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Abstract 

The driven force feedback in viscoelastic flow is a technique to enforce 

converged solution of Oldroyd-B fluid on the basis of semi-implicit Taylor-

Galerkin finite element method for 4:1 contraction geometry with rounded 

corner meshes. Meanwhile in the numerical computation, the Phan-Thien slip 

rule is applied to complete the slip velocity along the die wall. After application 

of the slip condition, the severe stress near die exit and the vortex size around 

contraction corner are clearly reduced. This simulation is modeled with the 

Navier-Stokes and Oldroyd-B equations in two-dimensional planar isothermal 

incompressible creeping flow. The non-linear differential models are discretised 

to system of linear equations with semi-implicit Taylor-Galerkin finite element 

method. In addition, the Streamline-Upwind/Petrov-Galerkin and velocity 

gradient recovery are accuracy and the stability schemes to stabilize an 

approximate solution. The optimal slip velocity is modified step by step by 

critical slip coefficient to set the slip condition at the wall and when the 

solutions of slip and no- slip cases are compared with analytic solution, the 

outcome of slip condition shows better conformity to real results. 

Keywords: Feedback, Slip effect, 4:1 contraction flow, Oldroyd-B fluid, Slip 

velocity. 

 

 

1.  Introduction 

This research is focused on feedback boundary of 4:1 rounded contraction slip 

flow for the Oldroyd-B fluid by a semi-implicit Taylor-Galerkin pressure-

correction finite element method (STGFEM) under two-dimensional planar 

system. The kinematic behaviors of this viscoelastic fluid are strong elongation  
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Nomenclatures 
(Non-dimensional system) 

D  Deformation tensor rate 

II  Second invariant 

IIcrit  Critical second invariant 

IIw  Second invariant at the wall 

L  Characteristic length 

n  Time step 

1 2n  Half time step 

1n  

P  

Full time step  

Pressure 
n  Time step 

Re Reynolds number 

t 

U  

meanU  

slipU  

V  

We  

Time 

Velocity 

Mean velocity of flowrate for no slip 

Slip velocity 

Characteristic velocity 

Weissenberg number 
 

Greek Symbols 

(Non-dimensional system) 
 

 
Density 

Viscosity 

0  Zero-shear viscosity 

p  Polymeric viscosity 

s  Solvent viscosity 

  Polymeric component of the extra-stress tensor 

1  

xy
 

  

  

Relaxation time 

Shear stress 

Shear rate 

Slip coefficient 
 

Abbreviations 

FEM  Finite Element Method  

J&S Johnson, M.W. and Segalman, D. [13] 

STGFEM 

 

Semi-implicit Taylor-Galerkin Pressure-correction 

Finite Element Method 

and violent shear stress when the flow confronts contraction section abruptly then the 

streamline path suddenly changes trajectory. For this phenomenon, the slip velocity at 

contraction wall is calculated in order to reduce shear stress at sharp corner. 
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In experimental observation for viscoelastic fluids [1], the Rheogoniometer 

was used to measure the rheological properties in an abrupt 2 to 1 contraction 

domain. The significant comparison was emphasized the difference between the 

accomplishment result and numerical prediction of power-law model. The 

equipment [2] for planar contraction flows was implemented for Boger fluid. 

After acute numerical solution was revealed, a circular contraction flow for both 

Newtonian and Non-Newtonian fluids [3] has been set up to benchmark with 

experimental result. 

To avoid inconvenient calculation from analytical data, the mathematical 

model of viscoelastic problem is simulated in form of non-linear partial 

differential equations under conservation law of mass and momentum. In this 

case, a complex problem is eliminated by means of numerical techniques such as 

finite element method, finite volume method and finite difference method. 

Recently, the semi-Lagrangian finite volume method [4] was applied for solving a 

4:1 planar contraction of creeping flow via Oldroyd-B model. The inertial flows 

and the consequence procedure [5] of a new condition by changing Cartesian 

coordinates with axisymmetric cylindrical flow were expanded with fixed grids in 

Eulerian methods.  

A semi-implicit Taylor-Galerkin finite element method [6] has been brought 

to solve stick-slip flow of Oldroyd-B problem along with the modification for free 

surface method at die exit boundary which was determined for Die-swell flow in 

terms of swelling ratio as a function of relaxation time. Consequently, the Phan-

Thien/Tanner fluid in complete die of pressure-tooling problem [7] has been 

simulated under the same STGFEM including security technique of Streamline-

Upwind Petrov/Galerkin for stabilizing converging solution. To utilize finite 

element method and finite volume method in the same code, the new hybrid 

scheme of finite volume/element method [8, 9] by means of cell-vertex 

discretisation technique has been proposed in order to have calculated cooperative 

stress and flow field for Oldroyd-B and Phan-Thien/Tanner fluids with both 

rounded and sharp corner contraction flows. 

Collecting experimental and numerical data to study fluid flows through solid 

wall has demonstrated that slip velocity appears on solid surface and hence 

reduces shear rate.  To make solution look closer to real problems, a number of 

literatures have set up various numerical methods to estimate slip velocity [10] at 

the wall on free surface. For large slip speed on die wall of HDPE and LLDPE, 

the deformation can be noticed under surface melt fracture [11]. In addition, the 

analysis solutions for capillary tubes [12] have been calculated after setting the 

slip velocity. 
In this study, the slip condition has been employed in the problem of 4:1 

contraction for Oldroyd-B model under the two-dimensional planar isothermal 

incompressible flow. A semi-implicit Taylor-Galerkin pressure-correction finite 

element method has transformed Navier-Stokes equation to a system of simple 

linear equations and all solutions have been stabilized by means of the 

Streamline-Upwind Petrov/Galerkin and velocity gradient recovery techniques. 

The solutions of slip condition and no slip situation have been compared after 

optimization of the slip coefficient with rounded corner geometries. 
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2.  Governing Equations  

The governing equations are the Navier-Stokes equations in dimensionless form 

of the conservation of mass and momentum for viscoelastic fluid based on non-

gravity and steady incompressible flow. Considering the standard values of the 

fluid properties, the non-dimensional system of the continuity equation (1) and 

Navier-Stokes equation (2) are represented as 

0 U
    

                                        (1) 

Re Re P
t


    


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The non-dimensional constitutive equation of Oldroyd-B fluid is represented as
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The analytical values (J&S) of the shear stress [13] of Oldroyd-B fluid is 

demonstrated as a function of viscosity and shear rate where a  is a scalar 

parameter on interval (0,2) as below

   

2(2 )( ) 1

p
xy s

a a p

 
  

 
 

 
                                                                       (8) 

3.  Computer Programme 

A finite element method is employed to compute the non-linear differential 

equations as the Navier-Stokes equation and the constitutive equation of Oldroyd-B 

model. The governing equations are discretised to three time stages by a semi-

implicit Taylor-Galerkin pressure-correction scheme. And then the derivative 

equations are converted to linear equations and solved by the iterative method and 

Cholesky decomposition scheme. The Feedback STGFEM is employed to approach 

the converged solution and be stabilized by the streamline-upwind Petrov/Galerkin 

and velocity gradient recovery techniques. For studying slip effect, Phan-Thien slip 
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rule is applied to compute the appropriate slip velocity at wall to reduce the severe 

stress at contraction geometries as detailed in previous paper [14]. 

3.1.  Semi-implicit Taylor-Galerkin pressure-correction finite 

element method 

Semi-implicit Taylor-Galerkin pressure-correction finite element method is the 

integration of time-splitting step scheme and finite element method. This method is 

based on a semi-implicit fractional step method to discretise non-dimensional Navier-

Stokes equation (2) and constitutive equation (6) to three stages per time step. 

The finite difference discretisation is used to transform the initial and 

boundary value problem accomplished with the partial differential equations (2) 

and (6). The time derivative is replaced by Taylor series and the space (spatial) 

term is expanded by the weight residual of Galerkin finite element method. After 

that the three stages per time step are converted to the system of linear equations, 

the approximate solution of steps 1a, 1b and 3 are computed with Jacobi iterative 

method whereas step 2 is calculated by Cholesky decomposition algorithm. 

Step 1a:  

2Re 1 2
( )

t

n n



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Step 2:  
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where * is the intermediate time step. 
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3.2. Phan-Thien slip rule 

The slip effect is the phenomenon that the slip velocity occurs at wall, observed in 

industrial process and experiment in science. Phan-Thien slip rule [15] is effective 

to fit slip velocity at wall because the outcome is close to experimental result [16]. 

The slip velocity is expressed as a function of wall shear stress and the slip 

velocity will be calculated when a critical shear stress is less than the wall shear 

stress. The behavior of second invariant is similar to the shear rate [14], so the 

second invariant value is used to calculate the slip velocity as below.

   

 

II II
   w critU U U eslip mean mean                                                           (15) 

 

3.3. The driven force feedback 

To enforce the numerical solution to converged solution, feedback of pressure-

driven velocity flow [17] is used to set the boundary condition at inlet each step 

until the inlet flow approaches steadiness.  For viscoelastic fluid, this technique is 

effective by setting the intermediate boundary to control the approximate solution. 

After that the numerical result will adjust smoothly and eliminate the case of 

jumping to the diverged solution. 

This scheme uses the differential time step at 0.1 and then differential time 

step will be reduced step by 0.1 when the numerical error reaches to terminate this 

the differential time. After that we started to set the initial column (C1) from 

considering the stress, pressure and velocity at nodes along C2, C3 and C4 as seen 

in Fig 1. Considering the values of C4, it is found that the maximum error of C4 

is less than the other columns, the values nodes between 22 and 28 will be set up 

to instate the values of nodes 1 - 7 in C1. This concept is still operated to find the 

boundary condition at inlet until the numerical solution is converged. The 

effective use under the driven force feedback flow for velocity and pressure is 

developed in order to reduce the time step from the repetition of the computation 

and approach steadily analytical solution, as outlined in Appendix A. 

 

Fig. 1. Example of nodes and columns  

in the driven force feedback flow for the velocity and pressure. 

4.  Results and Discussion 

The effect of 4:1 contraction problem such as shark skin phenomenon and severe 

stress when especially viscoelastic fluids pass the sharp corner happen clearly in 

engineering and industrial process. In this research, the acute geometry is curved 

to rounded corner in order to reduce large stress values and lip vortex by 
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Aboubacar et al. [8, 9]. In addition, the slip velocity is applied on the channel wall 

by means of Phan-Thien slip rule [14, 17].  

In Fig 2(a), the symmetric geometry of planar 4:1 contraction is located at the 

center line. The half channel length of 4L and L  channel widths are long enough 

to develop Poiseuille flow at inlet and exit sections which are 27 5. L  and 49L ,  

respectively. 

3 2
( ) (16 )
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                                 (17)  

The three different patterns of coarse, medium, and fine meshes are mesh1, 

mesh2 and mesh3 as shown in Fig. 2(b), 2(c) and 2(d), respectively. The 

subdomain of every mesh is cut at position x = 22 to x = 30 from the full domain. 

The smallest element size of unbias mesh structure is generated near rounded 

corner and the mesh specifications are defined in Table 1. 

 

(a) the domain of mesh2 

 

                     
                     (b) mesh1                            (c) mesh2 

                                            
(d) mesh3 

Fig. 2. Mesh patterns. 



732       N. Thongjub 

 
 
Journal of Engineering Science and Technology              March 2018, Vol. 13(3) 

 

Table 1. Mesh specification of rounded corner. 

 mesh1              mesh2 mesh3 

Elements 1626                2693 4751 

Nodes 3433                5652 9790 

Degree of Freedom 18069               29740 51470 

The Minimum of Mesh Size 0.017               0.010 0.006 

Effect of Slip Condition Problem 

The results for viscoelastic flows of rounded corner meshes under the condition of 

no slip and slip effect are considered and the best mesh is selected to display final 

solution that duplication would reduce as well as saving computer times.  After 

the best mesh had been selected, it was applied to operate no slip case and slip 

condition for further details as above. A stick or no slip problem has been studied 

by collecting stresses and shear rate so the highest values of normal stress, shear 

stress and shear rate   on bottom downstream wall are compared in order to 

choose an optimal mesh. As such, mesh2 was select as a model of final solution. 

For Oldroy-B fluids, the peak values of   in Table 2 are considered with no-

slip on wall for various We . The peak values on bottom downstream wall of   

for mesh1 vary as a function of We  but in contrast to mesh2 and mesh3. As such, 

mesh1 is terminated by inconsistent value when compared in group. Maxima of 

all stresses in Table 3 look alike in mesh refinement. For this problem, the 

rounded corner mesh2 in a similar fashion to mesh3 is picked up for further runs 

because it is simple to access and the results are in close agreement with the 

outcome of mesh3 but the time step of mesh3 is more than the time step of mesh2 

for all We values. We have selected mesh2 to simulate the slip case for reducing 

the calculated time. 

Table 2. The peak values of   on  

the bottom down-stream wall with no-slip. 

We  mesh1 mesh2 mesh3 

0.25 3.822 3.852 3.976 

0.5 3.913 3.786 3.857 

0.75 4.043 3.629 3.804 

1 4.169 3.443 3.600 

Table 3. The peak values of stresses on  

the bottom down-stream with no-slip at 1We . 

 mesh1 mesh2 mesh3 

xx 18.218 19.804 20.092 

xy 7.839 9.662 9.955 

yy 5.794 7.704 7.765 

In the context of viscoelastic fluid, the peak values of normal stress   on 

bottom downstream wall with no-slip for different values of We  can be observed 

in Fig. 3. Since all oscillation graphs look similar in pattern but higher values of 

We  climb up fast and drop quickly, this can be assigned to the fact that higher 

We  values have longer relaxation time. This implies that the trend keeps higher 
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memory profile of its path and then its memory of original position leads to its 

drop in close vicinity of the beginning location. 

 

Fig. 3.   on the bottom downstream wall  

without slip of Oldroyd-B fluid for mesh2. 

To find the appropriate slip velocity, we have found the optimum slip 

coefficient 0.1   for selecting the critical II  for all We . When we have set 

0.1  , the highest values of shear rate along the wall are reduced. II=3.3, II = 

2.3, II = 2.3 and II = 2.4 are the critical II  for We  = 0.25, 0.5, 0.75 and 1, 

respectively as illustrated in Fig 4. In addition, the shear rate line of the best of 

slip velocity clearly becomes lower than no-slip condition and it is given the 

smoothest line when it is compared with other slip velocity values. 

In a similar manner to sharp corner mesh, the previous algorithm is set up to 

imply the least shear rates of all We  values and finally the critical second 

invariants are adjusted to the values in Table 4. This table reflects that when the 

critical II  is modified properly, the appropriate   is 0.1 for any values of We . 

The streamline contour for 1We  of mesh2 with slip at 0.1   and II 2.4  

is depicted in Fig 5. The vortex size of slip problem is smaller than no-slip as well 

as We  = 0.25, 0.5 and 0.75. There is slight alteration to a rounded corner because 

the stability of a rounded corner is more than a sharp corner whilst the stress value 

of the sharp corner is higher than that of a rounded corner at contraction.  

In addition, the line plot between the shear stress versus the shear rate of slip, 

no slip and analytical result are compared in Fig 6 and the analytical line is 

denoted by J&S. The solution of the slip effect that is run by mesh2, is slightly 

different from J&S with the percentage error 1.8295% for 0.25We  and 

0.0792% for 1We  and it is closer to J&S more than no-slip condition with the 

error 8.1690% for 0.25We  and 0.3984% for 1We , as depicted in Fig 6. The 

slip condition has less approximate error than its no- slip counterpart.  

Table 4. The least shear rate for proper   

and suitable II  of Oldroyd-B fluid with mesh2. 

     We                         0.25      0.5            0.75 1 

    IIcrit                       3.3      2.3              2.3 2.4 

                               3.793    3.769         3.514 3.326 

                                 0.1      0.1              0.1 0.1 
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(a) 0.1   and 0.25We  

 

 
(b) 0.1   and 0.5We  

 

 
(c) 0.1   and 0.75We  

 
(d) 0.1    and 1We  

Fig. 4. The peak of   versus II  for mesh2 along bottom downstream wall. 
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Comparing the appropriate slip values at the wall and without slip, we found 

that the slip influence can slightly reduce the peak xx and the high shear rate   as 

displayed in Table 5. 

 

 
 

 

 

 

(a)  no slip             (b) slip at 0.1   and II 2.4  
Fig. 5. Streamline contour for mesh2 along bottom downstream wall 

 

 
                   (a) 0.25We     (b) 1We  

Fig. 6. The comparison of  xy versus  with J&S for mesh2 

on bottom downstream wall of Oldroyd-B fluid. 

 

Table 5. The peak value of  and xx 

on the bottom downstream wall for mesh2. 

     We                         
             

  

                               no slip          

                 
             

 

slip             no slip 

 xx  

        slip 

     0.25                      3.385   3.793            5.682      5.567 

     0.5                        3.786   3.769            11.243     11.116 

     0.75                      3.629   3.530            15.989    15.952
 

       1                         3.443   3.326            19.804    19.659
 

For the no slip condition, the fluid velocity is zero at wall boundary whilst the 

real phenomenon makes us know that the velocity would not be zero so the slip 

condition is set to predict optimal velocity from the critical second invariant. Under 

slip situation, the stresses are reduced and jump to the analytical value (J&S) more 

than the no slip case, thus this effect leads the way to diminish vortex size. 

The solutions of slip condition at 1We  are depicted in Fig 7. The highest 

values of stress are located along rounded corner geometry same as sharp corner 

contraction. The maximum velocity in x-direction appears along symmetry line 

while the maximum velocity of y-direction is placed near rounded corner. 
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Maximum value of pressure started at inlet and then gradually decreases until it is 

vanished at outlet. 

   

              (a) xx                               (b) xy 

   
(c)yy     (d) Ux 

   
(e) Vy     (f) P 

Fig. 7. Line contour with slip along channel wall at  =1 ,  = 2.4, and We =1. 
 

5.  Conclusions 

For steady-state viscoelastic flow in 4:1 contraction rounded geometry through planar 

isothermal Oldroyd-B model, the semi-implicit Taylor-Galerkin pressure-correction 

finite element scheme and the driven force feedback flow are employed to solve the 

nonlinear partial differential equation for stick before Phan-Thien slip rule is added to 

calculate velocity at channel wall. The streamline pattern, stress visualization and 

velocity field contours were depicted to compare rounded corner meshes with sharp 

corner meshes. All figures gave the same trend when varied Weissenberg numbers but 

the significant differences of vortex sizes were noticed conveniently. 

After appropriate critical II  was adjusted, the slip coefficient of Viscoelastic 

fluids with rounded corner meshes is investigated for the optimum value of 0.1. 

The appropriate values of the slip coefficient and the second invariant cause the 

peak of shear rate lower than no-slip case and vortex size of sharp corner domain 

was decreased more than rounded corner shape. In case of the right selection for 

second invariant, this proper slip coefficient well reduces the peak of shear rate 

and vortex size since the velocity at wall forces fluid flow with smooth path and 
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stable outcome. In addition, the higher  and II  presented more oscillations that 

brought to the phenomenon of shark skin. 
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Appendix A 

Flowchart of the Driven Force Feedback Flow 

The below flowchart is set up to run the optimum solution (pressure, velocity, 

stress) at inlet boundary under the driven force feedback technique. The 

approximate value will be estimated and return the values back to the next vertical 

nodes as below demonstration workflow. 

 

Fig. A. Flow chart of feedback of force-driven velocity flow. 
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