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Abstract 

Pore-water pressure responses are vital in many aspects of slope management, 

design and monitoring.  Its measurement however, is difficult, expensive and 

time consuming. Studies on its predictions are lacking. Support vector machines 

with linear kernel was used here to predict the responses of pore-water pressure 

to rainfall. Pore-water pressure response data was collected from slope 

instrumentation program. Support vector machine meta-parameter calibration 

and model development was carried out using grid search and k-fold cross 

validation. The mean square error for the model on scaled test data is 0.0015 

and the coefficient of determination is 0.9321. Although pore-water pressure 

response to rainfall is a complex nonlinear process, the use of linear kernel 

support vector machine can be employed where high accuracy can be sacrificed 

for computational ease and time. 

Keywords: Pore-water pressure, Support vector machines; Linear kernel; Rainfall 

infiltration; Malaysia 

 

 

1.  Introduction 

Pore-water pressure (PWP), also known as suction in unsaturated soil studies 

(negative PWP in this sense) is the pressure exerted on soil particles by water 

within pores of the soil. In soil mechanics PWP is used to analyse the stress state 

of soils; PWP has been one of the main parameters used in slope design, 

management and monitoring. In slope studies, especially in the unsaturated zone, 

it is vital to measure PWP as its rise to extreme levels could trigger failure due to  
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Nomenclatures 
 

b Bias 

C Cost parameter 

i, j Vector Indexes 

K Kernel function 

n Number of dimensions 

R Risk Function 

r Rainfall, mm 

R
2
 Coefficient of determination 

t Time index 

U Pore-water pressure, kPa 

w Weight vector 

x An n dimensional real valued data input vector 

y Observed output data 

Z Higher dimension feature space 
 

Greek Symbols 

ξ, ξ
* Slack variables, for error outside the error insensitive zone/tube 

αi, αi
* Lagrange multipliers 

 Width of the insensitive error zone 

𝜙 Future mapping function 

ℝ Real Valued Vector of a given n dimensions 
 

Abbreviations 

ANN          Artificial Neural Networks 

LIBSVM Library for Support Vector Machines 

LkSVM Linear Kernel Support Vector machines 

MSE Mean Square Error 

PWP Pore-water Pressure, kPa 

SVM Support Vector Machines 

reduced cohesion between soil particles. Rise in PWP can easily cause decrease in 

soil shear strength and dissipation of suction. The mechanism of rainfall-

infiltration induced PWP rise and subsequent failure in slopes has been 

extensively researched and documented in several literatures [1-3]. PWP is 

readily used in monitoring and establishing thresholds, beyond which a slope may 

be classified as unsafe [4, 5]. Rainfall infiltration is labelled as the main agent of 

PWP rise. Its mechanism has been deeply investigated in several  researches [1, 6-

9]. It is thus important that PWP responses to rainfall should be monitored in 

order to study and manage slopes effectively, most especially unsaturated slopes. 

Typically, the measurement or monitoring of PWP response requires setting 

up an instrumentation program. This is conventionally done using tensiometers to 

monitor the PWP responses, and rain gauge to record rainfall. Some 

instrumentation programs require more detailed and extensive monitoring, thus 

producing more detailed information, often in real time [10].  

Collecting information on PWP responses is an expensive endeavour, both 

resources and time wise. An easier approach is to model or predict the PWP 

responses. Most PWP studies [1, 2, 11] use finite element approach with the aid 
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of soft-wares such as SEEP/w [12]. However, from the year 2012 several soft 

computing models of PWP prediction were developed using Artificial Neural 

Network (ANN). These can be found in the literatures of Mustafa et al. [13,14]. In 

water resources, ANN has been established as an excellent technique for solving 

many complex nonlinear problems [15-17].  

Even with this success, ANN algorithms are known for over-fitting and 

converging to local optima. Studies have shown that Support Vector Machines 

(SVM) performs as good as, or better than ANN [18,19]. SVM not only generally 

outperforms ANN, it is relatively less complex. It has a clear geometric 

interpretation of its basic working principles. Furthermore, unlike ANN, its solution 

is guaranteed to be global. Generally, the convergence of solutions to soft-

computing techniques requires complex and time consuming computations. A linear 

kernel SVM is known for its relative simplicity and fast convergence, because of 

these advantages of SVM (particularly linear kernel). This study aims to evaluate 

the use of linear kernel support vector machines (LkSVM) to predict the non-linear 

responses of PWP to rainfall. 

 

2.  Support Vector Machines Theory 

Support Vector Machines, developed by Vapnik, is a soft computing technique 

that was initially developed to handle classification problems [20] and later 

extended to regression problems [21]. It has been established as one of the most 

robust method in artificial intelligence. SVM originates from statistical learning 

theory. In its simplest form, it tries to find a separating hyper-plane, having the 

widest of margins, to use as a classifier to classify a given system. A brief 

explanation of SVM theory is given below. Most of what followed are based on 

the literature of Kecman [22].  

Given a training set   liyyD i
n

iii 2,1,,:,  xx  typically 

regression problems may be formulated as the following function;  

 f b x,w wx  (1) 

Instead of using traditional loss function to approximate error of the function. 

Vapnik introduces a loss function called, Vapnik ε-insensitivity loss function. This 

function is insensitive to errors within a certain zone, a ε tube where all predicted 

errors within the tube are tolerable and are considered as 0. This is defined by; 

 
 

 

                       0,   ,

, ,   

y f
y f

y f otherwise






  
  

 

x w
x,w

x w
 (2) 

Therefore, the SVM classifier is now formulated as that which minimizes the 

empirical risk and maximizes the width of the separating hyper-plane. 

Implementing the use of the ε-insensitive tube raises the question of finding a 

function that can approximate a given system with ε precision. In reality this is 

very difficult, and often not possible. Therefore, to tackle this problem, tolerable 

errors in the form of slack variables ξ were allowed outside the insensitive tube, 

and were incorporated into the new constraints as formulated in Eq. (4a) & (b). 

One then solves the SVM classifier, by minimizing the risk R in Eq. (3) using the 
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dual Lagrangian method, subject to the constraints in Eq. (4a) and (b), which 

yields Eq. (5).  

2 *

1 1
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m m

i i

R C  
 

 
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The dual problem in Eq. (5), now is maximized subject to the constraints in 

Eq. (6a), (6b) and (6c). The Lagrangian coefficients are then used to determine 

the optimum values of the weights w and the bias b.  

 




l

i

ii

1

* 0  (6a) 

iCi       0   (6b) 

iCi       0 *  (6c) 

2.1. Kernel trick 

Often, problems are not linearly separable. For nonlinear cases, the use of kernel 

is employed to map the input space into a higher dimensional feature space, 

where the data becomes linearly separable, as in Eq. (7). In the dual solution in 

Eq. (5), the input features are only used as inner products. If one can find a 

mapping function , such that Zn  and thus  xx   then one can solve 

the problem. However, this generally turns out to be an impossible task for a high 

number of features, as such kernels are used to map the input space into higher 

dimensional feature space, without explicitly performing the mapping. A number 

of kernels exist for use and the basic ones are linear, polynomial, sigmoidal and 

radial basis function kernel. 

     xxxx jijiK  ,  
(7) 

2.2. Linear kernel  

The linear kernel function is the simplest of all the SVM kernels, it is in fact, 

equivalent to no kernel at all, and it can be implemented as in Eq. (8). 

  jijiK xxxx ,  (8) 
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Linear kernel generally does not perform as good as other kernels when it 

comes to modelling nonlinearly separable data, but it does have its own merits. 

For example, for a very large number of features (much more than the number of 

data-points), mapping to higher dimension does not guarantee significantly better 

results. Thus, the use of linear kernel becomes the most attractive choice. Linear 

kernels are relatively easier to implement and faster to converge. Training time 

can increase multiple folds between SVM trained with linear kernel and that 

trained with other kernels. In systems where traditional SVM training methods 

failed, decomposition methods, e.g., [23] are often used. This entails using only a 

small portion of the training data for the model training. With a very large number 

of training data-points, even the decomposition method is prone to slow 

convergence. Again, the attractive alternative falls to the use of linear kernels. 

Linear kernels thus, provide convenience for testing and implementing new 

training algorithms [24]. More so due to its fast convergence, one loses little in 

first trying linear kernel to ascertain if the accuracy is acceptable. 

 

3.  Study Data 

Instrumentation program was set up at Universiti Teknologi PETRONAS (UTP), 

Malaysia. The instrumented slope is approximately 11 m high, 20 m long and 

about 33
o
 to the horizontal. Soil test shows the soil at 0.5 m depth to be sandy clay 

(United States department of agriculture–USDA classification), with a 

permeability of 2.78x10
-5

 cm/sec. The slope was instrumented with jet-fill 

tensiometers with PWP measuring capacity of up to -100 kPa. The tensiometers 

were fitted with transducers and data logger for automated collection of PWP 

responses at 30 minutes interval. A rain gauge for collecting and measuring 

rainfall was also installed at the slope toe. The data used herein was collected 

from a tensiometer installed at the slope crest, at a depth of 0.6 m. Data from such 

depth is ideal for this study, because so many fluctuations of PWP from external 

factors is witnessed at such shallow depth. Figure 1 shows the slope geometry and 

Table 1 shows the statistics of the data used herein. 

 

4.  Model Implementation 

It is very vital for the analysts to have an in-depth knowledge of the process or 

system being modelled. Thus, one can make a judicious selection of model 

parameters whether analytically or otherwise. The ANN models of Mustafa et al. 

[14] used Eq. (9) as model input. It was obtained after a detailed analysis of cross 

correlation of PWP and rainfall, and auto correlation of PWP. 

    2,1,51 ,  tttttt rUfU   (9) 

These same input features were used herein. The data was scaled between 0 

and 1. Implementation of SVM was conducted by finding the optimum meta-

parameters, i.e. cost parameter C, the insensitive parameter ε and kernel 

parameters. In LkSVM, there is no kernel parameter. Grid search and 5-fold cross 

validation was used in the parameter calibration. The model performance was 

evaluated using the coefficient of determination (R
2
) and mean squared error 

(MSE). The implementation of the LkSVM was carried out using LIBSVM [25]. 
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Fig. 1. Schematics of the instrumented slope. 

5.  Results and Discussion 

The LkSVM is applied to the PWP and rainfall data from Table 1. The parameter 

calibration conducted over five steps of grid search and the subsequent test result 

is shown in Table 2. The number of support vectors during training was 849 

which represent 57 percent of the training data. This is consistent with the ideal 

range of the number of support vectors that ensures no over-fitting [26].  

Table 1. Basic data statistics. 

 

Training data Testing data 

Data 1st-31st Dec '14 1st-22nd Nov '14 

Statistics PWP Rainfall PWP Rainfall 

N 1488 1488 1056 1056 

Max -5.80 32.50 -5.80 16.00 

Min -12.80 0.00 -12.40 0.00 

SM -9.72 0.23 -10.47 0.13 

Sdev 1.20 1.56 1.03 1.04 

Var 1.44 2.44 1.06 1.09 

Skew 0.44 12.83 0.94 13.03 
N=number of data sets; Min=minimum; Max=maximum; SM=sample mean; Sdev=sample 

standard deviation; Skew=skewness; Var=variance. 

Table 2. Parameter search and model test results with C=10 and 𝜺=0.01. 

  MSE R
2
 

Calibration 0.0025 0.9147 

Test 0.0015 0.9321 

There is a good agreement between the observed and model predicted PWP as 

evident in Fig. 2. The MSE (scaled data) of the model is only 0.0015 for the test set. 

The event-based comparison of the observed and predicted PWP response is shown 

in the scatter plot of Fig. 3 and it has an R
2
 of 0.9321. The test results tend to be 

slightly better than the calibration results, as shown in Table 2. The difference in the 
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two results is due to higher variability of the calibration dataset as reported in             

Table 1. Some points could not be predicted very well, they can be seen to have 

deviated relatively far away from the perfect fit line in Fig. 3. These points are also 

visible at some peak points in Fig. 2, erring away from the observed record.  

Notably, the response on the 5
th

 and 13
th

 November have the highest 

prediction gap of more than 2 kPa. The error in the event of the 13
th

 could be due 

to an outlier (as no analysis of such was carried out here). Miss-predictions in the 

two events could have been influenced by the absence of other PWP influencing 

factors in the model such as temperature. The event of 5
th

 is preceded by a 30 

minutes’ rainfall of 15.5 mm (as shown in Fig. 2). 

Therefore, in addition to the above explanation, the error could be due to 

insufficient training data that describes such trend. In the PWP-rainfall time series 

used as the training dataset, only four rainfall events exceeded 15.5 mm. In all these 

four cases, different PWP response from the system was recorded. Essentially there 

are too few high volume rainfall data-points in the training data. Thus, modelling of 

points following high rainfall events, without enough training data-points could result 

in slight under-prediction. And such is the case with the PWP of Nov. 5
th
.  

 
Fig. 2. Comparison of observed (Obs) PWP and                                                     

Model predicted (Pre) PWP, with 30 minutes rainfall. 

 
Fig. 3. Scatter plot of observed PWP and model predicted PWP. 
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Researchers have attempted to model the relationship between PWP and 

rainfall infiltration using linear predictors, and in many cases the results are not 

competitive [27]. The relationship between PWP and rainfall infiltration has been 

explained as highly nonlinear and complex in nature [28]. Thus, the few 

successful models of PWP simulated it as a nonlinear process. However, the 

result in this study using a linear kernel SVM, yielded very good results. 

In order to evaluate the effect of data skewness and fully assess the model 

performance. Training and testing samples were selected randomly for 100 

runs, thereby creating multiple scenarios of inputs and test data (100 datasets 

for each). The performance was evaluated based on the average MSE and R
2
. 

The range of the results is shown in Figs. 4(a) and 4(b). The small range of the 

MSE and R
2
 shows good Model stability. The Model showed consistency in 

predicting good result, indicating a low level of uncertainty. Model R
2
 values up 

to about 0.945 were obtained.  

 

(a)       (b) 

Fig. 4. Boxplot indicating the range of (a) MSE                                                

and (b) R
2
 obtained over 100 different simulations. 

ANN models in Mustafa et al. [14] were trained with data-points, over three 

folds, the number of data-points used here. They yielded an R
2
 value ranging from 

0.97 to 0.99. Although the same accuracy may not have been achieved here; 

however, an R
2
 of 0.9321, with much fewer data sets and ease of implementation 

is definitely a good proposition. LkSVM has proved to be effective in mapping 

the complex non-linear nature of PWP response to rainfall. Model miss-

predictions are likely to occur even in a model trained with different higher order 

kernel function. 

 

6.  Conclusions 

Using present rainfall, few antecedent records of rainfall and few antecedent PWP 

records, the SVM with linear kernel has successfully mimicked the complex non-

linear behaviour of PWP response to rainfall events. Overall, there is a good fit 

between the model predicted PWP and observed PWP. This further demonstrates 

SVM’s robustness, as many linear models have failed in this context. Due to its 
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ease of implementation, the LkSVM model can serve as a rapid approach tool to 

obtaining one lead time PWP records.  

However, the model may sometimes, slightly under-predict peak records that 

are preceded by high volume of rainfall. Most especially if there are few training 

data-points describing such points. This ultimately shows that the model may be 

susceptible to slight miss-predictions if subjected to interpolations. The model 

limitations however, could be improved by using additional training data-points 

and also the addition of other PWP influencing factors (e.g., evaporation) in the 

model input.  

Using an SVM with higher order kernel function could generated equal or 

better result, but when high accuracy can be sacrificed for computational ease and 

time, then LkSVM provides a very attractive alternative to modelling PWP 

response to rainfall.  
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