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Abstract 

The Embedded system design is characterized by its daily complexity. It 

integrates a hardware and software parts together on a common platform. These 

parts may be defective by a spurious signal, subsequently found to be two types 

of errors. The software and hardware errors can attack the embedded system. In 

this paper an exhaustive analysis of the effects of Single Event Upset into the 

Static Random Access Memory occupied area of Aeroflex Gaisler LEON3 

processor is presented. It is a soft core pipeline processor that is part of the 

GRLIB IP library based on Scalable Processor Architecture, SPARC V8, 

implemented in Virtex-5 FPGA. A new software methodology allowing fault 

injection is explored and illustrated in order to classify the defective behaviours 

while executing several benchmarks. This investigation is done by an 

exhaustive fault injection campaign (More than 200000 transient faults) into 

SRAM memory of LEON3 considered as a processor. The proposed method 

makes error rate predictions more accurate compared to other techniques. 
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1.  Introduction 

The complexity of embedded systems is constantly increasing due to the tight 

constraints on area use, size, power consumption and performance. Another 

constraint is the time to-market deadlines. An embedded system integrates both 

hardware and software parts on a common platform to perform a specific 

application. It is characterized by their energy, real-time, security and performance 

[1]. Using soft-core processors an embedded system can help the designer. Soft-

core processors are flexible, simply customized and have an independent technology 
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Abbreviations 

AES Advanced Encryption Standard 

AHB Advanced High-speed Bus 

ASIC Application Specific Integrated Circuit 

FPGA Field Programmable Gate Array 

FIPS Federal Information Processing Standards 

FFT Fast Fourier Transform 

MBU Multiple Bit Upset 

SEU Single Bit Upset 

SET Single Event Transient 

SPARC Scalable Processor ARChitecture 

SRAM Static Random Access Memory 

TCL Tool Command Language 

that can be synthesized for any given target Application Specific Integrated 

Circuit (ASIC) or Field Programmable Gate Arrays (FPGA) technology. The 

architecture of soft-core processors is described at a higher abstraction level using 

an HDL [2]. 

There are many soft-core processors like NIOS II, Altera, Pico-Blaze, LEON3, 

etc. Each core has different performance characteristics and features that are 

suitable for specific applications.  LEON3 processor is a highly configurable open 

source code developed by Aeroflex Gaisler Research, designed for embedded 

systems [3]. It supports power-down mode and clock gating with robust and fully 

synchronous single-edge clock design [4]. LEON3 soft core processor can be 

implemented on ASIC and FPGA thanks to its best performance and most 

configurable processor. Many studies show that LEON3 is the most efficient 

processor by comparison with other processors like the Xilinx Micro Blaze soft-

core processor and hard-core on-chip PowerPC processor [5]. Faults injection 

mechanism is a method to understand the behaviour of a microprocessor under soft 

errors. There are many methods of faults injection that can be implemented on both 

Software and Hardware. Soft errors are transient faults that can modify values 

stored in memory elements operation under radiation environment in space or Earth 

[6]. The modification in memory of our microprocessor can be done at the state of 

memory bit or flip-flop, this is named a soft error [7]. Such faults can modify the 

results of executing application or continue executing the application in a loop 

without stopping [8]. In the prototype-based fault injection, we inject faults into the 

system to:  

• Study the processor behaviour in the presence of fault injection,  

• Evaluate the effectiveness of fault injection mechanisms on the system’s 

dependability, and indicating the advantages and disadvantages of the method.  

The principal idea is to analyse behaviour of multicore LEON3 in the presence 

of fault injection. In this paper, a validation of fault injection in one core of LEON3 

is carried out. 

 

2.  Literature Review  

Several works used a fault injection in LEON2/3 processor. Cho et al. [9] 

evaluated the effects of single-bit errors at the register and memory locations by 
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applying a variety of high level error injection techniques, the results obtained 

show that the technique used is highly inaccurate when its compared to flip-flop 

error injection techniques. Other types of fault injection, multiple faults, and 

security evaluation are brought up in [10]. Aguirre et al. [11] presented the effects 

of SEUs and the time needed for error recovery in LEON2 processor. Authors 

presented a test procedure applied to three different, protected and unprotected 

versions of the well-known LEON2 processor. Houssany et al. [12] proposed a 

new methodology of emulation based fault injection to evaluate the cache 

memories sensitivity for a given application, and to calculate a more accurate 

SER. The methodology, based on monitoring the memory accesses, is applied to 

the LEON3 soft-core with several benchmarks. They show that their proposed 

tool precise that all the addresses are sensitive to SEU fault injection.  

Da Silva and Sanchez [13] presented a virtual platform with fault injection 

where the faults are injected in the RAM memory. The results obtained show that 

the zone storing the instruction code is the most critical one. For most existing 

processors, SEU can be injected by software means concurrently with the execution 

of a program at a desired instant and dedicated sequence of instructions. Typically, 

the SEU fault injection mechanism consists in injecting the fault at a general 

purpose register or at a directly addressable internal or external memory location.  

In this paper, a fault injection by emulation method, so-called SEUs, is used to 

emulate the consequence of errors on the internal memory of LEON3 processor. 

LEON3 is set to execute several benchmarks. The benchmarks are intended to 

provide correct results even if a failure occurs in the middle of the execution. In 

each address of the internal memory, the exclusive-or logic operation is affected 

with each byte during a single clock cycle. It consists in changing the current state 

of a flip-flop in a particular clock cycle. A script program was created based on 

Tool Command Language (TCL) to modify the internal memory of LEON3. 

 

3. Fault Injection and Micro Architecture of LEON3 Processor 

3.1.  Fault injection 

There are two types of fault injection, a hardware and software, it depends on the 

type of faults and the effort required creating them. With a hardware injector, you 

can control the location of the fault. But in the case of data corruption, a software 

injector might suffice. Other faults like bit-flips (Single Event Upsets) in memory 

cells can be injected by both methods. Fault injection permits the evaluation of 

how designs perform inside injection environments. They evaluate the action of 

errors using the bit-flip model: SEUs are emulated as the change in the value of a 

circuit function, single event transients (SETs) are emulated to change the register 

content, and multi bit upsets (MBUs) are emulated to change the content of paired 

registers dependent on the layout of the circuit. These cases are called SEEs 

because they are a result of a single particle impact against a device [14]. Now, 

researchers are taking more interest in developing software implemented fault 

injection tools because it doesn’t require expensive hardware. Software methods 

are convenient for directly producing changes at the software-state level like 

memory and register. This method is less expensive but it also incurs a higher 

perturbation overhead because it executes software on the target system [15]. 
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3.2. Micro architecture of LEON3 processor 

Aeroflex Gaisler research has made freely available a collection of open source IP 

cores and a design configuration environment for developing the LEON3 based 

FPGA designs, collectively referred to as GRLIB IP library [16]. The block 

diagram of LEON3 is shown in Fig. 1. 

 

Fig. 1. Block Diagram of LEON3 [16]. 

The considered LEON3 processor is an open source core synthesizable VHDL 

model of 32-bit processor based on the SPARC-V8 architecture with support for 

multiprocessing configurations. The processor is used to generate a smaller or 

faster implementation, which made its popularity in the space community. All 

hardware configurations for LEON3 processor were built using the GRLIB 

implementation tool Version provided by Gaisler and a Cygwin tool, which 

provides LEON3 template designs for many FPGA boards. The model is highly 

configurable and uses the AMBA 2.0 Advanced High-Speed Bus (AHB) 

interfacing with other IP core. The template design is represented in Fig. 2. 

 

Fig. 2. LEON3 Template Design [17]. 
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The connection design is based on the AMBA AHB, to which LEON3 

processor and other high-bandwidth devices are connected. Access to the external 

memory is made through a combined PROM/IO/SRAM/SDRAM memory 

controller. The on chip peripheral devices include three Space Wire links, 

Ethernet 10/100 Mbit MAC, Dual CAN-2.0 interface, serial and JTAG debug 

interfaces, two UARTs, Interrupt Controller, Timers and an I/O port. A debug 

monitor, GRMON, provides a quick hardware and software validation. LEON3 

application can be loaded or debugged using a command line interface or a 

graphical user interface by GRMON.  

 

4.  Methodology of SEU fault injection 

In order to get the quality of protection against SEU sensitivity is usually assessed 

by means of dynamic fault injection test. Faults are injected into a specific target 

in the circuit at a given time and the behaviour of the faulty circuit is then 

recorded [11]. The consequence of the injected SEU may be classified as follows 

[18]: Silent fault when the injected fault does not have any consequence on the 

program results. This type of fault touches the register or data not used or not yet 

used by the processor. Another possibility is that the algorithm provides a correct 

result despite the fault, or the results of the program are not the expected ones and 

a Timeout result is obtained when the execution time of the benchmark exceeds 

the limit execution time. The proposed SEU strategy consists in injecting SEU 

faults in the SRAM occupied area when running a benchmark application under 

test. Before starting a fault-injection, it is necessary to determine the first address 

of loading the data of the selected application and the contents of the memory 

address map. To inject a fault, a single bit modification is done at each run. In all 

these cases, one SEU per execution cycle is injected. The proposed fault-injection 

mechanism is depicted in Fig. 3.  

 

Fig. 3. The proposed software fault injection strategy. 
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To implement a fault injector, two scripts will be used, the first one is 

employed to allocate the memory address map when executing the target 

application and the second one is used for throwing the fault injection. The first 

step is the definition of the first address of data, this is done by a process created 

by a script to execute the benchmark to allocate the data memory and then a 

second script will be used to inject a fault. 

At the instant of fault injection, the fault injector reads the information about 

the memory address map (allocates memory) provided by the first script and then 

it injects the fault using a specific function. For each address of SRAM memory 

there are 128 bits, the principal idea of the SEU fault injection is to affect for each 

bit an XOR logic operation during one clock cycle. After a memory bit 

modification is done, the execution of the benchmark is accomplished, the fault 

injector sends END EXEC signals to analyse the consequences of the fault 

injection. Since the fault injection cycle is reached, the fault injector masks the 

selected bit and creates a set of erroneous inputs. In the same way, SEU Fault-

injection strategy is applied for all selected 128 bit memory address content. 

Hence, SEU is applied for the allocated memory address map to be tested. If the 

fixed final memory address map is reached, the memory will not be allocated and 

the result will be saved in a log file, if not, the memory address contents will be 

allocated again. 

 

5. Results and Discussion 

5.1. Benchmark programs 

Three benchmarks were chosen in this fault injection experiments to test the 

variation in sensitivity on executed instructions: Advanced Encryption Standard, 

AES (59.23 Kb), Matrix Multiplication (62.59 Kb) and Fast Fourier Transform, 

FFT (62.28 Kb). Each benchmark executes out of the internal SRAM memories 

and uses only internal memory during their execution.   

 Advanced Encryption Standard: The AES algorithm was selected as a data 

encryption standard by the National Institute of Standards and technology 

(NIST) in 1997 [16]. In our case, we considered the AES 128-bit benchmark 

(800000 instructions, total execution time: 12 ms) a famous and strong 

encryption algorithm which has several advantages in data ciphering, security 

applications, simplicity of implementation and low memory requirements, but 

it suffers from some drawbacks like high computations, pattern in ciphered 

images, and hardware requirement [19]. 

 •A standard Matrix Multiplication (MulMatrix): this algorithm multiplies two 

integer matrices and stores the result at a specified memory location. It is 

widely used for solving scientific problems. The matrix multiplication 

requires a large data processing with only a few loops and therefore uses 

mostly the data-path from the microprocessor, being ideal to verify the 

coverage of the techniques in detecting errors affecting data. In this work 

30x30 input matrices were used in order to maximize the memory occupation 

to increase the probabilities of observing SEU consequences.  

 •Fast Fourier transform (FFT): FFT is one of the most widely used 

operations in digital signal processing algorithms. Fourier analysis has many 
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scientific applications in physics, signal processing, imaging, probability 

theory, statistics, cryptography, numerical analysis, acoustics, geometry and 

other areas [20].  

The programs are coded in C and have been compiled resorting to the GNU 

C/C++ GCC compiler, which is able to generate an executable software 

application by LEON3 [21]. 

 

5.2.  Results of benchmark experiment 

The emulation of SEU faults in data SRAM memory was done at each 

benchmark execution. The SRAM data of LEON3 loads the data in the register, 

this explains that the fault injection in the internal memory of LEON3 is faster 

than the injection in the register, but via this method, we can’t modify the 

Program Counter and Stuck Pointer register. The SEUs were injected only in 

SRAM area. It is well-known that SEUs do not permanently damage a circuit, 

but they can cause faulty behaviours. In the worst case, the processor will have 

to be reset or reconfigured to overcome the effects of a soft error. The design is 

synthesized by using Xilinx ISE; the implementation of LEON3 is made by a 

CYGWIN tool works. During a compilation of executable file of benchmark 

program, to analyse the behaviour of LEON3, in each clock one error is sent to 

the internal memory. Obviously, SEUs do not permanently infect a circuit; 

however faulty circuit behaviour can be provoked. Worst case scenario, the 

processor should be reset or reconfigured to defeat the effects of a soft error 

[22]. The consequence of the injected SEU in the internal memory of LEON3 

processor can be classified as follows: 

 •False Result: the algorithm provides a false result when the errors are injected 

in the data SRAM.  

 •Silent fault: the algorithm provides a correct result despite the fault.  

 •Timeout: the application does not terminate normally. The workload 

execution is not completed after a predefined amount of time and the 

simulation is halted externally, which explains a power down mode of LEON3 

processor or a DSU error in our case.  

 •Stopped mode: the application terminates abnormally with error indication. 

The algorithm does not provide any result despite the fault; in this case it 

needs a reset trap of LEON3, memory access violation or invalid instruction.  

 •No response:  when the application does not produce any result. 

Table 1 summarizes an analysis of the effects of SEU fault injection in SRAM 

occupied area of LEON3 processor.  

When we increase the number of SEUs faults injection in the internal memory 

of LEON3, the error percentage changes by decreasing in some type of errors, but a 

new behaviour of LEON3 is created so that the execution duration exceeds a limit. 

For a number of 62719 injected faults, we note that 18.735% of stopped mode 

is produced; the application is achieved abnormally with error indication. This 

percentage decreases with the augmentation of the number of errors. This analysis 

is done by injecting over 200000 errors into the internal memory of the 
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considered processor. The behaviour of LEON3 processor against the injected 

faults is reported and has shown that about 0.034% of faults are observed in 

simulation time. With this sort of error the results of the program are not the 

predicted ones. As expected too, 93.340 % of injected faults did not have any 

consequence on the AES program’s results (silent-fault). A number of 5.186% of 

injected faults produced a stopped-mode, 0.0008% of timeouts errors and about 

1.437% of no-response-mode where observed. The lower sensibility of the 

LEON3 processor can be explained for the reason that of no sufficient registers 

were used when variables needed to be duplicated. This can be interpreted by 

SEUs injected in variables used to initialize the AES’s counters. This processor 

behaviour is noticed especially when the stack pointer and program counter were 

not aimed by the injected SEUs. 

Table 1. Results of fault injection experiments  

in SRAM occupied area of LEON3 processor. 

#injection %error %silent-

fault 

%Timeout %stopped-

mode 

%no-

response 

17020 0.464 99.2 0.011 0.217 0.099 

62719 0.125 75.943 0.003 18.735 5.191 

128255 0.061 88.235 0.001 9.162 2.538 

161023 0.049 90.629 0.001 7.297 2.022 

226559 0.034 93.340 0.0008 5.186 1.437 

To make LEON3 processor more sensible for SEUs faults, complex 

benchmarks will be used to perform a fault injection campaign. Two benchmarks 

were chosen to test the sensitivity of our processor: MulMatrix and FFT.  

Figure 4 shows the distribution of the fault-injection consequences in the 

tested applications when targeting memory locations. After applying the proposed 

technique over the programs, a fault injection campaign on both was performed 

where 644422 faults were injected in MulMatrix and 85765 faults in FFT 

benchmarks. The analysis of the obtained results can be summarized as follows:  

 •As would be expected in LEON3 processor configuration, fewer number of 

fault simulations generate wrong outputs (0.0003%) and no response mode 

(0.0007%) when injected in MulMatrix. No erroneous output neither no-

response mode was observed.   

 •0.0099% of fault injections in MulMatrix benchmark (resp.0.259% in FFT) 

finish without any effects.  

 •99.988% of SEU fault injection produces stopped-mode errors when executing 

the MulMatrix program, this rate is about 4.047% for FFT algorithm.  

 •As shown 95.692% of injected SEUs produced an integer unit error (IU in 

error mode) when FFT code is targeted and the program is halted. However no 

kind of error was noticed for MulMatrix. This error can be caused by a 

synchronous trap, in this case the IU enters into an error mode and remains in 

that mode until it is reset by an external logic. As shown in Fig. 4, LEON3 

processor sensitivity strongly depends on the software used. The processor is 

more and more sensitive to SEUs when targeting complex benchmark. 
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(a) MulMatrix Benchmark. 

 

(b) FFT Benchmark. 

Fig. 4. Fault injection consequences when targeting memory locations. 

 

6.  Conclusions 

In this work, we have estimated the sensitivity of SRAM memory of soft processor 

LEON3 in the presence of SEU fault injection by emulation. 

This paper detailed the analysis of SEU propagation through the internal 

memory of LEON3 processor implemented in Virtex-5 FPGA and gives its 

behaviour. A new methodology for the SEU fault injection has been presented. 

Only one SEU was injected when executing a benchmark application under test and 

the SRAM occupied area was exhaustively explored.  

The obtained results of fault analysing will be used in the future work to propose 

the fault-tolerant LEON3 processor. To implement an SEU-tolerant processor on a 

non-hardened semiconductor process, a variety of low-cost error-detection and 

correction techniques, such as TMR registers, on-chip EDAC, BCH, parity, pipeline 

restart, and forced cache miss, might also improve reliability and reduce area costs.  

While we focused on soft errors in this paper, future work must address other 

architecture multicore LEON3 and change the component that can be injected, like 
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registers. Other type of fault injection can be used in the future work like a Single 

Event Transient and a Multi Bits Upsets to inject faults in the logic gate or in multi 

registers at the same time.  
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