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Abstract 

Dynamic programming is one of the Berkley 13 dwarfs widely used for 

solving various combinatorial and optimization problems, including matrix 

chain multiplication, longest common subsequence, binary (0/1) knapsack 

and so on. Due to nonuniformity in the inherent dependence in dynamic 

programming algorithms, it becomes necessary to schedule the subproblems 

of dynamic programming effectively to processing cores for optimal 

utilization of multicore technology. The computational matrix of dynamic 

programming is divided into three parts; growing region, stable region and 

shrinking region depending on whether the number of subproblems increases, 

remain stable or decreases uniformly phase by phase respectively. We realize 

the parallel implementations of matrix chain multiplication, longest common 

subsequence and 0/1 knapsack on Intel Xeon X5650 and E5-2695 using 

OpenMP with different scheduling policies and adequate chunk sizes. It is 

concluded that, for the growing or the shrinking region of dynamic 

programming parallelization adopted in this article, guided schedule is better 

as compared to other scheduling scheme. Static or dynamic schedule is better 

for the stable region of dynamic programming. Dynamic programming 

approach, where all three regions are present, more speedup is achieved by 

applying the mixed scheduling approach rather than applying only single 

scheduling technique for the entire computations. In LCS, approximately 20% 

more speedup is achieved using a mixed scheduling technique over the 

conventional single scheduling approach on Intel Xeon E5-2695. 

Keywords: Dynamic programming, Multicore, OpenMP. 

 

 

1.  Introduction 

Dynamic programming is widely used for discrete and combinatorial optimization 

problems. Dynamic programming is based on storing all intermediate results in a 
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tabular form, so as to utilize it for further computations. Due to its amenable 

computational approach, this technique has been largely adopted for solving 

various optimization problems, including matrix chain multiplication, longest 

common subsequence, binary knapsack, travelling salesman problem and so on. 

While solving any optimization problem using dynamic programming technique, 

we get the characteristic equation along with some terminating conditions. Based 

on the characteristic of this recursive equation, classification of dynamic 

programming is summarized. If the characteristic equation contains only one 

recursive term on the right hand side, then dynamic programming is called 

monadic otherwise it is called polyadic. Formulation of the solution of any 

optimization problem using dynamic programming can be divided into different 

phases. The computations belong to a particular phase depend on the previous 

phases. If it depends only on the computations of immediate previous phase, then 

this type of dynamic programming is called serial otherwise it is called non-serial. 

Based on this categorization dynamic programming is divided into 1) Serial 

monadic 2) Serial polyadic 3) Non-serial monadic 4) Non-serial polyadic. 

The main contributions of this research work are listed as follows; 

 Parallel implementations and comparative study of three categories of 

dynamic programming on multicore using OpenMP for different scheduling 

techniques with appropriate chunk sizes are presented. 

 The computational matrix of regular dynamic programming is divided into 

three parts; growing region, stable region and shrinking region and finally 

depending on the region we select the scheduling policy. 

 It is shown that the mixed scheduling approach is better as compared to single 

scheduling approach for that kind of dynamic programming where more than 

one region is present and at least one of them should be stable region. 

The remaining paper is organized as follows. Related work and literature 

about the parallelization of dynamic programming algorithms on multicore and 

manycore are described in Section 2. Required background and related definitions 

about dynamic programming algorithms and OpenMP is discussed in section 3. In 

section 4, parallel implementations and dependence analysis of several categories 

of dynamic programming is discussed. Division of computational matrix into 

different regions, different scheduling policies for different regions is proposed. A 

new scheduling policy, i.e., mixed scheduling approach is also proposed in this 

section. Results of parallelization with different scheduling techniques for three 

categories of dynamic programming algorithms are presented in section 5. 

Conclusions and future work are discussed in section 6. 

 

2.  Related Work  

Dynamic programming is one of the Berkley 13 dwarfs and as there is inherent 

parallelism in every dynamic programming approach, parallelization and load 

Abbreviations 

GPU Graphics Processing Unit 

LCS Longest Common Subsequence 

MCM Matrix Chain Multiplication  
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balancing of dynamic programming algorithms are widely studied in literature. 

In [1], the authors present the parallelization of serial monadic dynamic 

programming algorithms for clusters and network of workstations using 

message passing interface. Latency tolerant model and percolation techniques 

for programming on multi-core architectures for parallelizing the most complex 

category of dynamic programming, i.e., non-serial polyadic dynamic 

programming is presented in [2]. In [3], the authors study the asynchronous 

analysis of dynamic programming algorithms and their effects of various delays 

due to the communication and cache misses.  

The computational demand of non-serial polyadic dynamic programming has 

migrated from the conventional multicore to throughput efficient manycore, i.e., 

on GPUs. In [4-6] authors parallelized the MCM using dynamic programming on 

the GPUs and studied the behaviour of various optimization techniques on the 

GPUs such as tiling, memory coalescing and matrix realignment. Inherent load 

imbalance in the non-serial polyadic dynamic programming using Compute 

Unified Device Architecture and its efficient mapping to processing elements is 

presented in [7]. The two stage adaptive thread model for efficient mapping of 

subproblems belonging to a particular phase to the processing cores is illustrated 

by employing a different number of threads for different phases while solving 

parallel MCM. 

OpenMP uses different work sharing constructs along with different 

scheduling policies [8, 9]. OpenMP provides efficient synchronization 

primitives for achieving synchronization among consecutive phases in the 

parallel implementation of any dynamic programming algorithm. An effort 

has been presented for efficient mapping of irregular application over 

multicore using OpenMP in [10]. The authors focused on the parallelization 

of irregular applications by enforcing the threads distribution in the close 

proximity of the parallel region. A heuristics for distributing the works of 

homogeneous parallel dynamic programming on heterogeneous systems is 

proposed in [11]. A very good classification of dynamic programming 

algorithms on the basis of table size and dependence of one entry on the other 

entries is presented in [12]. This gives us a clear understanding of the 

parallelization of dynamic programming algorithms in terms of phases by 

considering the total number of entries required for the computation of one 

phase. Multithreaded implementations of various applications using OpenMP 

and related issues such as load balancing, threads assignments are presented 

in [13]. Authors mainly focused on nested parallelism of various applications 

using OpenMP and show that load balancing is the key for achieving 

scalability by demonstrating parallelization of wavelet compression 

application. A bridging model for achieving portability of parallel 

applications implemented for multicore system has been presented in [14]. In 

addition, this model is capable of achieving load balanced parallelization by 

taking care of availability of number of processors, cache size, 

synchronization and communication cost. Applications having an inherent 

load imbalance are currently being targeted for parallelization on multicore 

and manycore in the recent literature [7, 14]. Parallel dynamic programming 

on clusters and GPUs and its usage in bioinformatics algorithms are being 

widely discussed in recent literature [15, 16]. 
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3. Background and Definitions 

3.1.  Matrix chain multiplication 

MCM is a classic example of non-serial polyadic dynamic programming. This 

problem is also known and widely discussed in literature as an optimal matrix 

parenthesization problem. Given a sequence of matrices which are compatible to 

multiplication and as known, matrix multiplication is associative in nature; 

sequence of multiplications of matrices greatly affects the final number of scalar 

multiplications for the actual multiplication. 

More specifically, MCM can be defined as: given a chain of n matrices, where 

the dimensions of the matrix im is ( ii pp *1 ), 1 i n  . p[0..n] is the 

dimension vector of size (n+1) that specifies the dimensions of all n matrices. The 

algorithm finds out the optimal sequence of matrix multiplications with the help 

of a dynamic programming technique so that the total number of scalar 

multiplications for the actual multiplication would comes out to be minimum. m[i, 

j] indicates optimal number of multiplications required for actual multiplication of 

the sequence from matrix im  to matrix jm . In phase t, the difference between i 

and j is t, i.e., jti  . The final entry that is to be computed is m[1, n]. The 

recurrence equation of MCM can be expressed as follows: 

 1

0 ( )
[ , ]

min [ , ] [ 1, ] ( )i k j i k j

if i j
m i j

m i k m k j p p p if i j  

  
  

     

 
(1) 

There are (n-1) phases in the computation of MCM after initializing              

m[i, i] = 0, nii  1: . As proceeded from the computation of phase i to phase 

(i+1), number of subproblems is decreased by 1 and an amount of computations 

for one subproblems is increased. The time complexity for calculation of one            

m[i, j] is )( ij  . 

 

3.2.  Longest common subsequence 

LCS is an example of non-serial monadic dynamic programming. Formally,                

the LCS is defined as: given a sequence A = {a1, a2,....., am}, another sequence  

C= {c1, c2,...., ck} is said to be a subsequence of A if there exists a strictly 

increasing sequence {t1, t2,...., tk} of indices of A such that for all j = 1, 2, ...., k, 

and jt ca
j
 . For example, consider the sequence A = {b, c, b, a, d, a, b},              

C = {c, a, a, b} is a subsequence of A with the strictly increasing sequence of 

indices of A is {2, 4, 6, 7}. Two sequences A and B are given, another sequence C 

is said to be a common subsequence if C is a subsequence of A as well as of B. 

The number of characters in the sequence is called the length of the sequence. 

Common subsequence C with length k is said to be LCS of the sequence A and 

sequence B if there is no other common subsequence exists for sequence A and 

sequence B with length k’ such that k’ > k. 

This problem can also be solved with the help of dynamic programming with 

O(n
2
) time complexity when both the considered sequences are of length n. Given 
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two sequences A = {a1, a2,....., am} and B = {b1, b2,....., bn}, c[i, j] indicates the 

length of the LCS for the two sequences {a1, a2,....., ai} and {b1, b2,....., bj}. Finally, 

c[m, n] is computed. All c[i, j] are stored in the matrix c[0..m, 0..n]. Entries of the c 

matrix are computed row-wise, i.e., entries of the first row are computed from left to 

right, then the second row, and so on. The recurrence relation for solving the LCS 

problem using dynamic programming is defined as follows: 

0 ( 0) ( 0)

[ , ] [ 1, 1] 1 ( , 0) ( )

max( [ 1, ], [ , 1]) ( , 0) ( )

i j

i j

if i or j

c i j c i j if i j and a b

c i j c i j if i j and a b

  
 

      
     

 
(2) 

3.3.  Binary knapsack 

Binary knapsack or 0/1 knapsack problem is also a classic example that can be 

solved using dynamic programming. Given n objects, each associated with unique 

weight and profit, one knapsack with capacity C is with us, we have to select 

some of the objects within the capacity limit of knapsack so that the profit should 

be maximized. More formally, 
jp and 

jw are the profit and weight respectively 

of j
th 

object, 1<=j<=n. 
jx is set to 0 or 1, 0 if j

th 
object is not included in the 

knapsack, 1 if j
th 

object is included in the knapsack. For a non trivial solution of 

0/1 knapsack



n

j
j Cw

1

. The algorithm selects objects from the list of given objects 

so that 


n

j
jj xp

1

 should be maximum and



n

j
jj Cxw

1

. Let t[i, j] be the maximum 

profit while considering first i objects with the considered knapsack capacity j. 

t[0..i, 0..j] is computed in row major order and each row is computed from left to 

right. The recurrence relation for solving the binary knapsack problem using 

dynamic programming is defined as follows: 

0 ( 0) ( 0)

[ , ] [ 1, ] ( )

max( [ 1][ ], [ 1, ]) ( 0) ( )

i

i i i

if i or j

t i j t i j if j w

p t i j w t i j if i and j w

  
 

   
       

 
(3) 

It can be easily understood from the above recurrence that either if no object is 

taken into consideration or if considered knapsack capacity is zero, no profit can 

be gained. The current object can be added in the knapsack only if considered 

knapsack capacity is not less than the weight of the current object.  

 

3.4. OpenMP 

OpenMP is one of the favorite Application Programming Interface used for 

parallelization on the shared memory architecture, adopted by a majority of high 

performance community due to its higher programming efficiency. OpenMP is 

shared memory programming fork join model that provides various directives and 

library functions for creating and managing a team of threads. Various 

synchronization and work sharing constructs are provided by OpenMP, using 

which we automatically or manually divide the task among threads. 
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OpenMP provides four different types of scheduling for assigning the loop 

iterations to different threads: static, dynamic, guided and runtime. Schedule 

clause is provided for specifying schedule and numbers of iterations, i.e., chunk 

size. In static scheduling, chunks are assigned to processing cores in round robin 

fashion. It is the simplest kind of scheduling with minimum overhead. In dynamic 

scheduling, thread requests for new chunk as it finishes the assigned chunk. In the 

guided scheduling thread request for newer chunks, but chunk size is calculated as 

the number of unassigned iterations divided by the total number of threads in the 

team. Guided scheduling seems to be more efficient scheduling, but involves a 

little bit of overheads in the calculation of chunk size. In runtime scheduling, 

schedule and optional chunk size are set with the help of environment variables. 

The details of scheduling techniques are discussed in [8, 9].  

 

4.  Parallel Implementation 

Computations of any dynamic programming formulation can be divided into 

different phases. Sub-problems belong to a particular phase can be computed in 

parallel. The DP formulation is broadly classified in two fashions. If the entire 

computations of a dynamic programming formulation can be accommodated 

easily and uniformly in a matrix, then we call this as a regular dynamic 

programming otherwise it is treated as irregular dynamic programming. Examples 

of regular dynamic programming are LCS, 0/1 knapsack and MCM. Examples of 

irregular dynamic programming are the single source shortest path, multistage 

graph and travelling salesman problem. For example, solving single source 

shortest path problem using dynamic programming, subproblems of a particular 

phase depends on the number of incoming edges towards that particular                  

node [17]. Generally graph problems fall under the category of irregular dynamic 

programming. Here, in the current study, the focus is on the study of 

parallelization efforts of regular dynamic programming on multicore. 

The entire computation of regular dynamic programming is divided into three 

parts based on the number of subproblems in each phase: 1) growing region: number 

of subproblems increases uniformly phase by phase, 2) stable region: number of 

subproblems are fixed in each phase, and 3) shrinking region: number of subproblems 

decreases uniformly phase by phase. In MCM computations, only shrinking region is 

present. In LCS, phases are considered in an anti-diagonal fashion. In LCS, first 

growing region, then stable region and finally shrinking region, all three regions are 

present. In 0/1 knapsack, the parallel computations proceed row wise. In 0/1 

knapsack, neither growing region nor shrinking region is present, only the stable 

region is present. Fig. 1 represents the region wise partition and arrows indicate 

direction of parallelization strategies for the LCS, MCM and 0/1 knapsack. 

 

(a) LCS          (b) MCM   (c) 0/1 knapsack 

Fig. 1. Dependence and parallelization strategies                                                         

for three categories of dynamic programming algorithms. 
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For each phase, the numbers of subproblems are assigned to the threads which 

are handled by the chunk size parameter in OpenMP and finally threads execute 

those assigned subproblems over physical cores which are handled by a 

scheduling policy in OpenMP. While executing a subproblem over physical core 

by a thread, data required for calculation play an important role in the efficiency 

of dynamic programming algorithms. Finally, it leads to an optimization sort of 

problem. Table 1 represents the different characteristics of three dynamic 

programming algorithms in the context of parallel processing of subproblems of a 

specific phase and amount of computations belonging to that phase.  The factors 

affecting the efficiency of regular dynamic programming algorithms are 

summarised as follows: 

1. Number of subproblems in each phase 

2. The amount of the computations of a subproblem belonging to a 

particular phase 

3. Feasibility of dynamic adjustment of number of threads for different 

phases and its consequences in terms of parallelization overheads 

4. Scheduling policy 

5. Consequences of disjointness of data required for calculations of 

different subproblems belonging to a particular phase                                

Table 1. Characteristics of three categories of dynamic programming. 

 Number of 

sub 

problems 

in 

subsequent 

phases 

Amount of 

computations 

for a 

subproblem  as 

the 

computation 

proceeds to the  

next phase 

Serial/ 

Non-

serial 

Monadic/

Polyadic 

Nature of 

data 

requirements 

of 

subproblems 

of a 

particular 

phase 

MCM Decreasing  Monotonically 

increasing 

Non-

serial 

Polyadic Completely 

disjoint 

LCS Increasing, 

fixed 

followed by 

decreasing  

fixed Non-

serial 

Monadic Partially 

overlapping 

for 

consecutive 

subproblems 

0/1 

Knapsack 

Fixed 

   

Fixed  Serial Monadic May be 

disjoint 

 

5.  Results 

We have evaluated the performance of MCM (shrinking region), LCS (growing, 

stable region followed by shrinking region) and 0/1 knapsack (stable region) on 

Intel Xeon X5650 Quad Core processor with CPU clock 2.67 GHz, 12 CPU 

cores, 4 GB of RAM and Intel Xeon E5-2695 with CPU clock 2.3GHz, 28 CPU 

cores, 32 GB of memory. The operating system used for performance evaluation 

is openSUSE 13.1 64-bit Linux with GNU GCC compiler 4.8.3 with OpenMP 
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3.1. Speedup is computed for all three categories of dynamic programming 

algorithms as the ratio of time taken by sequential algorithm to time taken by 

parallel algorithm. As all the speedups are greater than one, OpenMP performs 

better as compared to sequential algorithms. 

Fig. 2 and 3 represent graphical representations of the effect of parallelization 

efforts with different number of matrices for various scheduling techniques for 

MCM. Different scheduling techniques are applied for different numbers of 

matrices. Since the parallel computational matrix is triangular, the number of 

subproblems decreases by one in the subsequent phase; it is observed that guided 

scheduling performs much better as compared to other scheduling schemes for a 

large number of matrices. 

 

Fig. 2. Comparison of speedup with different numbers of matrices                      

for different scheduling techniques for MCM on Intel Xeon X5650. 

 

Fig. 3. Comparison of speedup with different numbers of matrices                         

for different scheduling techniques for MCM on Intel Xeon E5-2695. 

Fig. 4 and Fig. 5 show pictorial representations of speedup with different 

lengths of strings for different scheduling policies for LCS algorithm. The y-axis 

represents speedup and the x-axis represents the length of the first string and the 

length of the second string is twice the length of the first string. As Fig. 1 

indicates, the computational matrix have growing and shrinking region of the 
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same size. Central computation, i.e., stable region of the LCS having the same 

number of phases as the length of the first string. In parallel computation of LCS, 

guided scheduling is applied for growing and shrinking regions and static 

scheduling is applied for the central computation, i.e., stable region. This method 

of computation of applying different scheduling schemes named as a mixed 

scheduling. It is observed that the mixed scheduling performs better as compared 

to other scheduling approaches in the parallel computation of LCS. A speedup of 

18x is achieved by applying mixed scheduling approach in comparison with other 

scheduling approaches on Intel Xeon E5-2695. 

 

Fig. 4. Comparison of speedup with different lengths of strings                         

for different scheduling techniques for LCS on Intel Xeon X5650. 

 

Fig. 5. Comparison of speedup with different lengths of strings                                           

for different scheduling techniques for LCS on Intel Xeon E5-2695. 

Fig. 6 and Fig. 7 represent the relation between speedup and the number of 

items for 0/1 knapsack problem for different scheduling schemes. In parallel 

computation of 0/1 knapsack, phases are considered row-wise. The number of 

subproblems is fixed in each phase. Therefore, the entire computations of parallel 

0/1 knapsack comes only under the stable region.  After experimentation and 

analysis, it is found that static scheduling performs better as compared to other 

scheduling for stable region. 



1262       T. Diwan and S. R. Sathe 

 
 
Journal of Engineering Science and Technology                 May 2017, Vol. 12(5) 

 

 

Fig. 6. Comparison of speedup with different numbers of items                        

for different scheduling techniques for 0/1 knapsack on Intel Xeon X5650. 

 

Fig. 7. Comparison of speedup with different numbers of items                            

for different scheduling techniques for 0/1 knapsack on Intel Xeon E5-2695. 

It is also notice that, in MCM parallelization, more speedup is achieved on 

Intel Xeon E5-2695 as compared to Intel Xeon X5650 for the same number of 

threads, i.e., 12 threads for large number of matrices because the calculation of 

subproblems belonging to a particular phase in MCM requires all the previously 

computed data and data is completely disjoint for the computations of two 

subproblems belonging to a particular phase. On Intel Xeon E5-2695, we have 

sufficient memory to accommodate all the previously computed data for the 

computation of a particular phase, which is a limitation on the Intel Xeon X5650.  

It is also noted that deadlock and race will not arise in the parallelization of 

these three categories of dynamic programming algorithms such as MCM, LCS 

and 0/1 knapsack because parallelization phase by phase is applied. Entries of a 

particular phase are computed in parallel. The subproblems of a particular phase 

cannot be computed unless all the subproblems of the immediate previous phase 

are computed. Neither more than one thread access the same memory location for 

writing nor two threads wait for each other indefinitely in the proposed approach 

of parallel computations.  
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6.  Conclusion and Future Work 

It can be concluded from Fig. 2 and 3 that for shrinking region, guided scheduling 

compensates the calculation overhead of chunk sizes and dynamic allocation of 

chunks to processing cores. Though static scheduling takes decisions on the 

allocation of subproblems to the processing cores at compile time itself, it fails to 

remain consistent in the performance due to the inherent non-uniformity in the 

shrinking region present in MCM. In MCM only shrinking region is present, due 

to that it performs better using guided scheduling. Guided scheduling is better for 

that category of dynamic programming where only growing or shrinking region is 

present. In other words, it can be stated that guided scheduling is not suitable for 

stable region. 

In 0/1 knapsack only stable region is present. It is observed from Fig. 6 and 7, 

due to the uniform load distribution in each phase of 0/1 knapsack, static scheduling 

performs well as compared to other scheduling schemes because of compile time 

decision of allocation of chunks of iterations to processing cores in round robin 

fashion. Static scheduling is better for the stable region of any dynamic 

programming algorithms. Dynamic scheduling should also be selected for a stable 

region of dynamic programming when processing cores are not uniformly loaded. 

Total computational time for the calculation of score matrix of the LCS 

algorithm can be divided into three parts; the time taken for the first part, i.e., 

growing region, time taken for the second part, i.e., stable region and time taken 

for third part, i.e., shrinking region. First and third parts are amenable for guided 

scheduling, whereas static/dynamic scheduling is suitable for second part. In 

mixed approach, we apply guided in the first part, static for the second part and 

once again guided for the third part. With reference to Fig. 4 and 5, the reason 

why guided is performing better as compared to static scheduling is that, 2/3
rd

 

portion of computational matrix is suitable for guided scheduling. 

The generalized conclusion can be drawn as follows: Parallel dynamic 

programming which satisfies two conditions; 1) Number of subproblems in 

different phases are not same and 2) More than one region should be there in a 

computational matrix with atleast one region be the stable region, mixed 

scheduling approach with appropriate chunk size performs better as compared to 

single conventional scheduling approach. 

These comparisons of parallel dynamic programming on GPUs can be 

extended. Various CPU and GPU optimizations can also be studied in this series 

of work in the context of regular dynamic programming. 
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