
Journal of Engineering Science and Technology
Vol. 12, No. 5 (2017) 1253 - 1264
© School of Engineering, Taylor’s University

1253

EFFICIENT SCHEDULING OF DYNAMIC PROGRAMMING
ALGORITHMS ON MULTICORE ARCHITECTURES

TAUSIF DIWAN*, S. R. SATHE

Department of Computer Science and Engineering,

Ramdeobaba College of Engineering and Management, Nagpur, Maharashtra, India

*Corresponding Author: tausifdiwan.tausif@gmail.com

Abstract

Dynamic programming is one of the Berkley 13 dwarfs widely used for

solving various combinatorial and optimization problems, including matrix

chain multiplication, longest common subsequence, binary (0/1) knapsack

and so on. Due to nonuniformity in the inherent dependence in dynamic

programming algorithms, it becomes necessary to schedule the subproblems

of dynamic programming effectively to processing cores for optimal

utilization of multicore technology. The computational matrix of dynamic

programming is divided into three parts; growing region, stable region and

shrinking region depending on whether the number of subproblems increases,

remain stable or decreases uniformly phase by phase respectively. We realize

the parallel implementations of matrix chain multiplication, longest common

subsequence and 0/1 knapsack on Intel Xeon X5650 and E5-2695 using

OpenMP with different scheduling policies and adequate chunk sizes. It is

concluded that, for the growing or the shrinking region of dynamic

programming parallelization adopted in this article, guided schedule is better

as compared to other scheduling scheme. Static or dynamic schedule is better

for the stable region of dynamic programming. Dynamic programming

approach, where all three regions are present, more speedup is achieved by

applying the mixed scheduling approach rather than applying only single

scheduling technique for the entire computations. In LCS, approximately 20%

more speedup is achieved using a mixed scheduling technique over the

conventional single scheduling approach on Intel Xeon E5-2695.

Keywords: Dynamic programming, Multicore, OpenMP.

1. Introduction

Dynamic programming is widely used for discrete and combinatorial optimization

problems. Dynamic programming is based on storing all intermediate results in a

1254 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

tabular form, so as to utilize it for further computations. Due to its amenable

computational approach, this technique has been largely adopted for solving

various optimization problems, including matrix chain multiplication, longest

common subsequence, binary knapsack, travelling salesman problem and so on.

While solving any optimization problem using dynamic programming technique,

we get the characteristic equation along with some terminating conditions. Based

on the characteristic of this recursive equation, classification of dynamic

programming is summarized. If the characteristic equation contains only one

recursive term on the right hand side, then dynamic programming is called

monadic otherwise it is called polyadic. Formulation of the solution of any

optimization problem using dynamic programming can be divided into different

phases. The computations belong to a particular phase depend on the previous

phases. If it depends only on the computations of immediate previous phase, then

this type of dynamic programming is called serial otherwise it is called non-serial.

Based on this categorization dynamic programming is divided into 1) Serial

monadic 2) Serial polyadic 3) Non-serial monadic 4) Non-serial polyadic.

The main contributions of this research work are listed as follows;

 Parallel implementations and comparative study of three categories of

dynamic programming on multicore using OpenMP for different scheduling

techniques with appropriate chunk sizes are presented.

 The computational matrix of regular dynamic programming is divided into

three parts; growing region, stable region and shrinking region and finally

depending on the region we select the scheduling policy.

 It is shown that the mixed scheduling approach is better as compared to single

scheduling approach for that kind of dynamic programming where more than

one region is present and at least one of them should be stable region.

The remaining paper is organized as follows. Related work and literature

about the parallelization of dynamic programming algorithms on multicore and

manycore are described in Section 2. Required background and related definitions

about dynamic programming algorithms and OpenMP is discussed in section 3. In

section 4, parallel implementations and dependence analysis of several categories

of dynamic programming is discussed. Division of computational matrix into

different regions, different scheduling policies for different regions is proposed. A

new scheduling policy, i.e., mixed scheduling approach is also proposed in this

section. Results of parallelization with different scheduling techniques for three

categories of dynamic programming algorithms are presented in section 5.

Conclusions and future work are discussed in section 6.

2. Related Work

Dynamic programming is one of the Berkley 13 dwarfs and as there is inherent

parallelism in every dynamic programming approach, parallelization and load

Abbreviations

GPU Graphics Processing Unit

LCS Longest Common Subsequence

MCM Matrix Chain Multiplication

Efficient Scheduling of Dynamic Programming Algorithms on Multicore 1255

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

balancing of dynamic programming algorithms are widely studied in literature.

In [1], the authors present the parallelization of serial monadic dynamic

programming algorithms for clusters and network of workstations using

message passing interface. Latency tolerant model and percolation techniques

for programming on multi-core architectures for parallelizing the most complex

category of dynamic programming, i.e., non-serial polyadic dynamic

programming is presented in [2]. In [3], the authors study the asynchronous

analysis of dynamic programming algorithms and their effects of various delays

due to the communication and cache misses.

The computational demand of non-serial polyadic dynamic programming has

migrated from the conventional multicore to throughput efficient manycore, i.e.,

on GPUs. In [4-6] authors parallelized the MCM using dynamic programming on

the GPUs and studied the behaviour of various optimization techniques on the

GPUs such as tiling, memory coalescing and matrix realignment. Inherent load

imbalance in the non-serial polyadic dynamic programming using Compute

Unified Device Architecture and its efficient mapping to processing elements is

presented in [7]. The two stage adaptive thread model for efficient mapping of

subproblems belonging to a particular phase to the processing cores is illustrated

by employing a different number of threads for different phases while solving

parallel MCM.

OpenMP uses different work sharing constructs along with different

scheduling policies [8, 9]. OpenMP provides efficient synchronization

primitives for achieving synchronization among consecutive phases in the

parallel implementation of any dynamic programming algorithm. An effort

has been presented for efficient mapping of irregular application over

multicore using OpenMP in [10]. The authors focused on the parallelization

of irregular applications by enforcing the threads distribution in the close

proximity of the parallel region. A heuristics for distributing the works of

homogeneous parallel dynamic programming on heterogeneous systems is

proposed in [11]. A very good classification of dynamic programming

algorithms on the basis of table size and dependence of one entry on the other

entries is presented in [12]. This gives us a clear understanding of the

parallelization of dynamic programming algorithms in terms of phases by

considering the total number of entries required for the computation of one

phase. Multithreaded implementations of various applications using OpenMP

and related issues such as load balancing, threads assignments are presented

in [13]. Authors mainly focused on nested parallelism of various applications

using OpenMP and show that load balancing is the key for achieving

scalability by demonstrating parallelization of wavelet compression

application. A bridging model for achieving portability of parallel

applications implemented for multicore system has been presented in [14]. In

addition, this model is capable of achieving load balanced parallelization by

taking care of availability of number of processors, cache size,

synchronization and communication cost. Applications having an inherent

load imbalance are currently being targeted for parallelization on multicore

and manycore in the recent literature [7, 14]. Parallel dynamic programming

on clusters and GPUs and its usage in bioinformatics algorithms are being

widely discussed in recent literature [15, 16].

1256 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

3. Background and Definitions

3.1. Matrix chain multiplication

MCM is a classic example of non-serial polyadic dynamic programming. This

problem is also known and widely discussed in literature as an optimal matrix

parenthesization problem. Given a sequence of matrices which are compatible to

multiplication and as known, matrix multiplication is associative in nature;

sequence of multiplications of matrices greatly affects the final number of scalar

multiplications for the actual multiplication.

More specifically, MCM can be defined as: given a chain of n matrices, where

the dimensions of the matrix im is (ii pp *1), 1 i n  . p[0..n] is the

dimension vector of size (n+1) that specifies the dimensions of all n matrices. The

algorithm finds out the optimal sequence of matrix multiplications with the help

of a dynamic programming technique so that the total number of scalar

multiplications for the actual multiplication would comes out to be minimum. m[i,

j] indicates optimal number of multiplications required for actual multiplication of

the sequence from matrix im to matrix jm . In phase t, the difference between i

and j is t, i.e., jti  . The final entry that is to be computed is m[1, n]. The

recurrence equation of MCM can be expressed as follows:

 1

0 ()
[,]

min [,] [1,] ()i k j i k j

if i j
m i j

m i k m k j p p p if i j  

  
  

     

(1)

There are (n-1) phases in the computation of MCM after initializing

m[i, i] = 0, nii  1: . As proceeded from the computation of phase i to phase

(i+1), number of subproblems is decreased by 1 and an amount of computations

for one subproblems is increased. The time complexity for calculation of one

m[i, j] is)(ij  .

3.2. Longest common subsequence

LCS is an example of non-serial monadic dynamic programming. Formally,

the LCS is defined as: given a sequence A = {a1, a2,....., am}, another sequence

C= {c1, c2,...., ck} is said to be a subsequence of A if there exists a strictly

increasing sequence {t1, t2,...., tk} of indices of A such that for all j = 1, 2,, k,

and jt ca
j
 . For example, consider the sequence A = {b, c, b, a, d, a, b},

C = {c, a, a, b} is a subsequence of A with the strictly increasing sequence of

indices of A is {2, 4, 6, 7}. Two sequences A and B are given, another sequence C

is said to be a common subsequence if C is a subsequence of A as well as of B.

The number of characters in the sequence is called the length of the sequence.

Common subsequence C with length k is said to be LCS of the sequence A and

sequence B if there is no other common subsequence exists for sequence A and

sequence B with length k’ such that k’ > k.

This problem can also be solved with the help of dynamic programming with

O(n
2
) time complexity when both the considered sequences are of length n. Given

Efficient Scheduling of Dynamic Programming Algorithms on Multicore 1257

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

two sequences A = {a1, a2,....., am} and B = {b1, b2,....., bn}, c[i, j] indicates the

length of the LCS for the two sequences {a1, a2,....., ai} and {b1, b2,....., bj}. Finally,

c[m, n] is computed. All c[i, j] are stored in the matrix c[0..m, 0..n]. Entries of the c

matrix are computed row-wise, i.e., entries of the first row are computed from left to

right, then the second row, and so on. The recurrence relation for solving the LCS

problem using dynamic programming is defined as follows:

0 (0) (0)

[,] [1, 1] 1 (, 0) ()

max([1,], [, 1]) (, 0) ()

i j

i j

if i or j

c i j c i j if i j and a b

c i j c i j if i j and a b

  
 

      
     

(2)

3.3. Binary knapsack

Binary knapsack or 0/1 knapsack problem is also a classic example that can be

solved using dynamic programming. Given n objects, each associated with unique

weight and profit, one knapsack with capacity C is with us, we have to select

some of the objects within the capacity limit of knapsack so that the profit should

be maximized. More formally,
jp and

jw are the profit and weight respectively

of j
th

object, 1<=j<=n.
jx is set to 0 or 1, 0 if j

th
object is not included in the

knapsack, 1 if j
th

object is included in the knapsack. For a non trivial solution of

0/1 knapsack



n

j
j Cw

1

. The algorithm selects objects from the list of given objects

so that 


n

j
jj xp

1

 should be maximum and



n

j
jj Cxw

1

. Let t[i, j] be the maximum

profit while considering first i objects with the considered knapsack capacity j.

t[0..i, 0..j] is computed in row major order and each row is computed from left to

right. The recurrence relation for solving the binary knapsack problem using

dynamic programming is defined as follows:

0 (0) (0)

[,] [1,] ()

max([1][], [1,]) (0) ()

i

i i i

if i or j

t i j t i j if j w

p t i j w t i j if i and j w

  
 

   
       

(3)

It can be easily understood from the above recurrence that either if no object is

taken into consideration or if considered knapsack capacity is zero, no profit can

be gained. The current object can be added in the knapsack only if considered

knapsack capacity is not less than the weight of the current object.

3.4. OpenMP

OpenMP is one of the favorite Application Programming Interface used for

parallelization on the shared memory architecture, adopted by a majority of high

performance community due to its higher programming efficiency. OpenMP is

shared memory programming fork join model that provides various directives and

library functions for creating and managing a team of threads. Various

synchronization and work sharing constructs are provided by OpenMP, using

which we automatically or manually divide the task among threads.

1258 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

OpenMP provides four different types of scheduling for assigning the loop

iterations to different threads: static, dynamic, guided and runtime. Schedule

clause is provided for specifying schedule and numbers of iterations, i.e., chunk

size. In static scheduling, chunks are assigned to processing cores in round robin

fashion. It is the simplest kind of scheduling with minimum overhead. In dynamic

scheduling, thread requests for new chunk as it finishes the assigned chunk. In the

guided scheduling thread request for newer chunks, but chunk size is calculated as

the number of unassigned iterations divided by the total number of threads in the

team. Guided scheduling seems to be more efficient scheduling, but involves a

little bit of overheads in the calculation of chunk size. In runtime scheduling,

schedule and optional chunk size are set with the help of environment variables.

The details of scheduling techniques are discussed in [8, 9].

4. Parallel Implementation

Computations of any dynamic programming formulation can be divided into

different phases. Sub-problems belong to a particular phase can be computed in

parallel. The DP formulation is broadly classified in two fashions. If the entire

computations of a dynamic programming formulation can be accommodated

easily and uniformly in a matrix, then we call this as a regular dynamic

programming otherwise it is treated as irregular dynamic programming. Examples

of regular dynamic programming are LCS, 0/1 knapsack and MCM. Examples of

irregular dynamic programming are the single source shortest path, multistage

graph and travelling salesman problem. For example, solving single source

shortest path problem using dynamic programming, subproblems of a particular

phase depends on the number of incoming edges towards that particular

node [17]. Generally graph problems fall under the category of irregular dynamic

programming. Here, in the current study, the focus is on the study of

parallelization efforts of regular dynamic programming on multicore.

The entire computation of regular dynamic programming is divided into three

parts based on the number of subproblems in each phase: 1) growing region: number

of subproblems increases uniformly phase by phase, 2) stable region: number of

subproblems are fixed in each phase, and 3) shrinking region: number of subproblems

decreases uniformly phase by phase. In MCM computations, only shrinking region is

present. In LCS, phases are considered in an anti-diagonal fashion. In LCS, first

growing region, then stable region and finally shrinking region, all three regions are

present. In 0/1 knapsack, the parallel computations proceed row wise. In 0/1

knapsack, neither growing region nor shrinking region is present, only the stable

region is present. Fig. 1 represents the region wise partition and arrows indicate

direction of parallelization strategies for the LCS, MCM and 0/1 knapsack.

(a) LCS (b) MCM (c) 0/1 knapsack

Fig. 1. Dependence and parallelization strategies

for three categories of dynamic programming algorithms.

Efficient Scheduling of Dynamic Programming Algorithms on Multicore 1259

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

For each phase, the numbers of subproblems are assigned to the threads which

are handled by the chunk size parameter in OpenMP and finally threads execute

those assigned subproblems over physical cores which are handled by a

scheduling policy in OpenMP. While executing a subproblem over physical core

by a thread, data required for calculation play an important role in the efficiency

of dynamic programming algorithms. Finally, it leads to an optimization sort of

problem. Table 1 represents the different characteristics of three dynamic

programming algorithms in the context of parallel processing of subproblems of a

specific phase and amount of computations belonging to that phase. The factors

affecting the efficiency of regular dynamic programming algorithms are

summarised as follows:

1. Number of subproblems in each phase

2. The amount of the computations of a subproblem belonging to a

particular phase

3. Feasibility of dynamic adjustment of number of threads for different

phases and its consequences in terms of parallelization overheads

4. Scheduling policy

5. Consequences of disjointness of data required for calculations of

different subproblems belonging to a particular phase

Table 1. Characteristics of three categories of dynamic programming.

 Number of

sub

problems

in

subsequent

phases

Amount of

computations

for a

subproblem as

the

computation

proceeds to the

next phase

Serial/

Non-

serial

Monadic/

Polyadic

Nature of

data

requirements

of

subproblems

of a

particular

phase

MCM Decreasing Monotonically

increasing

Non-

serial

Polyadic Completely

disjoint

LCS Increasing,

fixed

followed by

decreasing

fixed Non-

serial

Monadic Partially

overlapping

for

consecutive

subproblems

0/1

Knapsack

Fixed

Fixed Serial Monadic May be

disjoint

5. Results

We have evaluated the performance of MCM (shrinking region), LCS (growing,

stable region followed by shrinking region) and 0/1 knapsack (stable region) on

Intel Xeon X5650 Quad Core processor with CPU clock 2.67 GHz, 12 CPU

cores, 4 GB of RAM and Intel Xeon E5-2695 with CPU clock 2.3GHz, 28 CPU

cores, 32 GB of memory. The operating system used for performance evaluation

is openSUSE 13.1 64-bit Linux with GNU GCC compiler 4.8.3 with OpenMP

1260 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

3.1. Speedup is computed for all three categories of dynamic programming

algorithms as the ratio of time taken by sequential algorithm to time taken by

parallel algorithm. As all the speedups are greater than one, OpenMP performs

better as compared to sequential algorithms.

Fig. 2 and 3 represent graphical representations of the effect of parallelization

efforts with different number of matrices for various scheduling techniques for

MCM. Different scheduling techniques are applied for different numbers of

matrices. Since the parallel computational matrix is triangular, the number of

subproblems decreases by one in the subsequent phase; it is observed that guided

scheduling performs much better as compared to other scheduling schemes for a

large number of matrices.

Fig. 2. Comparison of speedup with different numbers of matrices

for different scheduling techniques for MCM on Intel Xeon X5650.

Fig. 3. Comparison of speedup with different numbers of matrices

for different scheduling techniques for MCM on Intel Xeon E5-2695.

Fig. 4 and Fig. 5 show pictorial representations of speedup with different

lengths of strings for different scheduling policies for LCS algorithm. The y-axis

represents speedup and the x-axis represents the length of the first string and the

length of the second string is twice the length of the first string. As Fig. 1

indicates, the computational matrix have growing and shrinking region of the

Efficient Scheduling of Dynamic Programming Algorithms on Multicore 1261

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

same size. Central computation, i.e., stable region of the LCS having the same

number of phases as the length of the first string. In parallel computation of LCS,

guided scheduling is applied for growing and shrinking regions and static

scheduling is applied for the central computation, i.e., stable region. This method

of computation of applying different scheduling schemes named as a mixed

scheduling. It is observed that the mixed scheduling performs better as compared

to other scheduling approaches in the parallel computation of LCS. A speedup of

18x is achieved by applying mixed scheduling approach in comparison with other

scheduling approaches on Intel Xeon E5-2695.

Fig. 4. Comparison of speedup with different lengths of strings

for different scheduling techniques for LCS on Intel Xeon X5650.

Fig. 5. Comparison of speedup with different lengths of strings

for different scheduling techniques for LCS on Intel Xeon E5-2695.

Fig. 6 and Fig. 7 represent the relation between speedup and the number of

items for 0/1 knapsack problem for different scheduling schemes. In parallel

computation of 0/1 knapsack, phases are considered row-wise. The number of

subproblems is fixed in each phase. Therefore, the entire computations of parallel

0/1 knapsack comes only under the stable region. After experimentation and

analysis, it is found that static scheduling performs better as compared to other

scheduling for stable region.

1262 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

Fig. 6. Comparison of speedup with different numbers of items

for different scheduling techniques for 0/1 knapsack on Intel Xeon X5650.

Fig. 7. Comparison of speedup with different numbers of items

for different scheduling techniques for 0/1 knapsack on Intel Xeon E5-2695.

It is also notice that, in MCM parallelization, more speedup is achieved on

Intel Xeon E5-2695 as compared to Intel Xeon X5650 for the same number of

threads, i.e., 12 threads for large number of matrices because the calculation of

subproblems belonging to a particular phase in MCM requires all the previously

computed data and data is completely disjoint for the computations of two

subproblems belonging to a particular phase. On Intel Xeon E5-2695, we have

sufficient memory to accommodate all the previously computed data for the

computation of a particular phase, which is a limitation on the Intel Xeon X5650.

It is also noted that deadlock and race will not arise in the parallelization of

these three categories of dynamic programming algorithms such as MCM, LCS

and 0/1 knapsack because parallelization phase by phase is applied. Entries of a

particular phase are computed in parallel. The subproblems of a particular phase

cannot be computed unless all the subproblems of the immediate previous phase

are computed. Neither more than one thread access the same memory location for

writing nor two threads wait for each other indefinitely in the proposed approach

of parallel computations.

Efficient Scheduling of Dynamic Programming Algorithms on Multicore 1263

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

6. Conclusion and Future Work

It can be concluded from Fig. 2 and 3 that for shrinking region, guided scheduling

compensates the calculation overhead of chunk sizes and dynamic allocation of

chunks to processing cores. Though static scheduling takes decisions on the

allocation of subproblems to the processing cores at compile time itself, it fails to

remain consistent in the performance due to the inherent non-uniformity in the

shrinking region present in MCM. In MCM only shrinking region is present, due

to that it performs better using guided scheduling. Guided scheduling is better for

that category of dynamic programming where only growing or shrinking region is

present. In other words, it can be stated that guided scheduling is not suitable for

stable region.

In 0/1 knapsack only stable region is present. It is observed from Fig. 6 and 7,

due to the uniform load distribution in each phase of 0/1 knapsack, static scheduling

performs well as compared to other scheduling schemes because of compile time

decision of allocation of chunks of iterations to processing cores in round robin

fashion. Static scheduling is better for the stable region of any dynamic

programming algorithms. Dynamic scheduling should also be selected for a stable

region of dynamic programming when processing cores are not uniformly loaded.

Total computational time for the calculation of score matrix of the LCS

algorithm can be divided into three parts; the time taken for the first part, i.e.,

growing region, time taken for the second part, i.e., stable region and time taken

for third part, i.e., shrinking region. First and third parts are amenable for guided

scheduling, whereas static/dynamic scheduling is suitable for second part. In

mixed approach, we apply guided in the first part, static for the second part and

once again guided for the third part. With reference to Fig. 4 and 5, the reason

why guided is performing better as compared to static scheduling is that, 2/3
rd

portion of computational matrix is suitable for guided scheduling.

The generalized conclusion can be drawn as follows: Parallel dynamic

programming which satisfies two conditions; 1) Number of subproblems in

different phases are not same and 2) More than one region should be there in a

computational matrix with atleast one region be the stable region, mixed

scheduling approach with appropriate chunk size performs better as compared to

single conventional scheduling approach.

These comparisons of parallel dynamic programming on GPUs can be

extended. Various CPU and GPU optimizations can also be studied in this series

of work in the context of regular dynamic programming.

References

1. Canto, S.D.; Madrid, A.P.; and Bencomo, S.D. (2005). Parallel dynamic

programming on clusters of workstations. IEEE Transaction on Parallel and

Distributed Systems, 16(9), 785-798.

2. Tan, G.; Sun, N.; and Rao, G.R. (2009). Improving Performance of Dynamic

Programming via Parallelism and Locality on Multicore Architectures. IEEE

Transaction on Parallel and Distributed Systems, 20(2), 261-274.

1264 T. Diwan and S. R. Sathe

Journal of Engineering Science and Technology May 2017, Vol. 12(5)

3. Lewandowski, G.; Condon, A.; and Bach, E. (1996). Asynchronous Analysis

of Paralle1 Dynamic Programming Algorithms. IEEE Transaction on

Parallel and Distributed Systems, 7(4), 425-438.

4. Dash, T.; and Nayak, T. (2012). Chain Multiplication of Dense Matrices:

Proposing a Shared Memory based Parallel Algorithm. International Journal

of Computer Applications, 8(1), 11-16.

5. Xiao, S.; Aji, A.M.; and Feng, W.C. (2009). On the Robust Mapping of Dynamic

Programming onto a Graphics Processing Unit. Proceedings of 15th

International Conference on Parallel and Distributed Systems (ICPADS), 26-33.

6. Nishida, K.; Ito, Y.; and Nakano, K. (2011). Accelerating the Dynamic

programming for Matrix Chain Product on the GPU. Proceedings of 2nd

International Conference on Networking and Computing (ICNC), 320-326.

7. Wu, C.C.; Ke, J.Y.; Lin, H.; and Feng, W.C. (2011). Optimizing Dynamic

Programming on Graphics Processing Units via Adaptive Thread-Level

Parallelism. Proceedings of 17th International Conference on Parallel and

Distributed Systems (ICPADS), 96-103.

8. OpenMP specifications. Retrieved May 7, 2015, from http://www.openmp.

org/specs/.

9. Chapman, B.; Jost, G.; and Van Der Pas, R. (2007). Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT Press.

10. Broquedis, F.; Diakhaté, F.; Thibault, S.; Aumage, O.; Namyst, R.; and

Wacrenier, P.A. (2008). Scheduling Dynamic OpenMP Applications over

Multicore Architectures. Proceedings of OpenMP in a New Era of

Parallelism, Lecture Notes in Computer Science, 5004, 170-180.

11. Cuenca, J.; Gimenez, D.; and Martinez, J.P. (2005). Heuristics for Work

Distribution of a Homogeneous Parallel Dynamic Programming Scheme on

Heterogeneous Systems. Parallel Computing, 31(7), 711-735.

12. Galil, Z.; and Park, K. (1992). Dynamic programming with convexity,

concavity and sparsity. Theoretical Computer Science, 92(1), 49-76.

13. Blikberg, R.; and Sorevik, T. (2005). Load Balancing and OpenMP

implementation of nested Parallelism. Parallel Computing, 31(10-12), 984-998.

14. Valiant, L.G. (2011). A bridging model for multi-core computing. Journal of

Computer and System Sciences, 77(1), 154-166.

15. Tang, S.; Yu, C.; Sun, J.; Lee, B.S.; Zhang, T.; Xu, Z.; and Wu, H. (2011).

EasyPDP: An Efficient Parallel Dynamic Programming Runtime System for

Computational Biology. IEEE Transaction on Parallel and Distributed

Systems, 23(5), 862-872.

16. Chowdhury, R.A.; Le, H.S.; and Ramachandran, V. (2008). Cache-oblivious

Dynamic Programming for Bioinformatics. IEEE Transactions On

Computational Biology and Bioinformatic, 7(3), 495-510.

17. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; and Stein, C. (2008).

Introduction to Algorithms (2
nd

 ed.). PHI Learning Private Limited.

http://ieeexplore.ieee.org/search/searchresult.jsp?newsearch=true&queryText=on+the+robust+mapping+of+dynamic+programming
http://www.openmp/

