
Journal of Engineering Science and Technology
Vol. 13, No. 1 (2018) 058 - 068
© School of Engineering, Taylor’s University

58

AN EXHAUSTIVE ANALYSIS OF SEU EFFECTS IN
THE SRAM MEMORY OF SOFT PROCESSOR

AFEF KCHAOU
1,2,

*, WAJIH EL HADJ YOUSSEF
2
,

RAOUL VELAZCO
3
, RACHED TOURKI

2

1University of Tunis El Manar, Faculty of Sciences of Tunis, Tunisia
2Electronics and Micro-Electronic Laboratory (LEME), Faculty of Sciences of Monastir, Tunisia

3University of Grenoble-Alpes, TIMA Labs, INPG, Grenoble, France

*Corresponding Author: kchaouafef@gmail.com

Abstract

The Embedded system design is characterized by its daily complexity. It

integrates a hardware and software parts together on a common platform. These

parts may be defective by a spurious signal, subsequently found to be two types

of errors. The software and hardware errors can attack the embedded system. In

this paper an exhaustive analysis of the effects of Single Event Upset into the

Static Random Access Memory occupied area of Aeroflex Gaisler LEON3

processor is presented. It is a soft core pipeline processor that is part of the

GRLIB IP library based on Scalable Processor Architecture, SPARC V8,

implemented in Virtex-5 FPGA. A new software methodology allowing fault

injection is explored and illustrated in order to classify the defective behaviours

while executing several benchmarks. This investigation is done by an

exhaustive fault injection campaign (More than 200000 transient faults) into

SRAM memory of LEON3 considered as a processor. The proposed method

makes error rate predictions more accurate compared to other techniques.

Keywords: LEON3, SEU, Software fault injection, Benchmark, FPGA.

1. Introduction

The complexity of embedded systems is constantly increasing due to the tight

constraints on area use, size, power consumption and performance. Another

constraint is the time to-market deadlines. An embedded system integrates both

hardware and software parts on a common platform to perform a specific

application. It is characterized by their energy, real-time, security and performance

[1]. Using soft-core processors an embedded system can help the designer. Soft-

core processors are flexible, simply customized and have an independent technology

An Exhaustive Analysis of SEU effects in the SRAM Memory of Soft 59

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

Abbreviations

AES Advanced Encryption Standard

AHB Advanced High-speed Bus

ASIC Application Specific Integrated Circuit

FPGA Field Programmable Gate Array

FIPS Federal Information Processing Standards

FFT Fast Fourier Transform

MBU Multiple Bit Upset

SEU Single Bit Upset

SET Single Event Transient

SPARC Scalable Processor ARChitecture

SRAM Static Random Access Memory

TCL Tool Command Language

that can be synthesized for any given target Application Specific Integrated

Circuit (ASIC) or Field Programmable Gate Arrays (FPGA) technology. The

architecture of soft-core processors is described at a higher abstraction level using

an HDL [2].

There are many soft-core processors like NIOS II, Altera, Pico-Blaze, LEON3,

etc. Each core has different performance characteristics and features that are

suitable for specific applications. LEON3 processor is a highly configurable open

source code developed by Aeroflex Gaisler Research, designed for embedded

systems [3]. It supports power-down mode and clock gating with robust and fully

synchronous single-edge clock design [4]. LEON3 soft core processor can be

implemented on ASIC and FPGA thanks to its best performance and most

configurable processor. Many studies show that LEON3 is the most efficient

processor by comparison with other processors like the Xilinx Micro Blaze soft-

core processor and hard-core on-chip PowerPC processor [5]. Faults injection

mechanism is a method to understand the behaviour of a microprocessor under soft

errors. There are many methods of faults injection that can be implemented on both

Software and Hardware. Soft errors are transient faults that can modify values

stored in memory elements operation under radiation environment in space or Earth

[6]. The modification in memory of our microprocessor can be done at the state of

memory bit or flip-flop, this is named a soft error [7]. Such faults can modify the

results of executing application or continue executing the application in a loop

without stopping [8]. In the prototype-based fault injection, we inject faults into the

system to:

• Study the processor behaviour in the presence of fault injection,

• Evaluate the effectiveness of fault injection mechanisms on the system’s

dependability, and indicating the advantages and disadvantages of the method.

The principal idea is to analyse behaviour of multicore LEON3 in the presence

of fault injection. In this paper, a validation of fault injection in one core of LEON3

is carried out.

2. Literature Review

Several works used a fault injection in LEON2/3 processor. Cho et al. [9]

evaluated the effects of single-bit errors at the register and memory locations by

60 A. Kchaou et al.

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

applying a variety of high level error injection techniques, the results obtained

show that the technique used is highly inaccurate when its compared to flip-flop

error injection techniques. Other types of fault injection, multiple faults, and

security evaluation are brought up in [10]. Aguirre et al. [11] presented the effects

of SEUs and the time needed for error recovery in LEON2 processor. Authors

presented a test procedure applied to three different, protected and unprotected

versions of the well-known LEON2 processor. Houssany et al. [12] proposed a

new methodology of emulation based fault injection to evaluate the cache

memories sensitivity for a given application, and to calculate a more accurate

SER. The methodology, based on monitoring the memory accesses, is applied to

the LEON3 soft-core with several benchmarks. They show that their proposed

tool precise that all the addresses are sensitive to SEU fault injection.

Da Silva and Sanchez [13] presented a virtual platform with fault injection

where the faults are injected in the RAM memory. The results obtained show that

the zone storing the instruction code is the most critical one. For most existing

processors, SEU can be injected by software means concurrently with the execution

of a program at a desired instant and dedicated sequence of instructions. Typically,

the SEU fault injection mechanism consists in injecting the fault at a general

purpose register or at a directly addressable internal or external memory location.

In this paper, a fault injection by emulation method, so-called SEUs, is used to

emulate the consequence of errors on the internal memory of LEON3 processor.

LEON3 is set to execute several benchmarks. The benchmarks are intended to

provide correct results even if a failure occurs in the middle of the execution. In

each address of the internal memory, the exclusive-or logic operation is affected

with each byte during a single clock cycle. It consists in changing the current state

of a flip-flop in a particular clock cycle. A script program was created based on

Tool Command Language (TCL) to modify the internal memory of LEON3.

3. Fault Injection and Micro Architecture of LEON3 Processor

3.1. Fault injection

There are two types of fault injection, a hardware and software, it depends on the

type of faults and the effort required creating them. With a hardware injector, you

can control the location of the fault. But in the case of data corruption, a software

injector might suffice. Other faults like bit-flips (Single Event Upsets) in memory

cells can be injected by both methods. Fault injection permits the evaluation of

how designs perform inside injection environments. They evaluate the action of

errors using the bit-flip model: SEUs are emulated as the change in the value of a

circuit function, single event transients (SETs) are emulated to change the register

content, and multi bit upsets (MBUs) are emulated to change the content of paired

registers dependent on the layout of the circuit. These cases are called SEEs

because they are a result of a single particle impact against a device [14]. Now,

researchers are taking more interest in developing software implemented fault

injection tools because it doesn’t require expensive hardware. Software methods

are convenient for directly producing changes at the software-state level like

memory and register. This method is less expensive but it also incurs a higher

perturbation overhead because it executes software on the target system [15].

An Exhaustive Analysis of SEU effects in the SRAM Memory of Soft 61

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

3.2. Micro architecture of LEON3 processor

Aeroflex Gaisler research has made freely available a collection of open source IP

cores and a design configuration environment for developing the LEON3 based

FPGA designs, collectively referred to as GRLIB IP library [16]. The block

diagram of LEON3 is shown in Fig. 1.

Fig. 1. Block Diagram of LEON3 [16].

The considered LEON3 processor is an open source core synthesizable VHDL

model of 32-bit processor based on the SPARC-V8 architecture with support for

multiprocessing configurations. The processor is used to generate a smaller or

faster implementation, which made its popularity in the space community. All

hardware configurations for LEON3 processor were built using the GRLIB

implementation tool Version provided by Gaisler and a Cygwin tool, which

provides LEON3 template designs for many FPGA boards. The model is highly

configurable and uses the AMBA 2.0 Advanced High-Speed Bus (AHB)

interfacing with other IP core. The template design is represented in Fig. 2.

Fig. 2. LEON3 Template Design [17].

62 A. Kchaou et al.

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

The connection design is based on the AMBA AHB, to which LEON3

processor and other high-bandwidth devices are connected. Access to the external

memory is made through a combined PROM/IO/SRAM/SDRAM memory

controller. The on chip peripheral devices include three Space Wire links,

Ethernet 10/100 Mbit MAC, Dual CAN-2.0 interface, serial and JTAG debug

interfaces, two UARTs, Interrupt Controller, Timers and an I/O port. A debug

monitor, GRMON, provides a quick hardware and software validation. LEON3

application can be loaded or debugged using a command line interface or a

graphical user interface by GRMON.

4. Methodology of SEU fault injection

In order to get the quality of protection against SEU sensitivity is usually assessed

by means of dynamic fault injection test. Faults are injected into a specific target

in the circuit at a given time and the behaviour of the faulty circuit is then

recorded [11]. The consequence of the injected SEU may be classified as follows

[18]: Silent fault when the injected fault does not have any consequence on the

program results. This type of fault touches the register or data not used or not yet

used by the processor. Another possibility is that the algorithm provides a correct

result despite the fault, or the results of the program are not the expected ones and

a Timeout result is obtained when the execution time of the benchmark exceeds

the limit execution time. The proposed SEU strategy consists in injecting SEU

faults in the SRAM occupied area when running a benchmark application under

test. Before starting a fault-injection, it is necessary to determine the first address

of loading the data of the selected application and the contents of the memory

address map. To inject a fault, a single bit modification is done at each run. In all

these cases, one SEU per execution cycle is injected. The proposed fault-injection

mechanism is depicted in Fig. 3.

Fig. 3. The proposed software fault injection strategy.

An Exhaustive Analysis of SEU effects in the SRAM Memory of Soft 63

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

To implement a fault injector, two scripts will be used, the first one is

employed to allocate the memory address map when executing the target

application and the second one is used for throwing the fault injection. The first

step is the definition of the first address of data, this is done by a process created

by a script to execute the benchmark to allocate the data memory and then a

second script will be used to inject a fault.

At the instant of fault injection, the fault injector reads the information about

the memory address map (allocates memory) provided by the first script and then

it injects the fault using a specific function. For each address of SRAM memory

there are 128 bits, the principal idea of the SEU fault injection is to affect for each

bit an XOR logic operation during one clock cycle. After a memory bit

modification is done, the execution of the benchmark is accomplished, the fault

injector sends END EXEC signals to analyse the consequences of the fault

injection. Since the fault injection cycle is reached, the fault injector masks the

selected bit and creates a set of erroneous inputs. In the same way, SEU Fault-

injection strategy is applied for all selected 128 bit memory address content.

Hence, SEU is applied for the allocated memory address map to be tested. If the

fixed final memory address map is reached, the memory will not be allocated and

the result will be saved in a log file, if not, the memory address contents will be

allocated again.

5. Results and Discussion

5.1. Benchmark programs

Three benchmarks were chosen in this fault injection experiments to test the

variation in sensitivity on executed instructions: Advanced Encryption Standard,

AES (59.23 Kb), Matrix Multiplication (62.59 Kb) and Fast Fourier Transform,

FFT (62.28 Kb). Each benchmark executes out of the internal SRAM memories

and uses only internal memory during their execution.

 Advanced Encryption Standard: The AES algorithm was selected as a data

encryption standard by the National Institute of Standards and technology

(NIST) in 1997 [16]. In our case, we considered the AES 128-bit benchmark

(800000 instructions, total execution time: 12 ms) a famous and strong

encryption algorithm which has several advantages in data ciphering, security

applications, simplicity of implementation and low memory requirements, but

it suffers from some drawbacks like high computations, pattern in ciphered

images, and hardware requirement [19].

 •A standard Matrix Multiplication (MulMatrix): this algorithm multiplies two

integer matrices and stores the result at a specified memory location. It is

widely used for solving scientific problems. The matrix multiplication

requires a large data processing with only a few loops and therefore uses

mostly the data-path from the microprocessor, being ideal to verify the

coverage of the techniques in detecting errors affecting data. In this work

30x30 input matrices were used in order to maximize the memory occupation

to increase the probabilities of observing SEU consequences.

 •Fast Fourier transform (FFT): FFT is one of the most widely used

operations in digital signal processing algorithms. Fourier analysis has many

64 A. Kchaou et al.

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

scientific applications in physics, signal processing, imaging, probability

theory, statistics, cryptography, numerical analysis, acoustics, geometry and

other areas [20].

The programs are coded in C and have been compiled resorting to the GNU

C/C++ GCC compiler, which is able to generate an executable software

application by LEON3 [21].

5.2. Results of benchmark experiment

The emulation of SEU faults in data SRAM memory was done at each

benchmark execution. The SRAM data of LEON3 loads the data in the register,

this explains that the fault injection in the internal memory of LEON3 is faster

than the injection in the register, but via this method, we can’t modify the

Program Counter and Stuck Pointer register. The SEUs were injected only in

SRAM area. It is well-known that SEUs do not permanently damage a circuit,

but they can cause faulty behaviours. In the worst case, the processor will have

to be reset or reconfigured to overcome the effects of a soft error. The design is

synthesized by using Xilinx ISE; the implementation of LEON3 is made by a

CYGWIN tool works. During a compilation of executable file of benchmark

program, to analyse the behaviour of LEON3, in each clock one error is sent to

the internal memory. Obviously, SEUs do not permanently infect a circuit;

however faulty circuit behaviour can be provoked. Worst case scenario, the

processor should be reset or reconfigured to defeat the effects of a soft error

[22]. The consequence of the injected SEU in the internal memory of LEON3

processor can be classified as follows:

 •False Result: the algorithm provides a false result when the errors are injected

in the data SRAM.

 •Silent fault: the algorithm provides a correct result despite the fault.

 •Timeout: the application does not terminate normally. The workload

execution is not completed after a predefined amount of time and the

simulation is halted externally, which explains a power down mode of LEON3

processor or a DSU error in our case.

 •Stopped mode: the application terminates abnormally with error indication.

The algorithm does not provide any result despite the fault; in this case it

needs a reset trap of LEON3, memory access violation or invalid instruction.

 •No response: when the application does not produce any result.

Table 1 summarizes an analysis of the effects of SEU fault injection in SRAM

occupied area of LEON3 processor.

When we increase the number of SEUs faults injection in the internal memory

of LEON3, the error percentage changes by decreasing in some type of errors, but a

new behaviour of LEON3 is created so that the execution duration exceeds a limit.

For a number of 62719 injected faults, we note that 18.735% of stopped mode

is produced; the application is achieved abnormally with error indication. This

percentage decreases with the augmentation of the number of errors. This analysis

is done by injecting over 200000 errors into the internal memory of the

An Exhaustive Analysis of SEU effects in the SRAM Memory of Soft 65

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

considered processor. The behaviour of LEON3 processor against the injected

faults is reported and has shown that about 0.034% of faults are observed in

simulation time. With this sort of error the results of the program are not the

predicted ones. As expected too, 93.340 % of injected faults did not have any

consequence on the AES program’s results (silent-fault). A number of 5.186% of

injected faults produced a stopped-mode, 0.0008% of timeouts errors and about

1.437% of no-response-mode where observed. The lower sensibility of the

LEON3 processor can be explained for the reason that of no sufficient registers

were used when variables needed to be duplicated. This can be interpreted by

SEUs injected in variables used to initialize the AES’s counters. This processor

behaviour is noticed especially when the stack pointer and program counter were

not aimed by the injected SEUs.

Table 1. Results of fault injection experiments

in SRAM occupied area of LEON3 processor.

#injection %error %silent-

fault

%Timeout %stopped-

mode

%no-

response

17020 0.464 99.2 0.011 0.217 0.099

62719 0.125 75.943 0.003 18.735 5.191

128255 0.061 88.235 0.001 9.162 2.538

161023 0.049 90.629 0.001 7.297 2.022

226559 0.034 93.340 0.0008 5.186 1.437

To make LEON3 processor more sensible for SEUs faults, complex

benchmarks will be used to perform a fault injection campaign. Two benchmarks

were chosen to test the sensitivity of our processor: MulMatrix and FFT.

Figure 4 shows the distribution of the fault-injection consequences in the

tested applications when targeting memory locations. After applying the proposed

technique over the programs, a fault injection campaign on both was performed

where 644422 faults were injected in MulMatrix and 85765 faults in FFT

benchmarks. The analysis of the obtained results can be summarized as follows:

 •As would be expected in LEON3 processor configuration, fewer number of

fault simulations generate wrong outputs (0.0003%) and no response mode

(0.0007%) when injected in MulMatrix. No erroneous output neither no-

response mode was observed.

 •0.0099% of fault injections in MulMatrix benchmark (resp.0.259% in FFT)

finish without any effects.

 •99.988% of SEU fault injection produces stopped-mode errors when executing

the MulMatrix program, this rate is about 4.047% for FFT algorithm.

 •As shown 95.692% of injected SEUs produced an integer unit error (IU in

error mode) when FFT code is targeted and the program is halted. However no

kind of error was noticed for MulMatrix. This error can be caused by a

synchronous trap, in this case the IU enters into an error mode and remains in

that mode until it is reset by an external logic. As shown in Fig. 4, LEON3

processor sensitivity strongly depends on the software used. The processor is

more and more sensitive to SEUs when targeting complex benchmark.

66 A. Kchaou et al.

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

(a) MulMatrix Benchmark.

(b) FFT Benchmark.

Fig. 4. Fault injection consequences when targeting memory locations.

6. Conclusions

In this work, we have estimated the sensitivity of SRAM memory of soft processor

LEON3 in the presence of SEU fault injection by emulation.

This paper detailed the analysis of SEU propagation through the internal

memory of LEON3 processor implemented in Virtex-5 FPGA and gives its

behaviour. A new methodology for the SEU fault injection has been presented.

Only one SEU was injected when executing a benchmark application under test and

the SRAM occupied area was exhaustively explored.

The obtained results of fault analysing will be used in the future work to propose

the fault-tolerant LEON3 processor. To implement an SEU-tolerant processor on a

non-hardened semiconductor process, a variety of low-cost error-detection and

correction techniques, such as TMR registers, on-chip EDAC, BCH, parity, pipeline

restart, and forced cache miss, might also improve reliability and reduce area costs.

While we focused on soft errors in this paper, future work must address other

architecture multicore LEON3 and change the component that can be injected, like

An Exhaustive Analysis of SEU effects in the SRAM Memory of Soft 67

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

registers. Other type of fault injection can be used in the future work like a Single

Event Transient and a Multi Bits Upsets to inject faults in the logic gate or in multi

registers at the same time.

References

1. Jiang, W.; Zhenlin, G.; Yue; M.; and Sang, N. (2013). Measurement based

research on cryptographic algorithms for embedded real-time systems.

Journal of Systems Architecture, 59(10), 1394-1404.

2. Jason, G.T.; Ian, D.L.A.; and Mohammed, A.S.K. (2006). Soft-core

processors for embedded systems. Proceedings of International Conference

on Microelectronics ICM ‘06, Dhahran, Saudi Arabia, 170- 173.

3. FIPS_PUB_197 (2001). Advanced encryption standard (AES). November 26,

2001, National Institute of Standards and Technology, U.S. Department of

Commerce. Retrieved January 17, 2017, from http://csrc.nist.gov/

publications/ fips/ fips197/fips-197.pdf.

4. Hasamnis, M.; Chimankar, P.; and Limaye, S.S. (2012). Comparative

analysis of LEON3 and NIOS II processor development environment: case

study rijindael’s encryption algorithm. International Journal of Electronics

and Computer Science Engineering, 1(3), 1308-1314.

5. Ahmad, N.; and Rezaul Hasan, S.M. (2013). Low-power compact composite

field AES S-Box/Inv S-Box design in 65 nm CMOS using novel XOR gate.

Integration the VLSI Journal, 46(4), 333-344.

6. Casagrande, L.G.; and Kastensmidt, F.L. (2016). Soft error analysis in

embedded software developed with & without operating system. Proceedings

of Latin-American Test Symposium LATS‘16, Foz do Iguacu, Brazil, 147- 152.

7. Harward, N.A.; Gardiner, M.R.; Hsiao, L.W.; and Wirthlin, M.J. (2015).

Estimating soft processor soft error sensitivity through fault injection.

Proceedings of Annual International Symposium on Field-Programmable

Custom Computing Machines FCCM‘15, Vancouver, British Canada, 143-150.

8. Chielle, E.; Rosa, F.; Rodrigues, G.S.; Tambara, L.A.; Kastensmidt, F.L.;

Reis, R.; and Cuenca-Asensi, S. (2015). Reliability on ARM processors

against soft errors by a purely software approach. Proceedings of European

Conference on Radiation and Its Effects on Components and Systems

RADECS‘15, Moscow, Russia, 1-5.

9. Cho, H.; Mirkhani, S.; Cher, C.Y.; Abraham, J.A.; and Mitra, S. (2013).

Quantitative evaluation of soft error injection techniques for robust system

design. Proceedings of ACM/EDAC/IEEE Design Automation Conference

DAC‘13, ACM, Austin, TX, USA, 1-10.

10. Campagna, S.; Hussain, M.; and Violante, M. (2010). Hypervisor-based

virtual hardware for fault tolerance in COTS processors targeting space

applications. Proceedings of International Symposium on Defect and Fault

Tolerance in VLSI Systems DFT‘10, Kyoto, Japan, 44 - 51.

11. Aguirre, M.A.; Tombs, J.N.; Munoz, F.; Baena, V.; Guzmán, H.; Napoles, J.;

Torralba, A.; Fernandez-Leon, A.; Tortosa-Lopez, F.; and Merodio, D.

(2007). Selective protection analysis using a SEU emulator: testing protocol

68 A. Kchaou et al.

Journal of Engineering Science and Technology January 2018, Vol. 13(1)

and case study Over the Leon2 processor. IEEE Transactions on Nuclear

Science, 54(4), 951-956.

12. Houssany, S.; Guibbaud, N.; Bougerol, A.; Leveugle, R.; Miller, F.; and

Buard, N. (2011). Microprocessor soft error rate prediction based on cache

memory analysis. Proceedings of European Conference on Radiation and Its

Effects on Components and Systems RADECS‘11, Sevilla, Spain, 412-419.

13. Da Silva, A.; and Sanchez, S. (2010). LEON3 ViP: a virtual platform with

fault injection capabilities. Proceedings of Euromicro Conference on Digital

System Design: Architectures, Methods and Tools DSD‘10, Lille, France,

813-816.

14. Abbasitabar, H.; Zarandi, H.R.; and Salamat, R. (2012). Susceptibility

analysis of LEON3 embedded processor against multiple event transients and

upsets. Proceedings of International Conference on Computational Science

and Engineering ICCSE‘12, Nicosia, Cyprus, 548-553.

15. Natella, R.; Cotroneo, D.;Duraes, J.A.; and Madeira, H.S. (2013). On fault

representativeness of software fault injection. IEEE Transactions on Software

Engineering, 39(1), 80-96.

16. Daněk, M.; Kafka, L.; Kohout, L.; Sýkora, J.; and Bartosiński, R. (2013).

UTLEON3: exploring fine-grain multi-threading in FPGAs-the LEON3

processor, Springer-Verlag New York, 9-14.

17. Gaisler, J.; and Isomaki, M. (2006). LEON3 GR-XC3S-1500 template

design, Copyright Gaisler Research, 1-153.

18. Mansour, W.; and Velazco, R. (2013). SEU fault-injection in VHDL-based

processors: a case study. Journal of Electronic Testing: Theory and

Applications, 29(1), 87- 94.

19. Daemen, J.; and Rijmen, V. (2002). The design of rijndael AES - the

advanced encryption standard - the advanced encryption standard process,

Springer-Verlag Berlin Heidelberg,1-8.

20. Spinean, B.; and Gaydadjiev, G. (2012). Implementation study of FFT on

multi-lane vector processors. Proceedings of Euromicro Conference on

Digital System Design DSD‘12, Izmir, Turkey, 815-822.

21. Gaisler, J. (2002). A portable and fault-tolerant microprocessor based on the

SPARC v8 architecture. Proceedings of International Conference on

Dependable Systems and Networks DSN‘02, Washington, DC, USA, 409-415.

22. Cotroneo, D.; and Madeira, H. (2013). Innovative technologies for

dependable OTS-based critical systems –introduction to software fault

injection, Springer-Verlag Italia, 1-16.

