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Abstract 

Wind energy is one of the rapidly evolving renewable energy resources. It is 

particularly essential to built dependability and accessibility of wind turbines 

and additional to decrease the wind energy cost. Wind turbine blades are ought 

to be an important component among the other basic segments in the wind 

turbine framework since they transform the dynamic energy of wind into 

useable power. Wind turbine blades are manufactured from either carbon fiber 

reinforced polymer or glass fiber reinforced polymer. Damages and flaws are 

unavoidable either in the manufacturing process or the lifetime of a composite 

blade. Hence, structural health monitoring for wind turbine blade is essential to 

avoid failures and extend dependability in both fabrication quality control and 

in-service investigation. In this study, a three-bladed variable wind turbine was 

chosen and using histogram features, the condition of a wind turbine blade is 

inspected. The faults like hub-blade loose connection, blade crack, pitch angle 

twist, erosion and blade bend faults were studied and these faults are classified 

using various data mining algorithms. The main contribution of this study is to 

build and suggest a data-model for fault identification on wind turbine blade 

while in operation using machine learning classifiers like sequential minimal 

optimization (SMO) algorithm, simple logistic algorithm (SLA), multilayer 

perceptron (MLP), logistic algorithm (LA) and radial basis function (RBF). 

Keywords: Structural health monitoring, Fault diagnosis, Wind turbine blade, 

Machine learning, Histogram features, Vibration signals. 

 

 

1.  Introduction 

The wind energy is one of the rapidly growing renewable energy resources, and it 

will have been a remarkable place in the energy market in the upcoming era. 
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Nomenclatures 
 

A Related features 

a Slope 

αi Lagrange Multipliers 

b Intercept 

c The number of classes 

k Negative of the sum over 

Pi The proportion of S belonging to class ‘i'. 

S Samples or examples 

Sv The subset of S 

X1 to X100 Bin value range  

x1, y1 Dataset 
 

Greek Symbols 

 

β Independent Variable 

φ Activation function 

ω Vector of weights 

ϕ (x) Distance from the origin 
 

Abbreviations 

AANN Auto-Associative Neural Network 

ADC Analogue-To-Digital Converter 

ANN Artificial Neural Network 

BEM Blade Element Momentum 

BB Blade Bend 

BC Blade Crack 

BE Blade Erosion 

BG Blade Good 

BPT/PAT Blade Pitch Twist/Pitch Angle Twist 

CFD Computational Fluid Dynamics 

DAQ Data Acquisition System 

FP False Positive Rate 

HAWT Horizontal Axis Wind Turbine 

LA Logistic Algorithm 

LabVIEW Laboratory Virtual Instrument Engineering Workbench 

MLP Multilayer Perceptron 

NDT Non-Destructive Testing 

NI National Instruments 

NLPCA Nonlinear Principal Component Analysis 

O&M Operations And Maintenance 

PCA Principal Component Analysis 

RBF Radial Basis Functions 

ROC Receiver Operating Characteristics 

SLA Simple Logistic Algorithm 

SMO Sequential Minimal Optimization  

TP True Positive Rate 

WEKA Waikato Environment For Knowledge Analysis 
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As per gathered statistical information, it is projected that wind energy can 

supply around 12% of the worldwide power supply by 2020, and transcend 20% by 

2030 [1]. As the wind energy region develops, business financial aspects will 

request gradually vigilant administration of costs [2]. The operations and 

maintenance (O&M) expenses of wind turbines are around 25-30% of the complete 

energy production cost [3]. Keeping in mind, to decrease wind energy costing, the 

decrement of the operations and maintenance expense is must [4]. Aside from 

applying enhancement design for a machine to develop the accessibility, another 

simple way is utilizing structural health monitoring for wind turbines. 

The wind turbine is a distinctive Mechatronics structure. It is comprised of 

various mechanical and electrical segments, including the generator, blades, 

bearings, rotor, gearbox, tower, shaft, pitch and yaw [5]. Among these segments, 

blades are considered as a critical and significant segment [6]. Since the efficiency 

of wind turbine captures the wind energy depends upon the propeller-like blades. 

Moreover, the blade fabricating expense is nearly 15-20% of each wind turbine 

cost. Some flaws occurred during the fabrication process and some faults are 

caused due to environmental conditions. If the blade damage is large then it will 

cause terrible destruction to the surroundings and may also damage the whole 

turbine structure [7]. It will create a huge loss in power production. So to reduce 

the loss of productivity, condition monitoring is preferred to find the damage 

while the turbine is in operating condition. 

There are two types of approaches which are carried out for condition 

monitoring: traditional approach and machine learning approach. The traditional 

approach is mainly used where frequency component does not change with 

respect to time. Rotating machines produce non-stationary signals. Since the 

frequency components change due to wear and tear, fault discrimination is very 

difficult using an automated system in the traditional approach. Hence, it is not 

preferred. In machine learning approach, algorithms have the capability to learn 

continuously and adapt themselves to the varying situations. So researchers often 

resort to machine learning approach for fault diagnosis of mechanical systems. 

Many studies and research are carried out in condition monitoring of wind 

turbine blades, to mention a few. Frost et al. [8] carried out a study on integrating 

structural health management with contingency control for wind turbines using 

nonlinear high-fidelity simulation. The structural health and contingency control 

of the blade was studied. The speed of the turbine and decision making using 

prognostic information was also carried out. A study on damages of wind turbine 

blade trailing edge (forms, location, and root causes) was carried out by Ataya 

and Ahmed [9]. This paper analyzed and studied about the crack location on wind 

turbine blades (both longitudinal cracks and transverse cracks) using Non-

Destructive Testing (NDT) method and discussed the life of the blade. 

A work on damage diagnosis for a wind turbine blade using pattern 

recognition was carried out by Dervilis et al. [10]. This study carried out the 

condition monitoring of the blade using algorithms like principal component 

analysis (PCA), nonlinear principal component analysis (NLPCA), artificial 

neural network (ANN), auto-associative neural network (AANN), and radial basis 

functions (RBF). Roth-Johnson et al. [11] carried out a structural design of spars 

for 100 m biplane wind turbine blades by beam finite elements with a cross-

sectional analysis. This paper mainly focuses on the wind turbine blade design. 
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Lee et al. [12], done a work on wind turbine blade moment signals to blade 

condition monitoring using a transformation algorithm. This study presented a 

novel method of transforming blade moment signals on a horizontal axis 3-blade 

wind turbine. A validation of an integral sliding mode control for optimal control 

of a three blade variable speed variable pitch wind turbine was done by 

Saravanakumar and Jena [13]. This study mainly focuses on the control of 

variable speed variable pitch wind turbine for maximization of extracting power 

at below rated wind speed and regulation of extracting power when operating at 

above-rated wind speed. 

Vučina et al. [14] have done a numerical model for robust shape optimization of 

wind turbine blades using 3D geometric modeler. A computational framework for 

the shape optimization of wind turbine blades is developed for variable operating 

conditions specified by local wind speed distributions. This study considered the 

blade design using simulation process, and it didn’t focus on the faults which affect 

the performance of the wind turbine. Aero-structural design and optimization of a 

small wind turbine blade study were carried out by Pourrajabian et al. [15]. This 

study developed a methodology for aero-structural design, including consideration 

of the starting of a small wind turbine blade. This study carried out for both 

structural analysis and stress analysis on the blade by optimization. 

Bessa et al. [16] carried out a work on data-driven fault detection and isolation 

scheme for a wind turbine benchmark. In their first step, the fault detection is 

based on an alternative method based on the Gibbs sampling algorithm in which 

the occurrence of a sensor fault is modeled as a change point detection in a time 

series. On the second step, the fault isolation is handled via Fuzzy/Bayesian 

network scheme classifying the kind of fault. Simulation of aeroelastic behavior 

in a composite wind turbine blade was studied by Rafiee et al. [17]. Aero-elastic 

analysis of a full-scale composite wind turbine blade was investigated using 3D 

model and aerodynamic loading was determined using modified Blade Element 

Momentum (BEM) theory and Computational Fluid Dynamics (CFD) method. 

Optimal selection of autoregressive model coefficients for early damage 

detects ability with an application to wind turbine blades was carried out by Hoell 

and Omenzetter [18]. This study enhances the selection of autoregressive model 

coefficients for statistical hypothesis testing for damage presence and adding or 

eliminating the coefficients is carried out by genetic algorithm. Rezaei et al. [19] 

carried out a study on modal based damage identification for the nonlinear 

model of modern wind turbine blade. This study considered geometric 

nonlinearity due to the large structural deformation of the modern wind turbine 

blade using a finite element model. 

Numerous works were carried out using simulation analysis of fault and 

design analysis of wind turbine blade; however, only a very few in the 

experimental analysis was carried out. The machine learning technique was 

considered for wind turbine blade fault diagnosis; however, the usage was limited 

in the literature. A very limited set of defects was considered for analysis. This is 

especially true in the case of fault diagnosis of wind turbine blade. Hence, there is 

a strong need to design a fault diagnosis system which can handle multiple faults 

in wind turbine blades using machine learning approaches. This study makes a 

novel attempt to find different blade faults applying machine learning approach 
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and histogram analysis. Figure 1 shows the flowchart of the work done. The 

contribution of the present study,  

 This study considers five faults (blade crack, erosion, hub-blade loose connection, 

pitch angle twist and blade bend) for wind turbine blade fault diagnosis. 

 Histogram feature extraction tool was used to extract the required features from 

the vibration signals.  

 J48 decision tree algorithm was used for feature selection. 

 This problem is modeled as a multiclass classification problem and attempts to 

classify using machine learning classifiers like sequential minimal optimization 

(SMO) algorithm, the simple logistic algorithm (SLA), multilayer perceptron 

(MLP), the logistic algorithm (LA) and radial basis function (RBF). 

The rest of the paper is organized as follows. Section 2 presents the 

experimental setup and experimental procedure is explained. In section 3, feature 

extraction is explained, followed by feature selection in section 4. The classifiers 

used in this study are explained in section 5. The classification accuracy of the 

models was discussed and the suggestion of the better model is proposed in 

section 6. Conclusions are presented in the final section (section 7). 

 

Fig. 1. Methodology. 
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2.  Experimental Studies  

The main aim of this study is to classify whether the blades are in good condition 

or in a defective state. If it is defective, then the objective is to identify the type of 

fault. The experimental setup and experimental procedure are described in the 

following subsections [20]. 

2.1.  Experimental setup 

The experiment was carried out on a 50W, 12V variable speed wind turbine (MX-

POWER, model: FP-50W-12V). The technical parameters of a wind turbine are 

given in Table 1. The wind turbine was mounted on a fixed steel stand in front of 

the open circuit wind tunnel outlet. The wind tunnel speed ranges from 5m/s to 15 

m/s and acts as a wind source to start the wind turbine. The wind speed was 

varied continuously in order to simulate the environmental wind condition. The 

experimental setup is shown in Fig. 2.  

Table 1. Technical parameters of wind turbine. 

Model FP-50W-12V 

Rated Power 50 W 

Rated Voltage 12 V 

Maximum Current 4 A 

Rated Rotating Rate 850 rpm 

Start-up Wind Speed 2.5 m/s 

Cut-in Wind Speed 3.5 m/s 

Cut-out Wind Speed 15 m/s 

Security Wind Speed 40 m/s 

Rated Wind Speed 12.5 m/s 

Engine Three-phase permanent magnet generator 

Rotor Diameter 1050 mm 

Blade Material Carbon fiber reinforced plastics 

Piezoelectric type accelerometer was used as a transducer for acquiring 

vibration signals. It has high sensitivity for detecting faults. Hence, 

accelerometers are widely used in condition monitoring. In this case, a uniaxial 

accelerometer of 500g range, 100 mV/g sensitivity, and resonant frequency 

around 40 Hz was used. The piezoelectric accelerometer (DYTRAN 3055B1) was 

mounted on the nacelle near to the wind turbine hub to record the vibration 

signals using an adhesive mounting technique. It was connected to the DAQ 

system through a cable. The data acquisition system (DAQ) used was NI USB 

4432 model. The DAQ card has five analog input channels with a sampling rate 

of 102.4-kilo samples per second with 24-bit resolution. The accelerometer is 

coupled to a signal conditioning unit which consists of an inbuilt charge amplifier 

and an analogue-to-digital converter (ADC). From the ADC, the vibration signal 

was taken. These vibration signals were used to extract features through feature 

extraction technique. One end of the cable is plugged to the accelerometer and the 

other end to the AIO port of DAQ system. NI - LabVIEW was used to interface 

the transducer signal and the system (PC). 
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Fig. 2. Wind turbine setup. 

2.2.  Experimental procedures 

In the present study, three-blade variable horizontal axis wind turbine (HAWT) 

was used. Initially, the wind turbine was considered to be in good condition (free 

from defects, new setup) and the signals were recorded using an accelerometer. 

These signals were recorded with the following specifications: 

a) Sample length: The sample length was chosen long enough to ensure data 

consistency; and also the following points were considered. Histogram 

measures are more meaningful when the number of samples is sufficiently 

large. On the other hand, as the number of samples increases the computation 

time increases. To strike a balance, a sample length of 10000 was chosen. 

b) Sampling Frequency: The sampling frequency should be at least twice the 

highest frequency contained in the signal as per Nyquist sampling theorem. By 

using this theorem sampling frequency was calculated as 12 kHz (12000 Hz). 

c) Number of samples: Minimum of 100 (hundred) samples were taken for 

each condition of the wind turbine blade and the vibration signals were 

stored in data files [21].  

The following faults were simulated one at a time while all other 

components remain in good condition and the corresponding vibration signals 

were acquired. Figure 3 shows the different blade fault conditions which are 

simulated on the blade. 

a) Blade bend (BB): This fault occurs due to the high-speed wind and 

complex forces caused by the wind. The blade was made to flap wise bend 

with 10
º 
angle. 

b) Blade crack (BC-2): This occurs due to foreign object damage on the blade 

while it is in operating condition. On the blade, 15 mm crack was made. 

c) Blade erosion (BE): This fault is due to the erosion of the top layer of the 

blade by the high-speed wind. The smooth surface of the blade was eroded 

using emery sheet (320Cw) to provide an erosion effect on the blade. 
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d) Hub-blade loose contact: This fault generally occurs on a wind turbine 

blade due to an excessive runtime or usage time. The bolt connecting the hub 

and blade was made loose to obtain this fault.  

e) Blade pitch angle twist (PAT): This fault occurs due to the stress on the 

blade caused by high-speed wind. This makes the pitch get twisted, creating a 

heavy vibration to the framework.  To attain this fault, blade pitch was 

twisted about 12
º 
angle with respect to the normal blade condition. 

From Fig. 4., the vibration signals (sample number vs amplitude) are shown 

which were taken for different conditions of the wind turbine blade (good 

condition blade, blade bend, blade erosion, hub-blade loose connection, blade 

crack and pitch angle twist). 

  
a) Good condition blade b) Blade with crack 

  
c) Blade with pitch angle twist d) Blade with erosion 

  
e) Hub-blade loose connection  f) Blade with bend (Top View) 

Fig. 3. Various blade fault conditions. 
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a) Good condition signal plot b) Bend fault condition signal plot 

  

c) Crack fault condition signal plot d) Erosion fault condition signal plot 

  

e) Hub-blade loose fault condition 

signal plot 

f) Pitch angle twist fault condition 

signal plot 

Fig. 4. Condition signal plot. 
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3.  Feature Extraction 

The vibration signals were obtained for good and other faulty conditions of the 

blades. If the time domain sampled signals are given directly as inputs to a 

classifier, then the number of samples should be constant. The number of samples 

obtained is the function of rotation of the blade speed. Hence, it cannot be used 

directly as the input to the classifier. However, a few features must be extracted 

before the classification process. The histogram was used as a feature extracting 

tool in this study. The reason behind choosing the histogram method for feature 

extraction is because it allows the viewers to easily compare the data and also 

they work well with large ranges of information or samples. They also provide a 

more actual form of consistency, as the intervals are always equal, a factor that 

allows easy data transfer from frequency tables to histograms. Hence, the 

histogram is preferred for feature extraction. 

Feature extraction involves reducing a number of resources required to 

describe a large set of data. When performing analysis of complex data one of the 

major problems stems from the number of variables involved. Analysis with a 

large number of variables generally requires a large amount of memory and 

computation power, also it may cause a classification algorithm to over-fit to 

training samples and generalize poorly to new samples. Feature extraction is a 

general term for methods of constructing combinations of the variables to get 

around these problems while still describing the data with sufficient accuracy. 

From the noted vibration signals, the needed feature is taken and that features are 

denoted as histogram features. There are two main factors to be considered in the 

selection of bins they are, bin range and bin width [22].  

Bin is the subrange used for grouping the data. Suppose, we are interested in 

the distribution of the marks of the students in a class then we have sub ranged 

like 0-10, 11-20, 21-30…91-100. Each subrange can be called a bin. To construct 

a histogram, the first step is to "bin" the range of values, that is, divide the entire 

range of values into a series of intervals and then count how many values fall into 

each interval. The bins are usually specified as consecutive, non-overlapping 

intervals of a variable. The bins (intervals) must be adjacent and are often (but are 

not required to be) of equal size.The bin range must be from lowest of minimum 

amplitude (-0.017988) to the extreme of maximum amplitude (0.024833) of all 

the six classes (good, bend, crack, erosion, loose and PAT). The number of bins 

for the fault diagnosis of wind turbine blade has been attained by carrying out a 

sequence of trials using a J48 algorithm with a different number of bins. Initially, 

the range of bin is separated into two equivalent portions. That is to say, the 

number of bins utilized is two. The two histogram features, to be specific, X1 and 

X2 are extracted and the relating classification accuracy is additionally acquired 

by using the J48 algorithm. The approach and methodology of performing the 

same using J48 algorithm are clarified in Section 4. A set of related trails is done 

with various numbers of bins from 2, 3, 4, 5 to 100 and the corresponding results are 

shown in Fig. 5.  

From Fig. 5, bin size 77 has been chosen since the classification accuracy of 

bin 77 was found to be 92%. A set of 77 starting from X1, X2… X77 were 

extracted from the vibration signals and these are denoted as histogram features. 

The amplitude ranges from -0.017988 to 0.024833. For further study, rather than 

utilizing vibration signals directly, the histogram features extracted from vibration 
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signals are utilized. The procedure of calculating applicable parameters of the 

signals that represent the data contained in the signal is called feature extraction. 

Histogram analysis of vibration signals yields distinctive parameters. All the 

extracted histogram features, X1 to X77 extracted from the vibration signals may 

not contain the needed information for classification. The applicable ones are 

selected using the J48 algorithm. 

 

Fig. 5. Bin range vs. classification accuracy. 

4.  Feature Selection 

Feature selection is the process of selecting a subset of relevant features 

(variables, predictors) for use in model construction. Feature selection techniques 

are used for four reasons: 

 Simplification of models to make them easier to interpret by 

researchers/users 

 Shorter training times 

 To avoid the curse of dimensionality 

 Enhanced generalization by reducing overfitting (formally, reduction of variance) 

The central premise when using a feature selection technique is that the data 

contains many features that are either redundant or irrelevant and can thus be 

removed without incurring much loss of information.
 
Redundant or irrelevant 

features are two distinct notions, since one relevant feature may be redundant in 

the presence of another relevant feature with which it is strongly correlated. From 

the extracted features (77), the most contributing features are selected using 

feature selection process. For feature selection, J48 decision tree algorithm is 

used. J48 decision tree algorithm is adapted from the C4.5 algorithm in WEKA 

[23]. It consists of a number of branches, one root, a number of nodes, and a 

number of leaves. One branch is a chain of nodes from the root to a leaf, and each 

node involves one attribute. The occurrence of an attribute in a tree provides 

information about the importance of the associated attribute. A decision tree is a 

tree based knowledge representation methodology used to represent classification 

rules. J48 decision tree algorithm is a widely used one to construct decision trees. 
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The procedure of forming the decision tree and exploiting the same for feature 

selection is characterized by the following: 

a) The set of features available at hand forms the input to the algorithm; the 

output is the decision tree.  

b) The decision tree has leaf nodes, which represent class labels, and other nodes 

associated with the classes being classified.  

c) The branches of the tree represent each possible value of the feature node 

from which they originate.  

d) The decision tree can be used to classify feature vectors by starting at the root 

of the tree and moving through it right through to a leaf node, which provides 

a classification of the instance, is identified.  

e) At each decision node in the decision tree, one can select the most useful 

feature for classification using appropriate estimation criteria. The criterion 

used to identify the best feature invokes the concepts of entropy reduction and 

information gain. 

Information gain measures how well a given attribute separates the training 

examples according to their target classification. The measure is used to select the 

candidate among the features at each step while growing the tree. Information gain 

is the expected reduction in entropy caused by portioning the samples according to 

this feature.  

Information gain (S, A) of a feature A relative to a collection of examples 

S, is defined as: 

𝐺𝑎𝑖𝑛 (𝑆,𝐴)=𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)−∑ ×𝑣∈𝑉𝑎𝑙𝑢𝑒(𝐴)
|𝑆𝑣|

|𝑆|
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣) (1) 

where Value (A) is the set of all possible values for attribute A, and Sv is the subset 

of S for which feature A has value v. Note the first term in the equation for gain is 

just the entropy of the original collection S and the second term is the expected 

value of the entropy after S is partitioned using feature A. The expected entropy 

described by the second term is simply the sum of the entropies of each subset Sv, 

weighed by the fraction of samples |Sv|/|S| that belong to Sv. Gain (S, A) is the 

expected reduction in entropy caused by knowing the value of feature A. Entropy 

is a measure of homogeneity of the set of examples and it is given by 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆)=∑ −𝑃𝑖log2𝑃𝑖
𝑐
𝑖−1  (2) 

where c is the number of classes, Pi is the proportion of S belonging to class ‘i'.   

The J48 decision tree algorithm has been applied to the problem for feature 

selection process. The input to the algorithm is the set of histogram features 

described above and output of the decision tree shown in Fig. 6. It clearly shows 

that the top node is the best node for classification. The other features in the nodes 

of a decision tree are seen in descending order of significance. It is to be 

mentioned here that only features that contribute to the classification appear in the 

decision tree. The features which have less of a discriminating capability can be 

consciously discarded by deciding on the threshold. This concept is made clear 

for selecting relevant features. The algorithm identifies the relevant features for 

the purpose of classification from the given training data set, and thus reduces the 

domain knowledge required to select good features for pattern classification 
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problem. Referring from Fig. 6, one can identify the most dominating features to 

represent the blade conditions are X33, X34, X35, X32, and X36. 

 

Fig. 6. J48 Tree classification for feature selection. 

 

5.  Feature Classification 

After the feature selection, the fault classification was carried out using, 

sequential minimal optimization (SMO) algorithm, the simple logistic algorithm 

(SLA), multilayer perceptron (MLP), the logistic algorithm (LA) and radial basis 

function (RBF). These algorithms are explained in this section below. 

 

5.1.  Sequential minimal optimization (SMO) 
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Sequential minimal optimization (SMO) is a classifier for undertaking the 

quadratic programming issue that emerges in the training of support vector 

machines. Consider a binary classification issue with a data set (x1, y1), ..., (xn, yn), 

where xi is an input vector and yi ∈ {-1, +1} is a binary name associating with it. 

Sequential minimal optimization is an iterative calculation for taking care of the 

optimization issue [24]. Sequential minimal optimization breaks this issue into a 

progression of least conceivable sub-issues, which are then elucidated logically. 

Due to the linear equality requirement, including the Lagrange multipliers αi, the 

least conceivable issue includes two such multipliers. At that point, for any two 

multipliers α1 and α2, the requirements are narrowed to:  

0≤𝛼1,𝛼2≤𝐶 (3) 

 𝑦1𝛼1+𝑦2𝛼2=𝑘 (4) 

where, k is the negative of the sum over. The main advantage of SMO classifier is 

that it will predict the direction of the fault improvement and it helps the 

formulator to decide optimum conditions for the formulation and process. 

 

5.2.  Simple logistic algorithm (SLA) 

The simple logistic classifier is comparable to linear regression, with the 

exception of that the dependent variable is nominal, not an estimation. One 

objective is to see whether the likelihood of getting a specific estimate of the 

nominal variable is connected with the estimation variable [25]. The other 

objective is to forecast the likelihood of getting a specific estimate of the nominal 

variable, given the estimation variable. The simple logistic regression finds the 

mathematical equation that best forecasts the estimation of the Y variable for 

every estimation of the X variable. The logistic regression is not relatively the 

same as linear regression is that one does not quantify the Y variable specifically; 

it is rather the likelihood of acquiring a specific estimation of a nominal variable. 

The equation is  

 𝑙𝑛[
𝑌

1−𝑌
]=𝑎+𝑏𝑋  (5) 

where a is the slope and b are the intercepts of the best-fitting mathematical 

equation in a logistic regression by means of the maximum-likelihood technique, 

relatively than the least-squares technique. The main advantage of SLA is that it can 

provide the independent observation of the data set and it has fast computation. 

 

5.3.  Multilayer perceptron (MLP) 

A multilayer perceptron (MLP) is a feedforward artificial neural network model 

that plots sets of data onto an arrangement of suitable yields. A multilayer 

perceptron contains different layers of hubs in an engaged outline, with individual 

layer totally connected to the following one. Aside from the input hubs, the 

individual hub is a neuron or preparing component with a nonlinear initiation 

capability. Multilayer perceptron utilizes a directed learning technique called 

backpropagation for instructing the system. A multilayer perceptron is a change 

of the standard linear perceptron and can separate information that is not linearly 

separable. The basic concept of a single perceptron was introduced by Rosenblatt 
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in 1958 [26]. The perceptron computes a single output from multiple real-valued 

inputs by forming a linear combination according to its input weights and then 

possibly putting the output through some nonlinear activation function. 

Mathematically, this can be written as  

 𝑦=𝜑(∑ 𝜔𝑖𝑥𝑖+
𝑛
𝑖=1 𝑏)=𝜑(𝜔𝑇𝑥+𝑏) (6) 

where ω denotes the vector of weights, X is the vector of inputs, b is the bias and 

φ are the activation function. The main advantage of MLP is that it can train the 

model by back propagation algorithm to perform any mapping between the input 

and the output signal. 

 

5.4.  Logistic algorithm 

In this study, logistic regression is used for classification in this multiclass 

problem. The logistic algorithm used to measure the connection between the 

definite variable and one or more free variables by assessing probabilities 

utilizing a logistic capacity, which is the combined logistic distribution [27]. In 

this way, it treats the same arrangement of issues as the probit function utilizing 

equivalent strategies, with the last utilizing an overall normal distribution curve 

as an alternative. Equally, in the dormant variable elucidations of these two 

strategies, the primary expects a standard logistic distribution of errors and the 

second a standard typical normal distribution of errors. The logistic algorithm is 

represented by  

log
𝑝 (𝑥)

1−𝑝(𝑥)
 = 𝛽0 + 𝑥 ·𝛽   (7) 

where p (x) is the linear function of x, the dependent variable is x and the 

independent variable is β. The main advantage of LA is that it can able to predict 

the outcome of the categorical dependent variable and has fast computation. 

 

5.5.  Radial basis function (RBF) network 

It is a real-valued function whose value depends only on the distance from the 

origin, so that ϕ (x) = ϕ (||x||); or alternatively on the distance from any other 

point c, called a centre, so that ϕ (x,c) = ϕ (||x-c||). It can also be interpreted as a 

relative simple single-layer type of artificial neural network called a radial basis 

function network, with the radial basis functions taking on the role of the 

activation functions of the network.  

𝑦(𝑋)=∑ 𝜔𝑖∅
𝑁
𝑖=1 (‖𝑋−𝑋𝑖‖) (8) 

It can be exhibited that any consistent function on a minimal disruption can a 

standard to be added with discretionary precision by an aggregate of this structure 

if a sufficiently large number of radial basis functions is used The approximant 

y(x) is differentiable with respect to the weights wi. The weights could thus be 

learned using any of the standard iterative methods for neural networks [28]. 

Utilizing radial basis functions as a part of this way produces a sensible 

interjection approach gave that the fitting set has been picked such that it covers 

the whole range deliberately where equidistant information points are ideal. 

Though, without a polynomial term that is orthogonal to the radial basis 

functions, measures outside the fitting set have a tendency to perform 
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ineffectively. The main advantage of RBF is that it uses a small number of locally 

tuned units and is adaptive in nature. 

 

6.  Results and Discussion 

The vibration signals were noted for good condition and faulty blade conditions 

using DAQ. The total number of signals collected is 600; out of which 100 

samples were from good condition blade. For different faults such as blade bend, 

erosion, blade crack, hub-blade loose connection, pitch angle twist, 100 samples 

from every condition were noted. J48 decision tree algorithm was used to select 

the best contributing histogram features from bin size 77. From Figs. 5 and 6, the 

selected features are given as the input to the classifier to determine the 

classification accuracy with respect to faults created by the wind turbine blade. 

From Fig. 7, the simple logistic algorithm (SLA) gives the maximum 

classification accuracy of 93.67% when compared to other classifiers. In the 

simple logistic algorithm, the complexity parameter (C) was fixed to be 1. The 

filter type is made as normalize training data and the kernel is chosen as a 

polynomial. The confusion matrix of the simple logistic algorithm (SLA) is shown in 

Table 2. In confusion matrix, the diagonal element represents the correctly classified 

instance and the others are misclassified [29]. 

 

Fig. 7. Overall classification accuracy of the classifiers. 

From simple logistic algorithm, the kappa statistics were found to be 0.924. It 

is used to measure the arrangement of likelihood with the true class.  The mean 

absolute error was found to be 0.0356. It is a measure used to measure how close 

forecasts or prediction are with the ultimate result. The root mean square error 

was found to be 0.1263. It is a quadratic scoring rule which processes the average 

size of the error. The detailed class wise accuracy is shown in Table 3. Of 600 

samples, 562 samples are correctly classified (93.67%) and remaining 38 are 

misclassified (6.33%). The time taken to build the model is about 1.05 seconds; 

hence, this can use in real time for the fault detection on the wind turbine blade. 

The model was tested in 10-fold cross validation. Cross-validation is a technique 
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to evaluate predictive models by partitioning the original sample into a training 

set to train the model, and a test set to evaluate it.  

In 10-fold cross-validation, the original sample is randomly partitioned into 10 

equal size subsamples. Of the 10 subsamples, a single subsample is retained as the 

validation data for testing the model, and the remaining 9 subsamples are used as 

training data. The cross-validation process is then repeated 10 times (the folds), 

with each of the 10 subsamples used exactly once as the validation data. The 10 

results from the folds can then be averaged (or otherwise combined) to produce a 

single estimation. The advantage of this method is that all observations are used 

for both training and validation, and each observation is used for validation 

exactly once [30]. 

Table 2. Confusion matrix for simple logistic algorithm (SLA). 

Blade 

conditions 
Good Bend Crack Erosion Loose PAT 

Good 95 0 1 0 4 0 

Bend 2 97 0 1 0 0 

Crack 1 0 88 2 6 3 

Erosion 0 0 5 95 0 0 

Loose 5 0 1 0 94 0 

PAT 0 0 6 1 0 93 

 

Table 3. Class wise accuracy of simple logistic algorithm (SLA). 

Class 
TP 

Rate 

FP 

Rate 
Precision Recall 

F-

Measure 

ROC 

area 

Good 0.95 0.016 0.922 0.95 0.936 0.996 

Bend 0.97 0.000 1.000 0.97 0.985 0.983 

Crack 0.88 0.026 0.871 0.88 0.876 0.989 

Erosion 0.95 0.008 0.96 0.95 0.955 0.999 

Loose 0.94 0.02 0.904 0.94 0.922 0.996 

PAT 0.93 0.006 0.969 0.93 0.949 0.997 

From class wise accuracy in Table 3, the properties like true positive rate 

(TP), false positive rate (FP), precision, recall, F-Measure, receiver operating 

characteristics (ROC) area are determined [31]. TP is also called as sensitivity 

which used to predict the ratio of positives which are correctly classified                  

as faults. FP is commonly described as a false alarm in which the result that 

shows a given fault condition has been achieved when it really has not                  

been achieved. The true positive (TP) rate should be close to 1 and the false 

positive (FP) rate should be close to 0 to propose the classifier is a better 

classifier for the problem classification.  In the simple logistic algorithm (SLA), 

it shows that the TP near to 1 and FP close to 0, then one can predict that the 

classifier we build for the particular problem is very much effective for the fault 

diagnosis problem.  

Precision is the ratio of correctly classified instances for those instances that 

have been classified as positive. The recall is merely equal to sensitivity in 

which the information retrieval is the fraction of the faults that are relevant to 

the query that are successfully retrieved. F-measure is defined as the equivalent 



A Study of Various Blade Fault Conditions on a Wind Turbine . . . . 119 

 
 
Journal of Engineering Science and Technology          January 2018, Vol. 13(1) 

 

resistance formed by sensitivity and precision positioned in parallel phase. ROC 

is a graphical representation that demonstrates the performance of a classifier as 

its discrimination threshold is varied. The classifier error chart is shown in Fig. 

8. Here the squared dots represent the misclassification and the ‘x’ denotes the 

correct classification. 

 

Fig. 8. Classifier errors (classification vs. misclassification). 

 

7.  Conclusion 

The wind turbine is a very important structure in extracting wind energy from the 

accessible wind. This paper displayed an algorithm based classification of 

vibration signals for the evaluation of the wind turbine blade conditions. From the 

acquired vibration data, five models were developed using data modeling 

techniques. The model was tested in 10-fold cross validation. All the classifiers 

were compared with respect to their types and maximum correctly classified 

instances were found to be 93.67% for the simple logistic algorithm (SLA). The 

error rate is relatively less and may be considered for the blade fault diagnosis. 

Hence, the simple logistic algorithm (SLA) can be practically used for the 

condition monitoring of wind turbine blade to reduce the downtime and to 

maximize the usage of wind energy. The methodology and algorithm suggested in 

this paper can be potentially used for any kind of wind turbine blade to diagnose 

the blade fault with minimal modification. 
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