

distinct messages having same message digest. Anymodification in the message

will result in a variation in the message digest [7]. Ghaeb et al. [8] used CDF

(Check Determinant Factor) to measure data integrity. It involves appending of

Determinant Factor for each data matrix before storing or transmitting the series

780 G. K. Sodhi and G. S. Gaba

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

of data. Since a communication system suffers from various types of attacks such

as masquerade, disclosure, traffic analysis, content modification, sequence

modification, source repudiation and destination repudiation etc. [2], therefore in

order to achieve secure data transmission, there must be a system that provides

authenticity of the source and message, so as to prevent the insertion of false data

by an advisory. Various approaches have been presented in the past to maintain

data integrity in a wireless network [5].

A detailed study on various Hash algorithms clearly shows a strategy followed

by the researchers, which aims at increasing the message digest length in order to

enhance the security and efficiency of a hash algorithm. While the two desired

aims are achieved, an issue of increased bandwidth utilization and low throughput

becomes an area of concern [3]. The proposed scheme since utilizes SHA-160

architecture, provides an efficient way to enhance security by increasing the

complexity of the algorithm while retaining the message digest of smaller length.

2. Proposed Algorithm

The proposed algorithm is a secure one-way hashing algorithm of 160-bit,

framed by enhancing the complexity of the existing hash function. It is clearly

observed from Fig. 1 that EHA inherits the basic architecture of SHA-160

algorithm. SHA-160 algorithm is a cryptographic hash standard which was

recommended by Network Working Group under RFC 1321. This was designed

by NSA (National Security Agency) to be a part of digital signature algorithm.

It was published by National Institute of Standards and Technology (NIST), as

a U.S.A Federal information processing standard (FIPS). It takes an input of

varying length and produces a 160-bit message digest. The whole compression

function consists of 80 rounds [9].

Fig. 1. SHA-160 compression function [10].

To enhance the impact of SHA-160 in terms of randomness, Expansion and S-

box operations have been added into the existing architecture. These amendments

increase the system complexity and thus help in preserving data integrity. The

simulations of the proposed technique are carried out in MATLAB. The proposed

scheme also enhances the system throughput by providing a message digest of

An Efficient Hash Algorithm to Preserve Data Integrity 781

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

smaller length as compared to other hashing algorithms of SHA family which

includeSHA-256, SHA-384 and SHA-512. The whole process of the proposed

algorithm is divided into three steps:

2.1. Pre-processing step

It constitutes of three steps: Padding the message, formation of blocks, and

initialization of hash values.

Step 1: Hash algorithms have a constraint of input length. Therefore, padding

has to be done in order to ensure that the padded message is multiple of 512.

Padding here is done by appending single ‘1’ bit followed by ‘0’ bits till the

length of bits in the message becomes congruent to 448 modulo 512.

Step 2: The message is to be divided into blocks of 512 bits each and these 512

bit blocks are further divided into 16 blocks of 32 bits each.

Step 3: Before further processing, five 32 bit words registers A, B, C, D and E

have to be initialized with the values mentioned in Table 1.

Step 4: Save these above values in different variables like: 𝐴𝑜 = 𝐴 , 𝐵𝑜 = 𝐵,
𝐶𝑜 = 𝐶, 𝐷𝑜 = 𝐷, 𝐸𝑜 = 𝐸

Table 1.Buffer Values for SHA-160.

Registers 32-bit Words (Hexadecimal)

A 67452301

B EFCDAB89

C 98BADCFE

D 10325476

E C3D2E1F0

Further a function ‘f’ is introduced into the existing algorithm given in Fig. 2

to increase complexity.

● Each 512 bit block is divided into sixteen blocks of 32 bit each and these

blocks are then expanded to eighty 32 bit blocks by using various mixing and

shifting operations as mentioned in Eq. (1) [11]

𝑓𝑜𝑟 𝑡 = 17: 80

𝑊(𝑡) = 𝑊(𝑡 − 3)𝑋𝑜𝑟𝑊(𝑡 − 8)𝑋𝑜𝑟𝑊(𝑡 − 14)𝑋𝑜𝑟𝑊(𝑡 − 16) ≪ 1 (1)

 𝑒𝑛𝑑

● Four rounds of 20 bit operations are applied on the message blocks & buffer.

● Computation of ‘ft’ function, where ft (b, c, d) is a different nonlinear function

in each round as given in Eqs. (2) to (5) [11]

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 20 ≥ 𝑓(𝐵, 𝐶, 𝐷) = (𝐵 𝑎𝑛𝑑 𝐶) 𝑜𝑟 (𝑛𝑜𝑡(𝐵)𝑎𝑛𝑑 𝐷) (2)

𝑓𝑜𝑟 𝑖 = 21 𝑡𝑜 40 ≥ 𝑓(𝐵, 𝐶, 𝐷) = 𝐵 𝑋𝑜𝑟 𝐶 𝑋𝑜𝑟 𝐷 (3)

𝑓𝑜𝑟 𝑖 = 41 𝑡𝑜 60 ≥ 𝑓(𝐵, 𝐶, 𝐷) = (𝐵 𝑎𝑛𝑑 𝐶) 𝑜𝑟 (𝐵 𝑎𝑛𝑑 𝐷) 𝑜𝑟 (𝐶 𝑎𝑛𝑑) (4)

𝑓𝑜𝑟 𝑖 = 61 𝑡𝑜 80 ≥ 𝑓(𝐵, 𝐶, 𝐷) = 𝐵 𝑋𝑜𝑟 𝐶 𝑋𝑜𝑟 𝐷 (5)

●Wt is derived from message blocks.

782 G. K. Sodhi and G. S. Gaba

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

● Kt is a constant value derived from the Sin function as shown in Eqs. (6) to (9) [11]:

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 20 ≥ 𝐾 = 5𝐴827999 (6)

𝑓𝑜𝑟 𝑖 = 21 𝑡𝑜 40 ≥ 𝐾 = 6𝐸𝐷9𝐸𝐵𝐴1 (7)

𝑓𝑜𝑟 𝑖 = 41 𝑡𝑜 60 ≥ 𝐾 = 8𝐹1𝐵𝐵𝐶𝐷𝐶 (8)

𝑓𝑜𝑟 𝑖 = 61 𝑡𝑜 80 ≥ 𝐾 = 𝐶𝐴62𝐶1𝐷6 (9)

● Then the following operations are performed as shown from Eqs. (10) to (15) [11]

𝑇𝑒𝑚𝑝 = 𝐸 + 𝑓(𝑏, 𝑐, 𝑑) + (𝐴 ≪ 5) + 𝑊𝑡 + 𝐾𝑡 (10)

𝐸 = 𝐷 (11)

𝐷 = 𝐶 (12)𝐶 = (𝐵 ≪ 30) (13)

𝐵 = 𝐴 (14)

𝐴 = 𝑇𝑒𝑚𝑝 (15)

● Here ‘+’ indicates 2
32

modulo addition and ‘<<’indicate left shift of the bits.

2.2. Output transformation step

The word registers are updated after execution of 2
32

 modulo addition operation

between the initial values with final output value of word register as shown in Eqs.

(16) to (20). After the preliminary message digest is generated, next 512 bit block of

message and updated values of all the four words registers acts as the next input for

the compression function. The processing of the last block of the input message

leads to the generation of the message digest of the complete message.

𝐴 = 𝑚𝑜𝑑((𝑨𝟎 + 𝐴), 4294967296) (16)

𝐵 = 𝑚𝑜𝑑((𝑩𝟎 + 𝐵), 4294967296) (17)

𝐶 = 𝑚𝑜𝑑((𝑪𝟎 + 𝐶), 4294967296) (18)

𝐷 = 𝑚𝑜𝑑((𝑫𝟎 + 𝐷), 4294967296) (19)

𝐸 = 𝑚𝑜𝑑((𝑬𝟎 + 𝐸), 4294967296) (20)

2.3. Introduction of ‘f’ function

The proposed technique derives its strength from the ‘f’ function, which has been

integrated into the existing procedure. This ‘f’ function constitutes of an

expansion technique and Substitution block as shown in Fig. 2. The expansion

technique used here is Symmetric extension which transforms the 32 bit input

data into 48 bit data. Later, 2
48

 modulo addition is applied followed by the

substitution box, which is used to convert the 48 bit data to 32 bit data. The

details are given in Appendix A.

‘f’ function performs the following tasks: The expanded value of register E

and function ‘ft’ containing 48 bit data is provided as an input to perform 2
48

modulo operation as shown in Eq. (21) and then the output that consists of 48 bit

is given to the ‘S’ block as in Eq.(22) in order to convert the 48 bit data to 32 bits.

An Efficient Hash Algorithm to Preserve Data Integrity 783

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

The left shifting of the bits is represented in the structure by ‘S
n’

, where n is the

number of bits to be shifted.

𝑌 = 𝑚𝑜𝑑 ((𝐸𝑥𝑝(𝐸) + 𝐸𝑥𝑝(𝑓𝑡)), 281474976710656) (21)

𝑌1 = 𝑆(𝑌) (22)

● Further, this ‘Y1’ value consisting of 32 bits is used for proceeding operations.

Fig. 2. Structure of EHA.

3. Results and Discussions

EHA has been evaluated on the basis of NIST tests of randomness and avalanche

criteria. This is done using three different input values having different lengths.

The length of the key has been normalized according to the key length of other

schemes accordingly, in order to have proper comparison. So that unbiased output

is obtained on a normalized platform. The inputs along with their corresponding

784 G. K. Sodhi and G. S. Gaba

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

hash values, resulting from various existing techniques and the recommended

technique are given in Table 2.

Table 2. Message digest values for different inputs.

HashTechniques Hash values

P World Current work

MD2 3687e026b0a5f81a

9fabd5205d804615

bb37795d20176658

552b6da07694861c

9c10bdde1d3aabbe

95038e9062f9bb44

MD5 83878c911713389

02e0fe0fb97a8c47a

7d793037a0760186

574b0282f2f435e7

fa2c20167700f35b9

8fa7ec01b11d84c

SHA-160 516b9783fca517ee

cbd1d064da2d1653

10b19759

7c211433f02071597

741e6ff5a8ea34789

abbf43

eedb824ffed03619e

62b42f61f6e7ded24

010aae

SHA-256 148de9c5a7a44d19

e56cd9ae1a554bf6

7847afb0c58f6e12f

a29ac7ddfca9940

486ea46224d1bb4fb

680f34f7c9ad96a8f

24ec88be73ea8e5a6

c65260e9cb8a7

fd878264b337d653

f712a333cdc8cb0ab

0bb08a9a5eb585c6

c6fc55b7acd27c8

SHA-384 049e7caf67d83409

ea363e89c09d67c7

f1fd1bd679016ad9

f422830ef105435e

12a4c2dcad5a9e5a

9602924d479574dc

ed7ced8487577360

3af90402e42c65f3b

48a5e77f84adc7a19

e8f3e8d310101022f

552aec70e9e1087b2

25930c1d260a

805dba18a4c056b8

391685ba8113a837

2d4f2bb217b2f83a6

1d2a34efb9f7b8b69

79e4ab51561a2516

8e915efcc11252

SHA-512 929872838cb9cfe6

578e11f0a323438a

ee5ae7f61d41412d

62db72b25dac5201

9de2d6a355eb2d03

3336fb70e73f0ec0

afeca3ef36dd8a90d

83f998fee23b78d

11853df40f4b2b919

d3815f64792e58d08

663767a494bcbb38

c0b2389d9140bbb1

70281b4a847be775

7bde12c9cd0054ce3

652d0ad3a1a0c92ba

bb69798246ee

f1b814483d475967

960077ad0868aacc

96f635c9c535b79f1

ed5e0e00f7afef710

830c73f5d06cb685

0093129433061bf8

7d02753e5f12f082d

a4477dba54311

EHA 4283483b3e3a8b6d

5dcd699c274d1d37

74e17d44

617d79dc7a2b5669

1f5be1fa94a76db83

54d62f3

db13fea29dc8d457

25e6fe179dac64111

107a091

Further, NIST tests have been performed to evaluate the randomness of the

message digests for the different set of inputs. These tests are used to calculate the

P value for a binary sequence, which has to be greater than 0.01 for a sequence to

be random [10].

A brief overview of the various NIST tests is given as:

i) Frequency test

Frequency test analyses the proportion of number of ones and zeros in the

entire sequence. It checks the closeness between the number of ones and

number of zeros. A sequence is said to be random if the proportion of both is

close to each other [11]. The results in Table 3 illustrates that EHA produces

better proximity between the count of ones and zeros as compared to the

previously used techniques.

An Efficient Hash Algorithm to Preserve Data Integrity 785

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

Table 3. NIST test results for frequency test.

Hash Technique P-values

P World Current work

MD2 0.2888 0.7237 0.8597

MD5 0.3768 0.5959 0.4795

SHA-160 0.8744 0.8744 0.2059

SHA-256 0.4533 0.1498 0.4533

SHA-384 0.7595 0.2616 0.5403

SHA-512 0.2888 0.3768 0.5361

EHA 0.8744 0.1138 0.8746

ii) Binary derivative test

The Binary Derivative Test is performed using exclusive-or operation between

successive bits until only one bit is left. Then, the ratio of number of ones to the

length of entire sequence in each case is calculated. Finally, the average of the

ratio of all the sequences is calculated, if the value lies near to 0.5, then the

sequence is considered to be a random sequence [11]. The results in Table 4

indicate that the output of the proposed algorithm is random.

Table 4. NIST test results for binary derivative test.

Hash Technique P-values

P World Current work

MD2 0.4849 0.5029 0.5049

MD5 0.5038 0.5042 0.4961

SHA-160 0.5110 0.5017

SHA-256 0.5006 0.5022 0.5014

SHA-384 0.5023 0.4997 0.5032

SHA-512 0.4980 0.4972 0.5021

EHA 0.4930 0.4974 0.5111

iii) Discrete Fourier transform test (DFT)

The purpose of DFT test is to find the peak heights in the Discrete Fourier

Transform of a sequence. It detects the presence of similar patterns in the sequence

which further indicates a divergence from the assumed randomness. The focus is to

check if the number of peaks exceeding the 95% threshold is significantly different

than 5%. The results for DFT test are summarized in Table 5.

iv) Approximate entropy test

The objective of this test is to calculate the frequency of all the overlapping bit

patterns present in the sequence. It compares the frequency of overlapping blocks

of two sequential lengths with the expected outcome for a random sequence. The

results are given in Table 6.

786 G. K. Sodhi and G. S. Gaba

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

Table 5. NIST test results for DFT test.

Hash Technique P-values

P World Current work

MD2 0.5164 0.8711 0.5164

MD5 0.3304 0.5164 0.5164

SHA-160 0.1000 0.4682 0.1000

SHA-256 0.3588 - 0.7308

SHA-384 0.0027 0.4537 0.7787

SHA-512 0.7456 0.6265 0.1233

EHA 0.4682 0.4688 0.4680

Table 6. NIST test results for approximate entropy test.

Hash Technique P-values

P World Current work

MD2 0.6169 0.3499 0.5739

MD5 0.4108 0.8312 0.6896

SHA-160 0.8897 0.8018 0.6803

SHA-256 0.9963 0.7720 0.9080

SHA-384 0.9954 0.9915 0.9712

SHA-512 0.9841 0.9801 0.9965

EHA 0.5619 0.9163 0.8896

v) Maurer’s “Universal statistical” test

This test emphasizes on finding out if a sequence can be compressed without any

loss of information. A sequence is said to be non random if it is significantly

compressible [11]. The results are summarized in Table 7.

Table 7. NIST test results for Maurer test.

Hash Technique Maurer test

P World Current work

MD2 0.8981 0.9880 0.9664

MD5 0.9753 0.9985 0.9675

SHA-160 0.9914 0.9135 0.9818

SHA-256 0.9976 0.9690 0.9935

SHA-384 0.9836 0.9978 0.9993

SHA-512 0.9831 0.9600 0.9850

EHA 0.9943 0.9892 0.9926

As clearly noticed from Tables 3 to 7, the proposed technique performs better

bypassing the NIST criteria of generating a random message digest. Thus,

signifies its effectiveness as a Hash algorithm.

An Efficient Hash Algorithm to Preserve Data Integrity 787

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

A message digest is designed in order to protect the integrity of a piece of data

and to considerably detect any kind of changes or alteration in any part of the

message. Also, one message digest specifically represents particular data content

and thus it can reference a change made intentionally or unintentionally. Thus,

there must be a change in a particular message digest following a change in the

data file. To study this parameter, a separate test has been applied to the hash

values, i.e., Avalanche Test. This test is used to calculate the change in the output

with respect to a change in the output. This is known as the avalanche effect and

it’s represented in the formula as given in Eq. (23) [1]

Avalanche Effect =
𝑵𝒐.𝒐𝒇𝒃𝒊𝒕𝒔𝒇𝒍𝒊𝒑𝒑𝒆𝒅

𝑻𝒐𝒕𝒂𝒍𝒏𝒐.𝒐𝒇𝒃𝒊𝒕𝒔𝒊𝒏𝒕𝒉𝒆𝒔𝒆𝒒𝒆𝒏𝒄𝒆
× 100 (23)

Higher the avalanche effect higher is the efficiency of the technique. This test

has been applied by altering a single character of the input value, considering

existing techniques and comparing the results with the presented one. The

Avalanche Test results are summarized in Table 8.

Table 8. Avalanche test analysis.

Original

Input

 Altered

 Input

Avalanche Effect (%)

MD2 MD5 SHA-

160

SHA-

256

SHA-

384

SHA-

512

EHA

 G 50.00 46.87 46.45 52.43 51.82 49.80 46.90

World Worlk 52.75 45.31 52.50 46,87 51.30 50.00 51.87

Current work Current work 46.09 54.68 52.50 45.31 53.90 50.39 49.87

It can be clearly noticed that the recommended technique performs well under

this criteria too, thus demonstrating its efficiency.

Further EHA is evaluated on another factor, i.e., throughput which is

explained as the maximum output that can be produced by a system within the

specified resources such as bandwidth. It is desirable to make the best use of

resources by reducing the amount of redundant data transmission. Throughput can

be measured by using Eq. (24) [2]

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝐷𝑎𝑡𝑎𝑤𝑖𝑡ℎ𝑜𝑢𝑡𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑠

𝑇𝑜𝑡𝑎𝑙𝑑𝑎𝑡𝑎𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 (24)

EHA produces an output of 160 bits given the input data of variable length.

When compared to other hash algorithms of SHA family, EHA enhances the

throughput of the system significantly.

4. Conclusion

This paper presents a novel technique which is a result of the modification of the

basic architecture of SHA-160 by embedding in it the expansion and substitution

function. The recommended technique has been tested on client server model

using statistical test suite introduced by NIST and avalanche criteria. The

conclusions drawn are listed as:

 The analysis of the different test results concludes that the proposed

algorithm performs better than most of the existing techniques such as MD2,

MD5, SHA-160, SHA-256 and SHA-384.

788 G. K. Sodhi and G. S. Gaba

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

 This scheme serves its best purpose by generating a random message

digest of 160 bit length, which is less than the outputs generated by other

schemes of SHA family and thus the proposed scheme enhances the overall

system throughput.

 The proposed hash can also be effectively used along with the incorporation

of a security key for the implementation of MAC, to provide data as well as

source authentication.

 Hence, the presented hash algorithm can be proficiently applied in an

environment demanding data security.

References

1. Malinowski, C.; and Noble, R. (2007). Hashing and data integrity reliability

of hashing and granularity size reduction. Digital Investigation, 4(2), 98-104.

2. Stallings, W. (2014). Cryptography and network security: Principles and

practices. New York, NY: Pearson Education.

3. Hayouni, H.; Hamdi, M.; and Kim, T.-H. (2015). A novel efficient approach

for protecting integrity of data aggregation in wireless sensor networks.

Proceedings of 2015 International Wireless Communications and Mobile

Computing Conference, 1193-1198.

4. Al-Riyami, A.; Zhang, N.; and Keane, J. (2016). Impact of hash value

truncation on ID anonymity in WSN. Ad Hoc Networks, 45, 80-103.

5. Al-Mashhadi, H.M.; Abdul-Wahab, H.B.; and Hassan, R.F. (2014). Secure

and time efficient hash-based message authentication algorithm for wireless

sensor networks. Proceedings of 2014 Global Summit on Computer &

Information Technology (GSCIT), 1-6.

6. Chang, C.-Y.; Chang, C.-T.; Zhao, L.; Ding, Z.; and Chen, C.-C. (2017). A

stepwise multichannel MAC protocol for improving bandwidth utilization in

wireless Ad Hoc networks. Proceedings of the IEEE Systems Journal, 11(4),

2444-2455.

7. Ravilla, R.; and Shekar, C. (2015). Enhancing the security of MANETs using

hash algorithm. Proceedings of Elsevier IMCIP., 196-206.

8. Ghaeb, J.A.; Smadi, M.A.; and Chebil, J. (2011). A high performance data

integrity assurance based on determinant technique. Future Generation

Computer Systems, 27(5), 614-619.

9. Chabaud, F.; and Joux, A. (1998). Differential collisions in SHA-0. Advances

in cryptology, Crypto’98. Springer-Verlag, 56-81.

10. Eastlake D.; and Hansen T. (2006). US secure hash algorithms (SHA and

HMAC-SHA). RFC, Network Working Group.

Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson,

M.; Vangel, M.; Banks, D.; Heckert, A.; Dray, J.; and Vo, S. (2010). A statistical

test suite for random and pseudorandom number generators for cryptographic

applications. Special Publication 800-22, Revision 1a. National Institute of

Standards and Technology

Appendix A

An Efficient Hash Algorithm to Preserve Data Integrity 789

Journal of Engineering Science and Technology March 2018, Vol. 13(3)

S-boxes used in the proposed technique

In the presented work, eight Substitution boxes have been used as a part of the ‘f’

function, which is applied in the existing SHA-160 Algorithm. The substitution

boxes are used in order to convert the expanded 48 bit data into 32 bit data [2].

The eight S-boxes used are shown in Fig. A-1.

Fig. A-1. S-boxes [2].

