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Abstract 

Engine cooling is vital in keeping the engine at most efficient temperature for 

the different vehicle speed and operating road conditions. Radiator is one of the 

key components in the heavy duty engine cooling system. Heavy duty radiator 

is subjected to various kinds of loading such as pressure, thermal, vibration, 

internal erosion, external corrosion, creep. Pressure cycle durability is one of 

the most important characteristic in the design of heavy duty radiator. Current 

design methodologies involve design of heavy duty radiator using the nominal 

finite element approach which does not take into account of the variations 

occurring in the geometry, material and boundary condition, leading to over 

conservative and uneconomical designs of radiator system. A new approach is 

presented in the paper to integrate traditional linear finite element method and 

probabilistic approach to design a heavy duty radiator by including the 

uncertainty in the computational model. As a first step, nominal run is 

performed with input design variables and desired responses are extracted. A 

probabilistic finite elementanalysis is performed to identify the robust designs 

and validated for reliability. Probabilistic finite element includes the uncertainty 

of the material thickness, dimensional and geometrical variation. Gaussian 

distribution is employed to define the random variation and uncertainty. Monte 

Carlo method is used to generate the random design points.Output response 

distributions of the random design points are post-processed using different 

statistical and probability technique to find the robust design. The above 

approach of systematic virtual modelling and analysis of the data helps to find 

efficient and reliable robust design. 

Keywords: Heavy duty radiator, Nominal finite element analysis, Probabilistic finite 

element analysis, Monte Carlo method, Robust design, Reliability. 
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Abbreviations 

AL3003 Aluminium Alloy 3003 Series 

CAD Computer Aided Design 

CDF Cumulative Distribution Function 

DOF Degree Of Freedom 

EPDM Ethylene Propylene Diene Monomer 

FEA Finite Element Analysis 

MCM Monte-Carlo Method 

NAFEMS National Agency for Finite Element Methods and Standards 

PDF Probabilistic Density Function 

PSI Pound Per Square Inch 

THK Thickness 

YM Young’s Modulus 

1.  Introduction 

In modern engine cooling system, radiator is the main heat exchanger, where the 

engine coolant rejects heat to the passing air and again passed to the water jacket to 

absorb some more heat from the engine. Design of the radiator is challenging due to 

higher operating pressure and limited packaging space. Beatenbough [1] found that 

pressure, thermal, road vibration, creep, internal erosion external corrosion are the 

failure modes during the life of a radiator. Out of which pressure cycle failure is 

found be one of the major contributor for the radiator field failures. Millard [2] 

defined the durability characteristics of the heavy duty radiator and found that the 

typical failure area is at the header-tube joint during pressure cycle loading. Eitel et 

al. [3] found a new concept of aluminium radiator and studied the pressure cycle 

durability characteristics. An outline of pressure cycle test requirement for the 

heavy duty commercial radiator is also proposed. 

Nominal approach is based on the nominal dimension of the model and 

deterministic in nature. Nominal design leads to increased raw material usage, 

higher process time, reduced business profits. Traditionally nominal finite element 

analysis is performed to evaluate the structural performance of the radiator, which 

does not take into account of the variations occurring in the geometry, 

manufacturing tolerance, material properties, environmental loads etc. Macneal and 

Harder [4] introduced a series of problems to test the finite element result accuracy. 

Capturing the uncertainty and variation in the design helps to reduce customer 

warranty claims and improve customer satisfaction. Probabilistic finite element 

approach helps to address the issues in the nominal analysis. Reh et al. [5] 

performed a probabilistic finite element analysis on a turbine blade by taking into 

account of variation of geometry, material and boundary condition. El-Sayed and 

Chassapis [6] enumerated a probabilistic finite element simulation approach to 

evaluate tooth root strength of the spur gears and explain the relationship between 

process variable uncertainties and performance. Berthaume et al. [7] showcased the 

application example of probabilistic finite element analysis on a human bone. Riha 

et al. [8] presented a procedure to perform probabilistic structural simulation using 

general purpose software.  

Ahmad et al. [9] deployed Monte Carlo simulation technique to generate the 

random samples of the input functions for the probabilistic analysis. Guoliang et al. 
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[10] studied the efficiency of the Monte Carlo method and proves it as a best 

method to solve practical and complex engineering problems. Dar et al. [11] 

illustrated that no tolerance can be machined for infinitesimal tolerance or 

component material property is exactly known, rather represented by means of 

distribution functions.  Also emphasize that the input design variables are not 

defined by single value but by a statistical distribution. Normal or Gaussian 

distribution is the most commonly used distribution function. Comer and 

Kjerengtroen [12] provided a basic introduction to common probability distribution, 

statistical terminology and MCM.  

Kazmer and Roser [13] outlined a detailed approach to robust product design 

methods. Vlahinos and Kelkar [14] presented a weight reduction in body-in-white 

structure using a probabilistic approach, which utilizes a parametric deterministic 

FEA model. Burnside and Wu [15] indicated about the importance of cumulative 

distribution function used in the probabilistic structural analysis. Wu et al. [16] 

revealed the importance and benefits of cumulative distribution function by 

solving three application problems. Andreas and Kelkar [17] explained a practical 

example to understand the results of robust analysis. Thacker et al. [18] presented 

few application examples using commercial software. Patelli et al. [19] discussed 

about the advantage and limitations of the general purpose software for efficient 

un-certainty management. Stefanou [20] provided a state of art review of past and 

recent developments in the field of uncertainty modeling and analysis. The 

objective of the paper is to perform a probabilistic finite element analysis on a 

heavy duty radiator under pressure cycle loading to find a robust design which 

meets higher operating pressure and reliability targets. 

 

2.  Materials and Methods 

2.1.  Nominal approach 

Problem definition is the first step of the nominal approach. In this study, 

internal pressure analysis of a heavy duty radiator is performed. CAD geometry 

of the radiator model is imported into a finite element modeling software. 

Hypermesh v.13is used for finite element modeling and optistruct v13 & 

hyperstudy v.13 [21] are used for the nominal run and probabilistic finite 

element analysis respectively. 

Heavy duty truck radiator consists of a tube, header, fin, gasket, tank and core 

side [3] (Fig. 1). A heavy duty radiator CAD model is discretized using solid and 

shell elements. The finite element model consists of 86,774 nodes and 49566 

elements. The finite elements are validated and verified by the NAFEMS 

benchmark [4]. To minimize the computational time, a quarter symmetry model 

of the radiator is developed for the nominal run. The finite element model 

includes the stiffness of tank, gasket, header, tube, fins and core side to simulate 

the exact physical behaviour of the radiator during the pressure cycling loading. 

Also the model takes into account of the corner tube joint which is critical part for 

the radiator pressure analysis [2]. Tank is modeled using second order tetrahedron 

elements for better accuracy. Gasket and fin are modelled using hex and penta 

elements. Tube, header and core side are modeled using shell elements. Finite 

element modelling errors can be minimised with right mesh size and pattern to 

avoid singularities and spurious stresses. 
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The core system including the tube, fins and core side are made from Al3003 [3]. 

The radiator plastic tank is an injection moulded from fiberglass-reinforced nylon 

pa66 and the gasket is made from epdm material [3]. Young’s modulus of 69000 MPa 

and Possion’s ratio of 0.33 is defined for the Al3003 and plastic tank materials. Fin 

geometry is modeled as block to reduce the model size and computational time. 

Equivalent orthotropic property is calculated and assigned for the fin blocks. 

 

Fig. 1. Schematic diagram of commercial vehicle radiator. 

 

2.2. Nominal approach boundary conditions 

Due to the symmetry in the geometry, symmetrical boundary condition is 

assumed in the model (Fig. 2). The model is symmetrical about yz and xz plane. 

The normal axes x and y are constrained in the yz and xz symmetrical planes. The 

constraints are shown by green triangles in the Fig. 2. Pressure load is applied to 

the internal wetted surface of the tank, header and tubes. Flat faces of the isolators 

are constrained in all DOF. Typical pressure of 30PSI [3] is applied to the internal 

pressure surface shown as red arrows in Fig. 3. The operating pressure for the 

heavy duty commercial vehicle radiator is 15PSI. In the pressure cycle durability 

test of the radiator, the pressure amplitude will be considered as 1.5 to 2 times the 

operating pressure. In this study, pressure load is considered as30PSI. 

  

Fig. 2. Boundary condition. Fig. 3. Internal pressure load (30PSI). 
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2.3. Integratedapproach to robust design 

The flowchart shown in Fig. 4 explains the integrated approach developed to 

combine nominal and probabilistic FEA to include the uncertainty in the design. 

The approachpredicts the reliability target for the nominal and probabilistic model 

and enables designers to identify robust, reliable and cost effective designs. 

Integrated approach helps to minimize the overdesign, excess material usage and 

variation in manufacturing process [13]. Also deploys various statistical and 

probabilistic tools to evaluate for a robust design.The finite element model size 

has been kept less than 100,000 nodes to study large sample size using the limited 

computational resource.  

 

Fig. 4. Integrated robust design approach. 

 

2.3.1. Design variable definition 

Eight design variables (Table 1), impacting the pressure cycle life of the radiator 

are studied. Each of the variables is defined by a lower bound and upper bound 

values. The initial bound values of the input design variables are the nominal 

dimension of the current nominal design. The design variables are considered as 

continuous random variables [9]. 

The variation in the thickness is considered for the tube, core side and 

header components. Variation in the tube length is defined by the tube length 

variable.  Tube length, tank profile design such as low profile (shorter height) 

and high profile (tall) are created using hyper morph functionality in the hyper 

mesh. These shape profiles are saved as shape variables. Remaining two 

variables are the variation in the material property (young’s modulus) for the 

tube and radiator tank material. 
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Table 1. Design variables summary. 

Design Variable 
Design 

Variable  

Lower 

Bound 

Initial 

Bound 

Upper 

Bound 

Tube Thickness dv_1 0.3 0.4 0.5 

Core Side Plate 

Thickness 
dv_2 1 1.6 2 

Header Thickness dv_3 1 2 3 

Tube Length dv_4 -1 0 1 

Low Profile Tank dv_5 -1 0 1 

High Profile Tank dv_6 -1 0 1 

Tank Young's 

Modulus 
dv_7 2340 2600 2860 

Tube Young's 

Modulus 
dv_8 62100 69000 75900 

2.3.2. Design variable distribution 

The uncertainty of the design variable is defined by a normal distribution curve 

which is the function of the random variable [8]. Table 2 explains the distribution 

and statistical parameters used to represent the uncertainty in the design variable 

[9]. In the statistical approach, input parameters are randomized according to 

prescribed probabilistic distributions (Gaussian, log- normal, etc.) and a sampling 

algorithm. Each set of values for the random input parameters produces a set of 

results (i.e., displacement, and stress fields) through deterministic FEA. Post- 

processing of the results yields statistics for output variables such as deflection at 

specific nodes, maximum von Mises stress. The accuracy of output statistics can 

be improved with increased sampling [7]. 

Table 2. Design variable - Random distribution properties. 

Design Variable 

Design 

Variable  
Distribution Alpha Beta 

Tube Thickness dv_1 Normal_Variance 0.4 0.0025 

Core Side Plate Thickness dv_2 Normal_Variance 1.6 0.0625 

Header Thickness dv_3 Normal_Variance 2 0.25 

Tube Length dv_4 Normal_Variance 0 0.25 

Low Profile Tank dv_5 Normal_Variance 0 0.25 

High Profile Tank dv_6 Normal_Variance 0 0.25 

Tank Young's Modulus dv_7 Normal_CoV 2600 0.1 

Tube Young's Modulus dv_8 Normal_CoV 69000 0.1 

2.3.3. Random design generation 

Monte Carlo method [10] is employed to generate the random design involving 

the eight design variable. For example, Fig. 5 shows that 250 random designs 

were generated for core side thickness design variable. Similarly random designs 

are generated for all the eight input design variables. MonteCarlomethod does not 

make any simplification or assumptions in the deterministic or probabilistic 

model [5]. With increasing number of samples, the MCM converges to the true 

and correct probabilistic result [5]. Max deformation and max von Mises stress 

are the two responses, studied for all the random design points. 



2444       P. Robin Roy et al. 

 
 
Journal of Engineering Science and Technology      September 2017, Vol. 12(9) 

 

 

Fig. 5. Core side thickness random runs. 

 

3.  Results and Discussion 

3.1.  Nominal FEA results 

Deformation plot of the radiator assembly shows maximum deformation at the core 

side due to the expansion of the core. Deformed and un-deformed state of the heavy 

duty radiator is shown in Fig. 6. The magnitude of the deformation is 0.12 mm. 

Max von Mises stress for the nominal run is 80 MPa (Fig. 7). Maximum stress 

location is at the header tube joint corner [2], which is typical high stress gradient 

for the pressure analysis. Maximum deformation and maximum von Mises stress 

are used as the output response function for the probabilistic FEA. 

  

Fig. 6. Deformation plot (mm). Fig. 7. Max stress plot (MPa). 

3.2.  Probabilistic FEA result discussion and analysis 

The distribution of random design data are summarized in Table 3. The mean and 

median comparison shows that the entire design variable except the tube young’s 

modulus is normally distributed and exhibits a symmetric distribution. Median of 
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the tube young’s modulus is greater than the mean of the tube young’s modulus. 

Tube young’s modulus design variable is having a negative skew and an 

asymmetric distribution. Standard deviation shows the dispersion of random data. 

Lower values of the standard deviation indicate the data points are close to the mean 

value of the distribution. Skewness values show the distribution shape and also 

indicate the number of mode (peak). Also suggest us whether the distribution is 

symmetric or skewed. As a rule of thumb, If the skewness value varies between -0.5 

and +0.5, it is approximated as normal symmetric distribution. If skewness is less 

than −1 or greater than +1, the distribution is highly skewed. If skewness is between 

−1 and −½ or between +½ and +1, the distribution is considered moderately 

skewed. Analysis results show approximately normal distribution for all the input 

design variables and output response variables. Kurtosis defines the peakedness of 

the distribution, whether peak is tall/sharp or board/flat. Kurtosis indicates a flat 

distribution for all variables except the header thickness. A header thickness 

variable has normal distribution.Out of 250 random sampling points, two design 

runs failed due to skewed element quality during the profile generation. 

Table 3. Statistical summary of the probabilistic simulation. 

Design  

Variables 
Mean Variance Skewness  Kurtosis 

Tube Thickness 0.40 0.00 0.0 -0.2 

Core Side Thickness 1.60 0.06 -0.1 -0.3 

Header Thickness 1.99 0.24 -0.1 0.0 

Header-Header  -0.01 0.25 -0.1 -0.1 

Low Profile Tank -0.02 0.24 -0.1 -0.2 

High Profile Tank 0.00 0.23 0.0 -0.2 

RAD Tank Modulus 2585 67373 -0.2 -0.1 

Tube Modulus 68711 44500 -0.1 -0.3 

Max Deformation 0.12 0.00 0.3 0.0 

Max Stress 81 38.31 0.3 -0.2 

3.2.1. Test for normality 

To further validate the statistical data, various test for normality is performed, 

probabilistic value is calculated using the prominentknown methods and results 

are tabulated in Table 4. The calculated results show all the design variables 

exhibit normal distribution and random data points are normal. 

Table 4. Test of normality results summary. 

Normality  

Test Name 

Tube 

Thickness 

Core Side 

Thickness 

Header 

Thickness 

Low Tank 

 Profile 

Kolmogorov Smirnov P>0.15 P>0.15 P>0.15 P>0.15 

Anderson Darling P = 1 P = 1 P = 1 P = 1 

Lilliefors-Van Soest P> 0.20 P> 0.20 P> 0.20 P> 0.20 

Cramer von Mises P = 1 P = 1 P = 1 P = 1 

Ryan Joiner P> 0.10 P> 0.10 P> 0.10 P> 0.10 

D’Agostino Pearson P = 0.759 P = 0.59 P = 0.786 P = 0.666 

Sharpiro Wilks P = 1 P = 0.991 P = 1 P = 0.997 
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If the test is not significant, the data are normal, p value greater than 0.05 

indicates normality. If the test is significant, p value will be less than 0.01 that 

indicates the data are non-normal. To further validate the normality claim, we can 

plot a normal Q-Q plot. Q-Q stands for quantile &quantile plot or normal 

probability plot. If data points fall on line, data is considered normal, if does not 

fall on the line, then it is called non-normal. The normal Q-Q plot for the input 

design variables and output responses are plotted in Figs. 8 and 9. The p-values 

from the above table and normal Q-Q plot confirm a normally distributed random 

data points are used for the analysis. 

 

Fig. 8. Normal quantile-quantile of the output response variables. 

 

Fig. 9. Normal quantile-quantile of the input design variables. 

3.2.2. Goodness of fit - response variables 

It is important to check the goodness of fit for the output response calculated from 

250 random design points.Goodness of fit is determined by the co-efficient of 

determination value (R^2). If the R
2
 is close to the value 1, the model fit well with 

the observations. The R^2is tabulated for the max deformation (Table 5) and max 

stress response (Table 6). The table summary shows that both responses have got 

a good data fit for the 248 sampling points and variations are small. 

Table 5. Deformation response error estimation. 

Criterion Value 

R-Square 0.99677 

Relative Average Absolute Error 0.03946 

Maximum Absolute Error 0.00233 

Root Mean Square Error 5.16E-04 
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Table 6. Stress response error estimation. 

Criterion Value 

R-Square 0.99761 

Relative Average Absolute Error 0.03466 

Maximum Absolute Error 1.24502 

Root Mean Square Error 3.02E-01 

Number of Samples 248 

3.2.3. PDF/CDF/Histogram plot - Input design variable 

The histogram plot escribes the random variable distribution. A histogram is a 

graphical representation of the frequency distribution and consists of a series of 

rectangles where width represents an interval of the values of the random variables 

and height represents number of occurrences in the interval [12]. The probabilistic 

density function (PDF) [15] and cumulative distribution function (CDF) [14] for the 

tube thickness input design variable is shown in Fig. 10. PDF is a relative 

probability of the random variable, whereas CDF gives the absolute probability of 

the random variable. Monte Carlo method generates 250 random design points for 

all the input design variables. For example, tube thickness design variable, 173 

design falls into 1 sigma level, 63 design falls in 2 sigma and 12 design falls in 

3sigma level and confirms that the input design variables are normal distributed. 

 

Fig. 10. Random distribution of the tube thickness input variable. 

3.2.4. PDF/CDF/Histogram Plot - Output response function 

PDF represents the probability of the variable having a given value. Area under the 

PDF is equal to one, representing all the possible occurrences [12].CDF is obtained 

by integrating the PDF from its lower limit to some value. CDF varies from 0 to 

1.CDF [16] helps to identify the probability of failure for a given random variable 

interval. PDF and CDF plot for max deformation (Fig. 11) and max stress (Fig. 12) 

are shown below. Nominal displacement of 0.122 mm has 47% of probability to 

failure. Nominal stress of 80 MPa has 51% chances of probability of failure. 

 

3.3. Reliability assessment 

The reliability plot can be used to find unreliability and identify robust designs [17]. 

The graph in Fig. 13 shows the reliability vs. max deformation. The red triangles are 

248 random designs generated using the MCM [20]. The black bold line is the 

deformation results of each random design. The results show that deformation equal 

to 0.11 mm has a reliability of 95% and deformation greater than 0.14 mm has 5% 
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reliability. The nominal deformation of 0.122 mm has a reliability of 54%. Similarly 

for the max stress equal to 70.6 MPa has 95% reliability and max stress greater than 

92.41 MPa has 5% reliability respectively (Fig. 14). Whereas nominal stress value 

of 80.4 MPa has 49% reliability. Therefore nominal design is having 50% reliability 

and 50% unreliability leading to improper designs. 

 

Fig. 11. Random distribution of the max deformation response. 

 

Fig. 12. Random distribution of the max stress response. 

 

Fig. 13. Reliability plot of max deformation (mm). 
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Fig. 14. Reliability plot of max stress (MPa). 

3.4.  Correlation study 

Correlation matrix explains the sensitivity [8] between the input design variables 

and output response function and identifies the most significant variable [19]. The 

Table 7 shows that tube thickness has a prefect negative relationship with the max 

stress. Tube thickness also has a strong negative relation with max deformation. 

Tube young’s modulus has a moderate negative correlation with max 

deformation. Remaining relationship between the design variable and responses 

function are in-significant. Colour coding key in Table 8 is provided to 

understand the correlation matrix. 

Table 7. Correlation matrix: Output response vs. input design. 

 

Max  

Deformation 

Max  

Stress  

Tube  

Thk 

Core side  

Thk 

Header  

Thk 

Header  

Header 

Max Deformation 1.0 0.6 -0.8 -0.1 0.0 0.2 

Max Stress  0.65 1.0 -1.0 0.0 -0.1 0.0 

Tube Thk -0.8 -1.0 1.0 0.0 0.0 0.0 

Core side Thk -0.1 0.0 0.0 1.0 0.0 0.0 

Header Thk 0.0 -0.1 0.0 0.0 1.0 0.0 

Header - Header  0.2 0.0 0.0 0.0 0.0 1.0 

+ Symbol Positive correlation 

 - Symbol Negative correlation 

  

Table 8. Correlation matrix - Coding key. 

Magnitude Strength of the Relationship 

1.0 prefect 

0.8 to 1.0 very strong 

0.6 to 0.8 strong 

0.4 to 0.6 moderate 

0.2 to 0.4 weak 

0.0 to 0.2 none to extremely weak 

 

Table 9. Reliability summary - Stress response. 

Response 
Bound Value 

(MPa) 
Reliability 

Probability of 

Failure 
Comment 

Max Stress  

( r_2 ) 
67 99% 1% 

Robust 

Design 

Max Stress  

( r_2 ) 
70 96% 4% 

Target 

Design 

Max Stress  

( r_2 ) 
80 51% 49% 

Nominal 

Design 
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Table 10. Reliability summary - Deformation response. 

Response 
Bound Value 

(mm) 
Reliability 

Probability of 

Failure 
Comment 

Max Deformation  

( r_1 ) 
0.099 99% 1% 

Robust 

Design 

Max Deformation  

( r_1 ) 
0.107 98% 2% 

Target 

Design 

Max Deformation  

( r_1 ) 
0.123 53% 47% 

Nominal 

Design 

 

Table 11. Robust design summary. 

Design # 

Tube  

Thk 

(mm) 

Core 

Side 

Thk 

(mm) 

Header 

Thk 

(mm) 

Max 

Deformation 

(mm) 

Max 

Stress 

(MPa) 

Reliability 

(%) 

243 0.437 1.8 0.5 0.112 67.00 99.6% 

250 0.453 1.5 2.1 0.099 67.24 99.2% 

248 0.445 1.3 2.4 0.110 68.09 98.8% 

249 0.448 1.7 1.6 0.107 68.35 98.4% 

247 0.443 2.0 1.9 0.108 68.93 98.0% 

238 0.433 1.6 2.1 0.125 68.94 97.6% 

239 0.433 2.0 2.6 0.120 69.08 97.2% 

245 0.440 1.7 2.2 0.109 69.25 96.8% 

241 0.435 1.6 2.2 0.115 69.61 96.4% 

240 0.434 1.2 1.8 0.118 70.10 96.0% 

244 0.438 1.4 1.8 0.114 70.18 95.6% 

246 0.441 1.6 1.4 0.109 70.24 95.2% 

221 0.424 1.7 2.4 0.124 71.14 94.8% 

 

4.  Conclusion. 

Nominal max stress is identified as 80 MPa at the header-tube joint, which has 

reliability of 49%. Nominal max deformation is at 0.122 mm at the core sides are 

at 50% reliability. The nominal reliability % indicates that the nominal finite 

element analysis does not factor in the uncertainty and variations. The integrated 

robust design approach enables the product designer to identify robust designs 

which takes into account of variation arising to geometry, manufacturing process, 

loading, material property, etc. Robust designs are less sensitive to variation and 

results in meeting reliability targets. Robust design gives max stress of 67 MPa 

with 99% reliability (Table 9) and max deformation of 0.09 mm at 99% reliability 

(Table 10). The correlation study shows that tube thickness has strong negative 

correlation with maximum stress and max deformation.Tube young’s modulus 

has a moderate negative correlation with the max deformation.  

The probabilistic finite element analysis has resulted in 13 robust designs with 

a reliability of greater than 95%. The robust designs with design variable 

dimension are tabulated in the Table 11. Future scope can include effect of road 
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vibration loading in the nominal design. Reliability of the robust can be further 

maximized by performing a reliability based design optimization. Combining 

nominal finite element analysis with probabilistic finite element analysis enables 

the designers and engineers to figure out a robust design due uncertainty in the 

model formulation and input parameters. 
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