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Abstract 

Dead time is common to real-time processes and occurs when the process 

variable does not acknowledge any changes in the set-point. This delay may be 

due to extensive transportation, imprecise instrument calibration and complex 

non-linearities present at Final Control Element. First Order Plus Dead Time 

models make the simulations of these processes, tuning of controllers easier and 

aid in obtaining the most optimum response. Two orders of transfer functions 

(fourth and seventh) representing blending systems are modelled as First Order 

Plus Dead Time using the two points method of approximation. A conventional 

PID controller is used for both the models. In this work, PID control tuning 

techniques such as Integral of Weighted Time Absolute Error, Internal Model 

Control, Ziegler-Nichols and Cohen-Coon, are analysed for the optimum design 

with the aid of time domain analysis. The responses for all tuning methods are 

simulated using Simulink in Matlab software. The results indicated that Internal 

Model Control is the best tuning technique in terms of quick settling, minimum 

overshoots at the initial stages of the response, minimum rise time and minimum 

amplitude at the peak time, thereby providing most accurate and robust responses 

for both the orders of transfer functions. 

Keywords: Dead time, First order Plus dead time, Internal model control, 

Settling time, Proportional integral derivative. 
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1.  Introduction 

The author is an honours graduate with a distinction in Electronics and 

Instrumentation with strong background knowledge of Control Systems. Advanced 

Process Control and Electronic Instruments and Instrumentation Technology. Also, 

the author has worked on various projects such as Design of Emergency Shutdown 

Valve System for Oil and Gas Industry using Programmable Logic Controllers, 

Weather Prediction using Fuzzy Logic in MATLAB, Adoption of Pade 

Approximation for First-Order Plus Dead-Time Blending Processes and PID 

controller Design for Pneumatic Pressure Control Process. Based on a study by 

Smuts [1], blending systems are very common in process industries such as oil and 

gas, wastewater treatment, paper, food, pharmaceutical, chemical and many more 

[1]. Previous works in this field of the control system, researchers have studied only 

one order of system and have made their conclusions. However, in the following 

paper, two orders of non-linear blending system-lower order-4th order and higher 

order-7th order have been studied for their performance under transient and steady 

state environment using a PID controller. The purpose of this paper is to enable us 

to understand the best conventional tuning technique that can be used to control 

and monitor highly non-linear blending systems. Also, as we declare the best tuning 

technique as IMC for both the orders, the fundamental parameter-filter constant-

lambda has been experimented for its extreme values ranging from lowest to 

highest and similarly the observations and conclusions have been made. As stated 

by Smith and Corripio [2] and Bequette [3], the real-time industrial problems are 

highly non-linear in nature and exhibit dead time/ time delay. It occurs majorly due 

to the following factors: 

 External factors such as transportation lag due to long pipelines or large 

travel distances 

 Internal factors such as non-linearities of the Final Control Element, i.e., blunt use 

of conventional actuator sizing for valves and excessive tuning of the controller 

 Uncertainties like noisy data, erroneous assumptions of important parameters 

and incorrect modelling of the systems. 

Recent developments in this area include digitalization and use of more 

sophisticated techniques and controllers such Fuzzy Logic, Neural Networks. PLCs 

compatible with HART 7 protocol use of integrated data systems such as SCADA, 

which enable a much more accurate and faster measurement. According to a study 

by Bequette [3], even as we progress and digitalize to automate our industrial 

processes, all the recent techniques have evolved from these conventional techniques.  

Uncertainties occur in the following forms [4]: 

 Parametric uncertainty where the incorrect parameters are communicated 

 Model uncertainty where wrong modelling of the process/system under 

consideration is done 

 Stochastic uncertainty where the modelled outcome deviates a great degree from 

the expected outcome, given there is no Parametric or Model Uncertainties. 

Presence of dead time element complicates the analysis and design of control 

systems and makes satisfactory control more difficult as the performance might 

endure instability, high sensitivity to parametric uncertainties and poor disturbance 

rejection [4]. One of the focal consequences of dead time causes the effect of 
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disturbances not seen by the controller for a while, thus, making the effect of control 

action non-existent at the output, causing the controller to take additional 

compensation unnecessarily, thus, resulting in a loop with limitations to control [4].  

Any industrial process is mathematically represented in the form of nonlinear 

differential equations (continuous domain) or difference equations (discrete domain). 

Using analytical methods such as State Space Analysis, Initial-Final Value theorems, 

etc., to solve these equations become a challenge with the increasing non-linearities, 

orders of the transfer functions and dead time. As explained by Skogestad [5], the 

FOPDT model is often an equitable approximation to such process behaviours, as it 

has the efficacy for controller tuning rules and can be used as a computationally 

surrogate model in simulations for training and optimization. Higher order industrial 

processes can be modelled as FOPDT, as the simulations become much easier.  

The FOPDT model has the continuous transfer function as in Eq. (1) [6]: 

𝐾𝑝

𝜏𝑠+1
. 𝑒−𝜃𝑠                                 (1) 

A proportional integral derivative controller (PID controller) is a control loop 

feedback mechanism used in industrial control systems to lower the degree of 

deviation (error) of the process variable from the set-point.  

The PID controller has three principal control effects. The proportional (P) action, 

when used alone always exhibits some offset to the system. To minimise the offset, 

one can tune the system by changing the proportional gain, however, beyond a certain 

limit, the response becomes heavily oscillatory and unstable. In addition, one can 

never eliminate offset by using P controller alone. Industry point of view, the 

proportional controller is hardly ever used alone. According to Jeneja et al. [6], with 

the integral action in the picture, the offset can be eliminated as the offset is integrated 

till it nullifies completely. However, this happens at the cost of increased process 

settling time and occurrence of more oscillations. 

With the derivative (D) action, in addition to the P-I action, the oscillations can 

be dampened and smoothened out [6]. This reduces the settling time thereby speeding 

up the response and stabilizing the system. However, the derivative action is also 

known to amplify noise present in the system as it takes the derivative of the error 

(de/dt) and causes faster wear and tear of the equipment. Thus, industrial processes 

with high measurement noise tend to avoid PID controllers. The measurement noise 

in a system arises from the sensors in the transducers [6]. If the sensor accuracy is the 

problem, then the entire automation becomes a failure. In the following text, a PID 

controller is used where the overall controller output is the sum of the contributions 

from the above-mentioned three actions. The three adjustable PID parameters are 

controller gain, Kc, integral time, Ti and derivative time, Td [7]. The transfer function 

of PID controller in parallel form is Eq. (2) [3]: 

𝐺𝑐(𝑠) = 𝐾𝑐(1 +
1

𝑇𝑖∗𝑠
+ 𝑇𝑑 ∗ 𝑠)                 (2) 

2.  Materials and Methods 

Two transfer functions, 4th order Eq. (3) [3] and 7th order Eq. (4) [6] mimicking 

blending processes have been used for experimentation. Mixing controllers and 

blending controllers monitor the ratio, mixing, or blending parameters of two or 

more ingredients in an industrial process. They are used to control the addition of 
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gases, liquids, or solids. Mixing controllers and blending controllers receive inputs 

from sensors and systems such as weigh feeders, belt conveyors that control the 

flow of bulk solids by continuously weighing material and adjusting the belt speed 

accordingly [6]. 

𝐺(𝑠) =
1

(10𝑠+1)(𝑠+1)(0.1𝑠+1)(0.05𝑠+1)
                (3) 

𝑇(𝑠) =
1

(𝑠+1)7                  (4) 

The two points method of approximation uses the formulations given below. 

The controller gain is calculated using Eq. (5) [3]. 

Kc  = change in output/ change in input              (5) 

The process time constant is given by Eq. (6) [6]. 

𝜏𝑝 = 1.5(𝑡0.632 − 𝑡0.283)                 (6) 

The process dead time is calculated using Eq. (7) [6]. 

𝜃 = 𝑡0.632 − 𝜏𝑝                  (7) 

Finally, the FOPDT model is obtained using the Eq. (1). Using the above 

formulations, the FOPDT models for 4th order given by Eq. (8) and 7th order given 

by Eq. (9) [6] are as follows: 

𝑃(𝑠) =
𝑒−1.15𝑠

10𝑠+1
                  (8) 

𝑄(𝑠) =
𝑒−4.16𝑠

3.417𝑠+1
                  (9) 

As commented by Zeigler and Nichols [7] and Hussain et al. [8], a conventional 

PID controller is used and various tuning techniques such as Integral of weighted 

Time Absolute Error, Internal Model Control, Ziegler-Nichols and Cohen-Coon are 

used to tune the controller. Controller tuning is an adjustment of control parameters 

to optimum values for obtaining the desired control response [9]. All the 

formulations used for the above tuning techniques are mentioned in Table 1. Three 

important parameters for good controller tuning are: 

 Minimum settling time with as minimum oscillations as possible 

 No overshoots 

 Minimum error  

The different tuning methods used for the comparative study in this text are 

as follows:  

2.1. Integral of time-weighted absolute error 

P and PI controllers are normally employed for dynamic or faster processes such 

as flow or level whereas PID controllers are employed for comparatively much 

slower/sluggish process such as pH control or temperature control [9]. In slow 

processes, due to their sluggish nature, there are more chances for the interaction 

between the control loop and the non-linearities present in the Final Control 

Element [2]. The FCE is normally the main cause of 95% of the process plant 

failures. As stated by Rivera and Flores [9] and Rivera et al. [10], the interaction 
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with the non-linearities further adds on to more delay in the process. Performance 

Criterion such as ISE, Eq. (10) or IAE, Eq. (11) has not been used here, as ISE is 

employed for processes with large errors that exist for a short period and IAE is 

employed for processes with smaller errors. Based on studies by Reshma and 

Swarnalatha [11], ITAE, Eq. (12) is used for sluggish processes with large dead 

time. The formulations used for this tuning are shown in Table 1.  

ISE = ∫ 𝑒2∞

0
(𝑡). 𝑑𝑡               (10) 

IAE = ∫
∞

0
|𝑒(𝑡)|. 𝑑𝑡               (11) 

ITAE = ∫ 𝑡
∞

0
|𝑒(𝑡)|. 𝑑𝑡               (12) 

Table 1. Different tuning formulas. 

Tuning 

technique 
Kc Ti Td 

ITAE 𝜏𝑝

𝑘𝑝
[

2𝑇𝑐 + 𝜃𝑝

(𝑇𝑐 + 0.5𝜃𝑝)2] 
2Tc+𝜃𝑝 

Tc= 3𝜃𝑝 
0.25𝜃𝑝2 + 𝑇𝑐. 𝜃𝑝

2𝑇𝑐 + 𝜃𝑝
 

IMC 𝜏𝑝 + 0.5𝜃𝑝

𝑘𝑝(𝜆 + 0.5𝜃𝑝)
 

𝜏𝑝 + 0.5𝜃𝑝 𝜏𝑝. 𝜃𝑝

2𝜏𝑝 + 𝜃𝑝
 

Z-N 1.2𝜏𝑝

𝑘𝑝. 𝜃𝑝
 

2𝜃𝑝 0.5𝜃𝑝 

C-C 𝜏𝑝

𝑘𝑝. 𝜃𝑝
[
4

3
+

𝜃𝑝

4. 𝜏𝑝
]   𝜃p [32 +  

6𝜃𝑝
𝜏𝑝

]

13 +
8𝜃𝑝

𝜏𝑝⁄
 

4𝜃𝑝

11 +
2𝜃𝑝

𝜏𝑝⁄
 

2.2. Internal model control 

Garcia and Morari developed the IMC, a model-based control technique, which 

provides an appropriate trade-off between robustness and performance of the 

system and accounts for model uncertainty as well as disturbances. The basis of 

IMC is pole-zero cancellation, with controller zeros being used to cancel process 

poles and Q parameterization structure, refer to Fig. 1. IMC gives the methodology 

to obtain the Q-parameterized controller with both fundamental and practical 

appeal. It can be employed for Single Input Single Output (SISO) processes, Multi 

Input Multi Output (MIMO) systems, continuous and discrete designs and unstable 

open loop systems, systems with feed-forward and feedback control and so forth. 

Λ tuning is a very important concept in IMC [12-14]. Λ (also known as c) is 

closed loop time constant, which is used to reduce process variability and achieve 

a non-oscillatory loop with desired dynamics of the process. The Rivera guidelines 

for determining  are used in Eqs. (13) and (14) [14, 15]: 

𝜆

𝜃
> 0.8                              (13) 

𝜆 > 0.1𝜏                              (14) 

The value of  is obtained using the above criteria for proper tuning of the 

controller parameters. The process dynamics are identified by fitting an appropriate 

transfer function model to the results. IMC implementation results in the feedback 

system, because of which, it can compensate for disturbances and model 

uncertainty [13]. 
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Figure 1 shows the Q-parameterization structure. It consists of the IMC 

controller q(s) and internal process model g’p(s). The disturbance d(s) used here is 

only for an understanding purpose. Both the blending systems considered here are 

ideally without any disturbance. The estimated disturbance d’(s) = y(s) - y’(s). The 

feedback controller is given by Eq. (15): 

𝑐(𝑠) =
𝑞(𝑠)

1−𝑔ł𝑝(𝑠)𝑞(𝑠)
                             (15) 

The IMC controller is given by Eq. (16): 

𝑞(𝑠) =
𝑐(𝑠)

1+𝑔ł𝑝(𝑠)𝑐(𝑠)
                             (16) 

 
Fig. 1. IMC Structure [12]. 

In the presence of FCE constraints, IMC technique can be employed to avoid 

instability due to the saturation of the input without any engagement of anti-

windup actions [14]. Table 1 gives the formulations used for first order system 

with dead time. 

2.3. Zeigler-Nichols 

The Ziegler-Nichols technique is one of the first rigorous methods used in tuning 

of PID controllers. It is a trial and error method based on obtaining the ultimate 

gain and ultimate period of the sustained oscillations in the response [15]. The 

tuning parameters roughly obey the quarter wave damping principle. The tuning 

technique is not widely used today, as the response tends to be very oscillatory with 

large overshoots right at the initial stages of the response curve and does not provide 

very robust parameters [15]. The Z-N parameters tend to be highly sensitive to 

system uncertainties and disturbances. A major advantage of this technique is the 

non-requirement of the process model for simulations [16]. Table 1 gives the 

formulations used for first order system with dead time. 

2.4. Cohen-Coon 

According to Rice [16], Cohen-Coon technique is also one of the most rigorously 

used techniques to tune the PID controllers. It is also known as process reaction 

curve. The Cohen-Coon tuning rules are suited to a wider variety of processes than 

the Z-N tuning rules. The Cohen-Coon tuning rules work well on processes where 

the dead time is less than two times the length of the time constant and can even be 

stretched further if process demands. Based on studies by Shahrokhi and Zamorrodi 

[17], a major problem with the Cohen-Coon parameters is that they tend not to be 

very robust; that is, a small change in the process parameters can cause the closed-
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loop system to become unstable and lead to oscillatory closed loop behaviour, like 

Z-N. Table 1 gives the formulations used for first order system with dead time. 

2.5. Modelling and simulation 

Equations (8) and (9) are simulated in Simulink, MATLAB as per Fig. 2. Set the 

step block parameters as: Step Time= 1, Initial Value= 0, Final Value= 1 [17]. For 

the PID controller, set the values of P, I and D as the values of Kc, Ti and Td obtained 

in Table 2 (for 4th order TF) and Table 3 (for 7th order TF) using the tuning formulas 

given in Table 1 [18]. 

2.5.1. Fourth order transfer function 

Figure 2 is used up for simulations related to the FOPDT modelling of the 4th order 

blending process.  

 
Fig. 2. Block diagram representation of 4th order in Simulink. 

Figure 3 shows the response of the 4th order transfer function model and FOPDT 

model. Both the graphs are approximately the same, therefore, the approximation 

done using two points method is correct. 

The PID controller is now tuned to various tuning methods using the block diagram 

as shown in Fig. 4. Note that this block diagram is used for 7th order modelled to FOPDT 

as well, with the required changes in the PID tunings based on formulations in Table 1. 

Using the formulations of Table 1, values of tuning parameters have been obtained in 

Table 2. These reading for the Kc, Ti and Td are used for PID tuning.  

 

Fig. 3. Response of 4th order transfer function and dead time approximation. 
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Fig. 4. Simulink block diagram used for PID control tuning. 

Table 2. Parameter tuning for FOPDT model of 4th order transfer function. 

Tuning method Proportional gain 

Kc (s) 

Integrating 

time 

Ti (s) 

Derivative 

time 

Td (s) 

ITAE 4.9689 8.05 0.5339 

IMC (λ = 1.1) 6.3134 10.575 0.5437 

Z-N  10.4348 2.3 0.575 

C-C 11.8442 2.7006 0.4096 

2.5.2. Seventh order transfer function 

Figure 5 is used up for simulations related to the FOPDT modelling of the 7th order 

blending process. 

Figure 6 shows the response of the 7th order transfer function model and FOPDT 

model. Both the graphs are approximately the same, therefore, the approximation 

done using two points method is correct. 

Using the formulations of Table 1, values of tuning parameters for the 7th order 

transfer function modelled as FOPDT has been obtained in Table 3. These reading 

are for the Kc, Ti and Td are used for PID tuning. 

 
Fig. 5. Block diagram representation of 7th order in Simulink. 
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Fig. 6. Response of 7th order transfer function and dead time approximation. 

Table 3. Parameter tuning for FOPDT model of 7th order transfer function. 

Tuning method Proportional gain 

Kc (s) 

Integrating time 

Ti (s) 

Derivative time 

Td (s) 

ITAE 0.46937 29.12 1.9314 

IMC (λ = 3.5) 0.98512 5.497 1.2929 

Z-N 0.98567 8.32 2.08 

C-C 1.3452 7.1904 1.2386 

3.  Results 

3.1. Fourth order transfer function 

With the values of Kc, Ti and Td in Table 2, step response of the different tuning 

methods obtained using MATLAB and SIMULINK is shown in Fig. 7. 

Time response parameters such as rise time, settling time and percentage 

overshoot obtained for different PID tuning techniques are summarized in Table 4 

and in Figs. 8(a) and (b). 

From Figs. 8(a) and (b) and Table 4, ITAE and IMC proved to be good tuning 

options. ITAE, when compared to IMC, proves to be a lesser preferred method. Z-

N and C-C tend to be more oscillatory and seem to be more sensitive to the 

parametric uncertainties. IMC is the best tuning for the 4th order transfer function 

modelled to FOPDT for blending process. 

 
Fig. 7. Graph showing the Simulink response for a step unit for tuning techniques.  
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Fig. 8(a). Graph showing time domain 

characteristics for different tuning 

methods for 4th order blending process 

(refer Table 4 for readings). 

Fig. 8(b). Graph showing % 

overshoot for different tuning 

methods for 4th order TF 

(refer Table 4 for readings). 

Table 4. Time response parameters for various tuning techniques for 4th order TF. 

Tuning 

method 

% 

overshoot 

mp 

Settling 

time 

Ts (s) 

Rising 

time 

Tr (s) 

Peak 

time 

Tp (s) 

Amplitude 

at peak 

time 

ITAE 2.577 30.09 5.34 9.698 1.031 

IMC (λ = 1.1) 2.577 8.686 2.25 2.302 1.02 

Z-N 95.098 16 1.53 2.302 1.952 

C-C 99 17.596 1.59 2.302 1.996 

3.2. Seventh order transfer function 

With the values of Kc, Ti and Td obtained using Table 1, formulations and Table 3 

readings, step response of the different tuning methods obtained for 7th order TF 

using MATLAB and SIMULINK is shown in Fig. 9. 

Time response parameters such as rise time, settling time and percentage 

overshoot obtained for different PID tuning techniques are summarized in Table 5 

and Figs. 10(a) and (b). 

From Figs. 10(a) and (b) and Table 5, IMC tuning proves to be the best tuning 

method. ITAE proves to be a definite no method as the settling time for the process 

is the maximum (500 s). As explained by Kala et al. [18], Z-N and C-C tend to be 

more oscillatory, seem to be more sensitive to the parametric uncertainties as well as 

have large settling times. C-C tuning has the maximum percentage overshoot. IMC 

is the best tuning for the 7th order transfer function modelled to FOPDT for blending 

process. A similar conclusion was made for the 4th order transfer function too. 

Table 5. Time response parameters for 

various tuning techniques for 7th order TF. 

Tuning method Overshoot mp 

% 

Settling time 

Ts (s) 

Rising time 

Tr (s) 

Peak time 

Tp (s) 

Amplitude at 

peak time 

ITAE - 500 - - - 

IMC (λ = 3.5) 7.658 34 8.293 1.114 11.798 

Z-N 7.631 >50 8.293 1.077 8.152 

C-C 6.344 62.067 8.293 1.414 42.143 
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Fig. 9. Graph showing the response for 

various tuning techniques for 7th order TF. 

  

Fig. 10(a). Graph showing time 

domain characteristics for different 

tuning methods for seventh order 

blending process. 

Fig. 10(b). Graph showing % 

overshoot for different tuning 

methods (refer Table 5 for 

readings.) 

4.  Discussion 

Transfer functions of fourth order and seventh order representing blending 

processes were modelled as FOPDT using the two points method of approximation. 

Four tuning techniques have been implemented for tuning the PID controller. 

As explained by Kumar et al. [19], for both the models, IMC tuning proved to be 

the best techniques among Z-N, ITAE and C-C. 

For 4th order transfer function, ITAE and IMC prove to be good tuning options as 

both the responses have their maximum peak very close to the set-point of 1, show 

less oscillatory response with minimum initial overshoots of 2.577%. ITAE, when 

compared to IMC, proves to be a lesser preferred method as the settling time, rise 

time and peak time for ITAE is more, i.e., the settling time for ITAE is 30 s and for 

IMC is 9 s, rising time for ITAE is 5 s while for IMC IS 2 s and the peak time for 

ITAE is 10 s and IMC is 2 s. In addition, the peak amplitude of ITAE response is also 

slightly greater than IMC amplitude (1.031 > 1.02). % overshoot for ITAE and IMC 

however, is the same, 2.7%. Using the Rivera criteria for closed-loop time 
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constant/filter factor in IMC, the ideal value of lambda should be greater than 0.8 

(dead time), which in this case is 0.8 * 1.15 = 0.92. This value is lesser than the time 

constant. Therefore, lambda value should be ideally greater than 0.92. The value 

chosen here is 1.1. This value fulfils both the criteria for ideal lambda selection. 

From Fig. 11, we can see the response graph for unity set-point using IMC 

tuning technique for PID controller for the 4th order transfer function modelled as 

FOPDT. It has a minimum 2.577 % overshoot, minimum peak time of 3.202 s, the 

minimum amplitude at the peak time of 1.11 and minimum settling time of 10 s. 

(refer Figs. 8(a) and (b)). According to Besheer [20], similar time domain analysis 

of response curves obtained by Ziegler-Nichols, Cohen-Coon and ITAE are not that 

optimum when compared to IMC. 

For a very low value of lambda, the above system becomes completely unstable 

as shown in Fig. 12. 

In Fig. 12, the lambda value taken is 0.1, which is very small compared to the 

ideal value of 1.1. Infinite oscillations and a large percentage overshoot of 234% 

were observed. For a very large value of lambda, the system does not attain 

instability, however, the settling time increases three times the value obtained for 

the ideal lambda. 

 
Fig. 11. Response using IMC technique for PID controller for 4th order. 

 
Fig. 12. Response using IMC technique with Lambda = 0.1. 

 

 
 

Time (s) 
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From Fig. 13, even though a very smooth settling of the process is observed, a 

large settling time of 35 s is required. This value is three times the time required to 

settle with lambda = 1.1. In addition, the peak time is also very large; 50 s. 

For 7th order transfer function, IMC proves to be the best tuning method as; it 

has a minimum settling time of 34 s and has a small overshoot of 11.798%. Here 

the ideal value of lambda should be greater than 0.8* 4.16 = 3.328. The value 

chosen here is 3.5 and good results have been obtained.  

From Fig. 14, we can see the response using IMC tuning technique for PID 

controller for the 7th order transfer function modelled as FOPDT. It has a small % 

Overshoot of 11.798%, the small peak time of 8.314 s, for the amplitude at the peak 

time of 1.117 (very much closer to the set-point of 1) and minimum settling time 

of 25.196 s, refer to Fig. 10(a) and (b). 

A similar observation was made, when a very low value of lambda (lambda = 

0.8) was chosen for the FOPDT model for the 7th order transfer function. Figure 15 

shows the large oscillations that take up a time more than 100 s to settle down to 

the set-point 1. For the ideal value of lambda (3.5), the settling time was 29.7 s.  

 
Fig. 13 Response using IMC technique with Lambda = 4.5. 

 
Fig. 14. Response for a step unit using  

IMC technique for 7th order blending process. 
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Fig. 15. Response using IMC technique with Lambda = 0.8. 

With the very large value of lambda, the settling time was 40 s, greater than the 

time taken for the ideal value to settle down and an unbelievably large peak time 

of 100 s, which in case of the ideal value was 8.3 s. Figure 16 shows the above 

observations. 

Therefore, lambda is a very critical parameter in the IMC tuning technique, 

which strongly determines the performance of the controller for set-point tracking 

and thus, it becomes very critical to choose a proper value of Lambda in order to 

obtain good optimum results.  

As stated by Besheer [20], IMC tuning yields very good performance at set-

point tracking by providing robust tuning parameters of the PID controller when no 

disturbances have been inducted into the system. IMC is used for processes with 

long time delay and this has been observed for the above blending processes. No 

stability issues have been observed for any tuning techniques [21]. 

 
Fig. 16. Response using IMC technique with Lambda = 6. 

3.  Conclusion 

The above text makes a comparative study of the different tuning methods for 4th 

and 7th order blending process. These blending processes are modelled as First 
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Order Plus Dead Time models using two points method of approximation. Total 

four different PID tuning techniques were implemented and their performances 

were evaluated. Due to high non-linearity and instability of industrial process, the 

most optimum and desired controller system results from minimum settling time 

to reach the set-point, reduced oscillations, short rise time and minimum percentage 

overshoot. Among the PID tuning techniques, the Internal Model Control 

technique gives the best performance for FOPDT models in terms of settling time, 

rising time, % overshoot and peak time. Filter constant, Λ defines the IMC design 

and proper estimation of the constant is fundamental. Ideal values of lambda using 

the Rivera criteria were calculated for both the order as 1.1 for 4th order and 3.5 - 

for 7th order. Extreme values of lambda were experimented for and it was observed 

that improper estimation of Λ, that is very low value (0.1 and below) and very high 

value (3.5 and above) lead to unstable systems, large overshoots and highly 

oscillatory response, which are completely undesirable in any control process. All 

the simulations were done in Simulink, MATLAB. 

 

Nomenclatures 

 

d(s)  Disturbance 

d’(s)  Estimated disturbance = y(s) - y’(s) 

gp(s)  Process 

gp’(s) Process model 

Kc Controller gain 

Kp Process gain 

q(s)  Internal model controller 

r(s) Set-point 

r’(s)  Modified set-point = r(s)-d’(s)  

s Frequency domain 

Td Derivative time 

Ti Integral time 

t Time domain 

u(s)  Manipulated input 

y(s)  Measured process output 

y’(s)  Estimated output 

  

Greek Symbols 

  Process delay time 

 /c Closed loop time constant 

p Process time constant 

 

Abbreviations 

FCE Final Control Element 

FOPDT First Order Plus Dead Time 

HART Highway Addressable Remote Transducer 

IAE Integral Absolute Error 

IMC Internal Model Control 

ISE Integral Squared Error 

ITAE Integral Time Weighted Absolute Error 

P Proportional Controller 
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PI Proportional Integral Controller 

PID Proportional Integral Derivative Controller 

PLC Programmable Logic Controller 

SCADA Supervisory Control and Data Acquisition System 

Z-N Zeighler Nicols 
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