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Abstract 

Soil erosion hazard is the second biggest environmental challenges after 

population growth causing land degradation, desertification and water 

deterioration. Its impacts on watersheds include loss of soil nutrients, reduced 

reservoir capacity through siltation which may lead to flood risk, landslide, high 

water turbidity, etc. These problems become more pronounced in human altered 

mountainous areas through intensive agricultural activities, deforestation and 

increased urbanization among others. However, due to challenging nature of 

soil erosion management, there is great interest in assessing its spatial 

distribution and susceptibility levels. This study is thus intend to review the 

recent literatures and develop a novel framework for soil erosion susceptibility 

mapping using geostatistical based support vector machine (SVM), remote 

sensing and GIS techniques. The conceptual framework is to bridge the 

identified knowledge gaps in the area of causative factors’ (CFs) selection. In 

this research, RUSLE model, field studies and the existing soil erosion maps for 

the study area will be integrated for the development of inventory map. Spatial 

data such as Landsat 8, digital soil and geological maps, digital elevation model 

and hydrological data shall be processed for the extraction of erosion CFs. GIS-

based SVM techniques will be adopted for the establishment of spatial 

relationships between soil erosion and its CFs, and subsequently for the 

development of erosion susceptibility maps. The results of this study include 

evaluation of predictive capability of GIS-based SVM in soil erosion mapping 

and identification of the most influential CFs for erosion susceptibility 

assessment. This study will serve as a guide to watershed planners and to 

alleviate soil erosion challenges and its related hazards.  

Keywords: Soil erosion, Causative factors, Susceptibility mapping, SVM, GIS.  
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Nomenclatures 
 

As  Specific Catchment Area,  m
2
/m 

 

Greek Symbols 

β Slope Gradient, deg. 

ln Napierian Logarithms 
 

Abbreviations 

ASCII  American Standard Code for Information Interchange 

AUC  Area-Under-Curve  

ANN  Artificial Neural Networks 

P-Factor  Conservative Practice Factors 

DT  Decision Trees  

DEM  Digital Elevation Model  

DD  Drainage Density, m/m
2
 

ETM+  Enhanced Thematic Mapper Plus 

ENVI Environment for Visualizing Images 

FR  Frequency Ratio 

GIS Geographic Information System 

LC  Land-Cover   

C-Factor Land Cover and Management Factor 

LST  Land Surface Temperature, 
o
C 

LULC  Land-use/Land-cover 

LS-

Factor  
Length-Slope Factor  

LN   Linear Kernel Functions  

LR  Logistic Regression 

MUSLE Modified Universal Soil Loss Equation, ton/ha/yr 

NDVI  Normalized Difference Vegetation Index  

PL  Polynomial Kernel Functions 

PC  Profile Curvature  

QGIS  Quantum Geographic Information System 

RBF  Radial Basis Kernel Functions  

R-Factor  Rainfall-Runoff Factor, MJ mm/ha/yr 

RS Remote Sensing Techniques 

RUSLE Revised Universal Soil Loss Equation, ton/ha/yr 

SIG  Sigmoid Kernel Functions 

SG  Slope Gradient, deg. 

K-Factor  Soil Erodibility Factor 

CFs  Soil Erosion Causative Factors 

SMI  Soil Moisture Index  

SI  Statistical Index 

SPI  Stream Power Index  

SLD  Structural Lineament Density  

SVM  Support Vector Machine  

SPOT  Systeme Pour 1’Observation de la Terre  

TWI  Topographic Wetness Index  
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1.  Introduction 

Soil erosion is the most critical environmental challenges after population growth 

which is considered as the biggest [1]. It is a natural hazard that causes land 

degradation and desertification [2-4]. It has both on- and off-site effects with 

serious environmental and economic impacts [5]. Water induced erosion 

phenomenon is often caused by agricultural intensification, urbanization, 

indiscriminate deforestation, tectonic activities and climatic changes [6, 7] and 

thus threatens the sustainability of land and water resources. Soil erosion process 

involves interaction of different complex biophysical and anthropogenic factors 

which include soil properties, topography, climatic condition, land use and its 

management practices [8]. These factors vary both spatially and temporally from 

one location to another. Yves et al. [9] emphasized that there is no simple model 

that can consider all relevant factors, particularly in areas where human 

interference are predominant.  

In Malaysia, especially in mountainous areas like Cameron Highlands, soil 

erosion has become serious environmental challenges in recent years due to 

extensive land-use for urban development, agricultural activities, deforestation 

among others [7, 10-14]. However, many of soil erosion impacts are currently 

been experienced in Cameron Highlands watershed as reported by many 

researchers [15, 16]. For instance, accelerated soil erosion resulted in water 

pollution [15], sedimentation of rivers and reservoirs that leads to flooding of 

downstream areas and reduced hydropower generation especially in Ringlet dam 

[16], low crop productivity due to loss of soil nutrients and extensive erosion that 

causes landslide in steep slopes terrains [17, 18]. As a result, there is great interest 

in determining the source, volume of soil loss, and producing accurate 

susceptibility maps of active erosion zones which help in hazards prevention and 

management [19, 20]. Evaluation techniques for land related hazards (such as 

landslide and soil erosion) are based on susceptibility mapping that classify land 

into zones of similar degree of hazards. Erosion susceptibility mapping indicates 

the relative probability of erosion occurrence at a certain location compared to 

other locations. The prediction of highly susceptible erosion locations is the most 

crucial part of erosion hazard prevention that allows the identification of locations 

and the best management practice required [20].  

There have been increasing applications of Geographical Information Systems 

(GIS) and Remote Sensing (RS) techniques coupled with different qualitative and 

quantitative techniques for estimation of soil loss, assessing its spatial distribution 

and mapping of erosion susceptibility [21, 22]. Qualitative methods are subjective 

since the assessment is based on expert opinions and knowledge while 

quantitative approaches, such as statistical and probabilistic (deterministic) 

methods, are considered objective and accurate than qualitative owing to their 

data dependent nature [23]. Quantitative approaches are used for the analysis of 

numerical data in order to establish spatial relationships between causative factors 

(CFs) and landslide [17] as well as soil erosion. The main challenge in these 

methods is their dependence on data structure and sizes [24]. Both qualitative and 

quantitative methods implement spatial distribution of the past soil erosion to 

estimate the future trend taking into account interdependence of CFs [18]. It has 

been reported that accurate evaluation of soil erosion CFs is very crucial in the 

analysis and preparation of soil erosion susceptibility map. These CFs are often 

obtained from different sources such as topographical map, digital elevation 
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model, digital soil maps, Landsat 8 or Landsat 7 ETM+ (Enhanced Thematic 

Mapper Plus) images, Systeme Pour 1’Observation de la Terre (SPOT) images 

and geological maps.  

Generally, CFs for soil erosion are grouped into topographic, land-use, soil, 

geological and meteorological characteristics. Some of the frequently used CFs 

include slope, lithology, land-cover, aspect, soil thickness/slope, normalized 

difference vegetation index (NDVI), drainage density, topographic wetness index 

(TWI), elevation, etc. More so, many of these watershed factors are static factors 

that remain unchanged for long period of time. Although, there is no rule of 

thumb in the existing literature that specifies the number and type of CFs to be 

used for susceptibility analysis [25, 26]. This has generated issues of subjectivity 

on the selection of CFs and number to be selected to achieve accurate results. 

However, careful observation of existing literature indicated the absence of some 

multi-temporal factors as CFs which often changes over time. Thus, there is need 

to harness all the existing CFs and include multi-temporal factors, then optimize 

to identify the positive CFs to soil erosion. This study therefore intends to review 

previous studies and develop a framework for soil erosion susceptibility mapping 

with consideration of multi-temporal factors, and also to optimize the CFs, by 

adopting GIS, RS and Support Vector Machine (SVM) techniques. SVM as a 

quantitative technique is chosen for this study due to the fact that it is rarely used 

compare to other methods despite its high predictive ability as it has been proven 

by Tehrany et al. [26]. 

 

2.  Review of Literatures  

Natural hazards are the elements of physical environmental which occurred in 

various forms such as hydrological (such as flood, drought, tsunami, 

desertification, etc.), geological (seismic, volcanic, landslide, soil erosion, etc.), 

atmospheric (hurricanes lightning, tornadoes, etc.) and wildfire hazards. These 

can potentially affect human beings due to their location, severity and frequency 

of occurrence [27]. Usually, human intervention within the prone zones of such 

hazards may lead to significant degree of severity and increased hazards 

frequency. Thus, there is need for accurate prediction of risk levels associated 

with these hazards which include risk quantification, vulnerability/susceptibility 

assessment and exposure patterns.  

Susceptibility assessment has been recognized as a very vital tool in 

predicting how prone areas are to a particular hazard especially landslides, soil 

erosion and flooding. In an attempt to have good idea of susceptibility of these 

hazards in terms of volume or area, spatial distribution and potentiality of 

occurrence, qualitative and quantitative techniques have been adopted. The 

qualitative approach is subjective and less accurate while quantitative approach is 

objective and more accurate as earlier discussed. The quantitative approaches 

which could be bivariate or multivariate integrated with remote sensing and GIS 

techniques, relies on statistics or probabilistic analysis expressing the relationship 

between CFs and hazards in question [28]. A wide range of these qualitative and 

quantitative methods have been successfully applied to soil erosion susceptibility 

mapping by many researchers around the globe. Although, the most widely used 

quantitative technique is Universal Soil Loss Equation USLE and its revised 

versions. This revised USLE (RUSLE) [29] and modified USLE (MUSLE) [30] 
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are empirical models popularly used in predicting average annual rate and, spatial 

and temporal distribution of erosion in watersheds under different conditions of 

cropping systems, management approaches and erosion control practices [31].  

Literature survey revealed the existence of some bivariate (such as frequency 

ratio-FR, statistical index-SI and weight of evidence-WoE); multivariate (such as 

decision trees-DT, logistic regression-LR) and soft computing (support vector 

machines-SVM, artificial neural networks-ANN) methods that were used in 

landslide [32-37] and some were used in flood susceptibility mapping [26, 38-40]. 

These approaches estimate the probabilistic relationship between dependent (i.e., 

landslides, erosion, flood, etc.), and independent variables (i.e., causative factors) 

[24, 41]. Researchers have applied many of these techniques to analyze and develop 

soil erosion susceptibility maps for different localities [18, 20, 22, 42-48].  

 

2.1.  Soil erosion and its causative factors 

Evaluation of hazards susceptibility requires definition and consideration of some 

vital causative factors responsible for its occurrence [49]. This is actually the 

starting point in susceptibility analysis using statistical techniques [46]. Massimo et 

al. [50] emphasised the need for the identification of triggering factor as one of the 

present knowledge gaps in soil erosion. The susceptibility of soil erosion in a 

watershed is controlled by spatial distribution of both erodibility and erosivity 

factors as CFs, which are respectively defined as the proneness of soils or rocks to 

be eroded and, the eroding power of running waters on slope terrains [18]. These 

CFs are generally grouped into topographical, lithological, land-cover 

characteristics [50, 51], climate and agriculture practices [45]. However, most of 

times, erodibility factors are broken down into fractional units like land-cover (LC), 

weathering grades of the rocks (WG), structural lineament density (SLD), soil 

texture, etc. and erosivity factors as follows: slope gradient (SG), profile curvature 

(PC), stream power index (SPI), drainage density (DD), topographic wetness index 

(TWI), etc. The erosive power of the runoff waters depends on topographic 

(steepness, slope length, curvature, etc.) and climatic attributes [18]. Most of these 

parameters are usually derived from different sources such as digital elevation 

model (DEM), digital soil map, Landsat 8 or 7 ETM+ images, SPOT images, 

geological map, etc. having different degrees of generalization and scales. 

Topographical factors, such as slope gradient, slope aspect, curvature of the 

hillslopes, slope length, altitude, TWI and the SPI derived from DEM are often 

considered for susceptibility studies owing to their roles in triggering erosion. Soil 

erosion caused by water is directly related to slope morphological factors of the 

watershed [52]. SPI describes the erosive power of flowing water by assuming 

that the discharge is proportional to the specific catchment area and to the slope 

[53]. It is also an indicative of the potential energy available to entrain sediment 

[54]. Furthermore, TWI indicates the amount of water accumulation at a point in 

watershed and trend of water to flow downslope by gravity [55]. Dube et al. [56] 

explained that TWI is a function of both slope and the upstream contributing area 

per unit width orthogonal to the flow direction. TWI and SPI can be calculated 

respectively from the empirical models in Eqs. 1 and 2. According to Imeson and 

Lavee [57], slope aspect influences the susceptibility of soil to erosion. This 

expresses the stability of soil aggregates and its exposure to sunlight and other 

numerous climatic conditions and thus controls the occurrence of gully erosion 
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[58]. The length-slope factor (LS) is another topographical factor that expresses 

the steepness of slope and the length of slope. This can be calculated in GIS 

environment using an empirical equations described by Moore and Burch [59].  











tan
ln

As
TWI                  (1) 

tan*AsSPI                    (2) 

where As = specific catchment area (m2/m), β = slope gradient in deg.  

Erodibility of soils in watersheds is influenced by its physical, chemical, 

mineralogical and morphological features of soil, which are the products of 

specific processes of soil formation [46]. Some factors such as rock hardness, 

infiltration and permeability, drainage density, etc are used to describe erodibility 

factors in erosion susceptibility analysis [60]. The weathering conditions of rocks 

representing the role of lithology and drainage density were reported to be 

considered as CFs in erosion processes [61]. Moreover, land-use plays crucial 

roles on geomorphological stability of slope to erosion while land-cover such as 

vegetation or plant residue provides protection to soil by intercepting raindrops, 

increase rate of infiltration, decrease runoff speed and transporting capacity of 

water flow [20]. Literature survey highlighted that various researchers adopted 

different CFs for their studies depending on their understanding of its effects on 

soil erosion and availability of such data. This shows varying and inconsistences 

in selection of CFs.  

Table 1 presents the summary of some authors with varying number of CFs 

and methods adopted for their studies. For instance, Angileri et al. [45] considered 

twelve (12) CFs and grouped them into discrete variables consisting of four 

factors and eight continuous variables as listed in Table 1. The outcome of 

geospatial analysis of these factors identified elevation, aspect, landform and 

land-use as the most significant variables in rill-interrill erosion modelling, while 

plan and profile curvatures, SPI and TWI were the most significant variables for 

gully erosion prediction. In a similar study by Conoscenti et al. [42], they 

considered twenty-seven (27) CFs by further broken down the factors. These 

factors are describing the variability of lithology, land-use, topography and road 

position and their potential impacts on erosion processes, while the dependent 

variable was given by presence or absence of gullies.  

Analysis of Remondo et al. [62] highlighted that increasing the number of CFs 

does not necessarily increase the accuracy of the model as long as the factors are 

not positive CFs. In addition to this, Magliulo [46] reported that several authors 

including Ayalew et al. [63] to have stated that all the selected CFs should be 

non-redundant factors, i.e., should not have double consequences in the analysis. 

Magliulo [46] further argued that combined usage of slope angle, length-slope 

(LS) factor, plan curvature and SPI could be regarded as redundant CFs because 

all these parameters are dependent on slope angle though they have 

geomorphological and hydrological significances. The same also applicable to 

both slope aspect and TWI as they are slope angle dependent. In order to do away 

from overweighting of the results of susceptibility assessment validation 

procedure, therefore CFs that have relational linkage should be avoided [46, 64]. 

It was agreed that all the aforementioned CFs have one way or the other 
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influenced the formation of soil and initiation of soil erosion as many of them are 

hydrologically and morphologically significant.  

 

Table 1. Summary of authors with varying number of CFs and methods  

Paper 

ID 

Nature of 

hazard 

CFs considered Geostatistical 

methods  

[20] Gully 

erosion 

7-factors: WG, SG, PC, SPI, LC, DD 

and SLD 

Logistic 

regression 

[18] 

 

Sheet & 

rill-interrill 

erosion 

and gully 

6-factors: bedrock lithology, soil use, 

soil texture, plan curvature, 

stream power index and slope-length 

factor 

Multivariate 

[43] Gully 12-factors: slope, aspect, plan 

curvature, profile curvature, general 

curvature tangential curvature; SPI, 

TWI, slope length factor; lithology, soil 

texture, land-use 

Bayes’ theorem 

[45] Rill-

interrill 

and gully 

erosion 

12-factors: outcropping lithology, land-

use, slope aspect and landform 

classification, length-slope factor, the 

topographic wetness index, the stream 

power index, plan and profile 

curvatures, elevation, distance to the 

river and slope angle 

Stochastic 

Gradient 

Treeboost 

[46] Gully and, 

sheet 

and/or rill 

erosion 

4-factors: Lithology, land-use, slope 

angle and slope aspect 

Weighting 

values (Wi), 

[47] Gully 

erosion 

9-factors: lithology, dynamic and slope 

inclination, land-use, aspect, plan 

curvature, stream power index, 

topographical wetness index and length-

slope 

Weighting 

values 

[42] Gully 27 factors describing the variability of 

lithology, land-use, topography and 

road position 

Logistic 

regression 

[56] Gully 7-factors: Land-cover, soil type, 

distance from river, distance from road, 

Sediment Transport Index, Stream 

Power Index and Wetness Index  

Weight of 

evidence 

[21] Soil 

erosion 

8-factors: Land-use/Land-cover, NDVI, 

landform, drainage density, drainage 

frequency, lineament frequency, slope 

and relative relief 

Weighted 

index Overlay 

 

Several researchers have been using all sort of CFs depending on their 

understanding and availability of their usage in existing literatures. Until today, no 

standing guidelines or procedures have been proposed on the ways and manners for 
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the selection of CFs [63, 65]. However, studies have shown that several CFs 

considered, as mentioned above, are static factors which often remain the same 

through the months of the year while multi-temporal factors such as precipitation, 

soil moisture and land surface temperature are dynamic. These multi-temporal 

factors are very important CFs whose impacts on soil erosion susceptibility 

assessment have not been investigated. In spite of their significance, they often 

neglected due to insufficient number of meteorological stations in the watershed 

under consideration [20]. Soil moisture as one of the multi-temporal CFs has been 

substantiated by Jamali [66] to influence soil erosion process. As earlier mentioned, 

precipitation levels dictate the erosive power of runoff generation which increases 

its aggressiveness to cause erosion [67].  

Land surface temperature (LST) is another crucial erosion triggering factor. 

KCCC [68] pointed out that frozen soil is highly resistant to erosion while rapid 

thawing caused by warm rains can lead to serious erosion. Regions of warmer 

climates usually have thinner organic cover on the soil that may result in erosion. 

Soil moisture is often affected by temperature through evaporation and 

transpiration processes and thereby speeds up the runoff rate. Furthermore, as 

important as runoff factor in water induced erosion, it is often not considered in 

several soil erosion susceptibility studies. Although, precipitation that generated 

this runoff may be homogenous over a small watershed area and not considered in 

the analysis as pointed out by [18, 20] but this often changed during different 

periods of year. The spatial and temporal distribution of this precipitation may 

indeed reduce the accuracy of the susceptibility mapping since different land-use 

units in the watershed have different level of exposure. According to Lee et al. 

[65], some land-use/land-cover (LULC) types yielded more runoff compare to 

areas with dense vegetation. Thus, these knowledge gaps have to be investigated 

by assessing the impact of multi-temporal (dynamic) factors on the accuracy of 

soil erosion susceptibility mapping. 

 

3.  Conceptual Framework: Field Survey and Data Analysis  

The literature survey revealed that a significant number of researchers focused in 

developing new soil erosion models and applying it for its assessment (of soil loss), 

quantifying its volume while some others focused on identification of prone areas. 

This present study therefore focuses on susceptibility assessment of soil erosion 

using quantitative, GIS and RS techniques. It has been established that studies of 

soil erosion within watersheds involve the interaction of complex biophysical 

factors such as climate, land-cover, land-use, topography and soil. These parameters 

always vary in both space and time. Thus, case-specific studies are often required to 

understand its behaviours. This study is proposed to be conducted on Cameron 

Highlands watershed in Pahang State of Malaysia due to increased rate of 

urbanization and agricultural activities that have exposed the area to massive soil 

erosion. The spatial data of the study area such as digital elevation model, Landsat 7 

ETM+ or Landsat 8 images, SPOT images, geological map, soil erosion map and 

climatic data will be obtained from appropriate agencies. The satellite data will be 

processed to have specific coordinate system for the area under consideration. The 

analogue maps of the required spatial data will be geometrically and 

topographically corrected using Quantum GIS (QGIS) while the Landsat 8 and 
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SPOT images will be processed for atmospheric corrections using Geomatica 

software to remove the haze and cloud cover if present.  

The GIS techniques using ArcGIS, Geomatica and ENVI (Environment for 

Visualizing Images) software will be adopted for the evaluation and extraction of 

required soil erosion biophysical factors from satellite and topographic data for 

the computation of soil loss and development of soil erosion map using the most 

popular empirical model called Revised Universal Soil Loss Equation (RUSLE) 

model. The said factors are: rainfall-runoff-R, terrain (slope-length)-LS, 

erodibility-K, land-cover and management-C, and conservative practice-P factors 

for the spatial assessment of soil erosion. Thus, soil erosion (inventory) map shall 

be developed by integrating both the developed map and the existing soil map of 

the study area. Field studies (ground truthing) will be conducted to inspect the 

spatial distribution of soil erosion within the watershed to compliment the results 

from the model. This is required to update the existing soil erosion map in order 

to generate reliable inventory map that will serve as basis for susceptibility 

assessment of the area under consideration.  

Also, the digital satellite data will be processed in GIS environment to 

extract and prepare maps for the soil erosion CFs for susceptibility analysis. 

The training and test points during model development will be selected by 

considering the inventory map and thematic CFs maps for use in susceptibility 

mapping using Support Vector Machine (SVM) techniques as quantitative 

approach. SVM model is similar to neural networks model. It performs 

classification by constructing N-dimensional hyper planes that optimally 

separates the data into two sets [69]. The CFs in ASCII format would be input 

into SVM learning algorithms modeller for training using four different Kernel 

functions (such as LN-Linear, PL-Polynomial, SIG-sigmoid, RBF-Radial Basis 

Function) to examine the efficacy of each in classification and select the best fit 

function as indicated in the methodological framework in Fig. 1. The 

advantages and disadvantages of each can be found in the literature.  

Extensive surveys of the past studies on soil erosion susceptibility mapping 

have been conducted to identify the current trends and the existing gaps in this 

research area. It was understood that various quantitative and qualitative 

approaches have been applied with a number of CFs considered by various 

researchers. Similar studies have been devoid of some critical CFs owing to its 

homogeneity in a small watershed or unavailability of the data. However, this 

study will have a rare opportunity of including runoff layer derived from 

precipitation records which often neglected in several studies. Moreover, 

conditions of soil moisture and LST (multi-temporal factors) are not always 

considered in many studies due to its unavailability. However, the advancement in 

remote sensing techniques for data acquisition has eased these challenges. These 

data, LST and soil moisture index (SMI) can now be extracted from Landsat 8 or 

7 ETM+ images for a particular period of time. More so, performance of some 

soft computing techniques like SVM learning algorithms have not been tested on 

soil erosion susceptibility despite its high prediction capability as confirmed in 

flood susceptibility assessments [38] and very few studies on landslide 

assessments. The proposed methodological framework to be adopted for this 

study is as shown Fig.1. The CFs such as land-use/land-cover, NDVI, LST and 

SMI shall be derived from Landsat 8 or 7 ETM+ images; lineament and bed 

lithology from geological map; soil type from soil map; runoff layer from climatic 
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data; and slope gradient, drainage density, curvature, aspect, SPI, TWI and 

distance to river from digital topographic map or DEM. For all the CFs to be used 

in this study, certainty function approach shall be adopted to optimize the CFs in 

order to identify the most influential ones for soil erosion development in the 

watershed under consideration.  

 

Fig. 1. Conceptual methodological framework for the study. 

 

4.  Model Validation 

The performance and predictive capability of erosion mapping methods are 

usually assessed by validation of the resulting maps. The validation of developed 

soil erosion susceptibility maps with independent parameters is often required 

although obtaining spatial validation data is a complicated issue [66]. In this 

study, one of the most popular geostatistical approaches preferably frequency 

ratio (FR) method for susceptibility assessment will be adopted to validate the 

reliability of results obtained from SVM approach. FR is defined in the literature 

as the ratio of probability of occurrence to non-occurrence of specific attributes 

such as landslide, erosion, etc., in a particular location [25]. This method is 

selected for usage owing to its simplicity in application as compare to others like 

logistic regression and neural networks [70]. 

Moreover, the model validation method known as Area-Under-Curve (AUC) 

technique shall also be adopted to measure the prediction accuracy of the model. 

Literatures have revealed that AUC is the most popular method used for 

susceptibility model validation [25, 34, 49, 70, 71]. AUC values often range 

between 0 and 1 in which its proximity to 1 indicates a stronger prediction accuracy 

of the model. The developed susceptibility model will then be tested in another area 

of similar environmental and climatic conditions within Malaysia or any other 

similar region.  
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5.  Conclusion 

Soil erosion phenomenon causes land degradation, desertification and water 

deterioration with enormous economic and social impacts. Some of its impacts on 

watersheds include loss of soil nutrients leading to low crop yield, sedimentation of 

hydropower reservoirs leading to reduced power generation and flood risk, 

landslide, high water turbidity, etc. The focus of this paper was to review the recent 

literatures in the area of soil erosion susceptibility assessment in order to understand 

the trend and identify areas that require improvements. The findings revealed 

inconsistencies in the selection of CFs and missing of some multi-temporal CFs that 

are very crucial to soil erosion processes. This paper provides a novel conceptual 

framework to bridge these gaps which might consequently improve the accuracy of 

soil erosion susceptibility mapping. The results of the study shall include: 

evaluation of spatial distribution of soil erosion in the watershed; evaluation of all 

soil erosion CFs; delineation of study area to different soil erosion probability 

zones. Furthermore, the results shall examine the predictive capability of GIS-based 

SVM in soil erosion mapping; establishment of spatial relationship between CFs 

and soil erosion occurrence; identification of most influential CFs for soil erosion 

susceptibility mapping; and development of soil erosion susceptibility/risk maps for 

the watershed. The results will ensure sustainable use of land resources and will 

serve as a guide to watershed managers in preventing and alleviating soil erosion 

occurrence and the hazards related to it. 

 

Acknowledgement 

This research was supported by Universiti Teknologi PETRONAS, Malaysia 

under Graduate Assistantship Scheme and University Research Internal 

Fund (URIF) 2016 Grant with Cost Centre No: 0153AA-G04. 

 

References 

1. Pradhan, B.; Chaudhari, A.; Adinarayana, J.; and Buchroithner, M.F. (2012). 

Soil erosion assessment and its correlation with landslide events using remote 

sensing data and GIS: A case study at Penang Island, Malaysia. 

Environmental Monitoring and Assessment, 184(2), 715-727. 

2. Valentin, C.; Poesen, J.; and Yong, L. (2012). Gully erosion: Impact, factors 

and control. Catena, 63, 132-153.  

3. Deng, Z.Q.; Lima, J; and Jung, H.S. (2009). Sediment transport rate-based 

model for rainfall induced soil erosion. Catena, 76 (1), 54-62. 

4. Morgan, R.P.C. (2005). Soil erosion and conservation. (3
rd
 Ed.) Blackwell, UK. 

5. Pieri, L.; Bittelli, M.; Hanuskova, M.; Ventura, F.; Vicari, A.; and Rossi, P. 

(2009). Characteristics of eroded sediments from soil under wheat and maize 

in the north Italian Apennines. Geoderma, 154 (1), 20-29. 

6. Yang, D.; Kanae, S; Oki, T.; Koikel, T.; and Musiake, T. (2003). Global 

potential soil erosion with reference to land-use and climate change. 

Hydrological Processes, 17(14), 2913-2928. 

7. Sujaul, M.; Muhammad, B.G.; Ismail, B.S.; Sahibin, A.R.; and Mohd, E.T. 

(2012). Estimation of the rate of soil erosion in the Tasik Chini catchment, 



Geostatistical Based Susceptibility Mapping of Soil Erosion and . . . . 2891 

 
 
Journal of Engineering Science and Technology     November 2017, Vol. 12(11) 

 

Malaysia using the RUSLE model integrated with the GIS. Australian 

Journal of Basic and Applied Sciences, 6(12), 286-296. 

8. Shi, Z.H.; Ai, L.; Li, X.; Huang, X.D.; Wu, G.L.; and Liao, W. (2013). Partial 

least-squares regression for linking land-cover patterns to soil erosion and 

sediment yield in watersheds. Journal of Hydrology, 498, 165-176. 

9. Yves, L.B.; Cecile, M.; Marcel, J.; Joel, D.; and Dominique, K. (2001). 

Mapping erosion risk for cultivated soil in France. Catena, 46, 207-220. 

10. Fortuin, R. (2006). Soil erosion in Cameron Highlands, an erosion rate study of 

a highland area. Fragmentation and its impact on species diversity: An analysis 

using remote sensing and GIS. Biological Conservation, 14, 1681-1698.  

11. Muhammad, B.G.; Salmijah, S.; Mohd, E.T.; Sahibin, A.R.; Rahmah, E.; and 

Pan, I.L., (2009). Land-use change and climate-change patterns of the Cameron 

Highlands, Pahang, Malaysia. Arab World Geographer, 12(2), 51-61. 

12. Aminuddin, B.Y.; Ghulam, M.H.; Abdullah, W.Y.W.; Zulkifli, M.; and 

Salama, R.B. (2005). Sustainability of current agricultural practices in the 

Cameron Highlands, Malaysia. Water Air Soil Pollution: Focus, 5, 89-101. 

13. Prasannakumar, V; Shiny, R.; Geetha, N.; and Vijith, H. (2011). Spatial 

prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: 

A case study of Siruvani river watershed in Attapady valley, Kerala, India. 

Environmental Earth Sciences, 64(4), 965-972. 

14. Lulseged, T.; and Quang, B.L. (2015). Estimating soil erosion in sub-saharan 

Africa based on landscape similarity mapping and using the revised universal 

soil loss equation. Nutrient Cycling in Agroecosystems, 102, 17-31.  

15. Othman, J.; Mohd, E.T.; Shaifah-Mastura, S.A.; Muhammad, B.G.; Pan, 

L.L.; Pauszi, A.; Mohd, K.A.K; and Nor, A.A.A. (2010). Modeling the 

impact of Ringlet reservoir on downstream hydraulic capacity of Bertam 

river using XPSWMM in Cameron Highlands, Malaysia. Journal of Applied 

Sciences Research, 5(2), 47-53.  

16. Jensen, L.; Lariyah, M.S.; Mohamed, N.M.D.; and Pierre, Y.J. (2012). 

Challenge in running hydropower as source of clean energy: Ringlet reservoir, 

Cameron Highlands case study. Proceedings National Graduate Conference, 

Universiti Tenaga Nasional, Putrajaya Campus, November 8-10. 

17. Basith, A. (2011). Landslide susceptibility modelling under environmental 

changes: A case study of Cameron Highlands, Malaysia. A PhD Thesis 

Submitted to Department of Civil Engineering, Universiti Teknologi 

Petronas, Malaysia. 

18. Conoscenti, C.; Di Maggio, C.; and Rotigliano, E. (2008). Soil erosion 

susceptibility assessment and validation using a geostatistical multivariate 

approach: A test in southern Sicily. Natural Hazards, 46(3), 287-305. 

19. Begueria, S. (2006). Identifying erosion areas at basin scale using remote 

sensing data and GIS: A case study in a geologically complex mountain basin 

in the Spanish Pyrenees. International Journal of Remote Sensing, 27(20), 

4585-4598.  

20. Aykut, A.; and Necdet, T. (2011). Mapping erosion susceptibility by a 

multivariate statistical method: A case study from the Ayvalık region, NW 

Turkey. Computers and Geosciences, 37, 1515-1524. 



2892       T. S. Abdulkadir et al. 

 
 
Journal of Engineering Science and Technology     November 2017, Vol. 12(11) 

 

21. Mitasova, H.; Hofierka, J.; Zlocha, M.; and Iverson, R.L. (1996). Modeling 

topographic potential for erosion and deposition using GIS. International 

Journal of Geographical Information Science, 10(5), 629-641. 

22. Vijith, H.; Suma, M.; Rekha, V.B.; Shiju, C.; and Rejith, P.G. (2012). An 

assessment of soil erosion probability and erosion rate in tropical 

mountainous watershed using remote sensing and GIS. Arabian Journal of 

Geosciences, 5, 797-805.  

23. Kanungo, D.P.; Arora, M.K.; Sarkar, S.; and Gupta, R.P. (2009). Landslide 

susceptibility zonation (LSZ) mapping: A review. Journal of Southern Asia 

Disaster Studies, 2, 81-105. 

24. Taskin, K.; Emrehan, K.S.; and Ismail, C. (2015). An assessment of 

multivariate and bivariate approaches in landslide susceptibility mapping: A 

case study of Duzkoy district. Natural Hazards, 76, 471-496. 

25. Lee, S.; snd Pradhan, B. (2007). Landslide hazard mapping at Selangor, 

Malaysia using frequency ratio and logistic regression methods. Landslides, 

4(1), 33-41. 

26. Tehrany, M.S.; Pradhan, B.; Mansur, S.; and Ahamad, N. (2015). Flood 

susceptibility assessment using GIS-based support vector machine model 

with different kernel types. Catena, 125, 91-101. 

27. Burton, I.; Robert, W.K.; and Gilbert, F.W. (1978). The Environment as 

hazard, New York. Oxford University Press. 

28. Bui, T.D.; Pradhan, B.; Lofman, O.; Revhaug, I.; and Dick, O.B. (2012). 

Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an 

adaptive neuro-fuzzy inference system and GIS. Computer and Geosciences, 

45, 199-211. 

29. Renard, K.G.; Foster, G.R.; and Weesies, G.A. (1997). Predicting soil 

erosion by water: A guide to conservation planning with the revised 

universal soil loss equation (RUSLE). Agriculture Handbook No. 703, 

USDA-ARS, 404 pp.  

30. Williams, J.R. (1975). Sediment yield prediction with universal equation 

using runoff energy factor: Present and prospective technology for predicting 

sediment yields and sources, ARS-S-40. US Department of Agriculture. 

Agricultural Research Service, 244-252.  

31. Maria, K.; Pantelis, S.; and Filippos, V. (2009). Soil erosion prediction using 

the revised universal soil loss equation in a GIS framework, Chania, 

Northwestern Crete, Greece. Environmental Geology, 57(3), 483-497. 

32. Wei, C.; Huichan, C.; Xueyang, S.; Qiqing, W.; Xiao, D.; and Haoyuan, H. 

(2016). A GIS-based comparative study of frequency ratio, statistical index 

and weights-of-evidence models in landslide susceptibility mapping. Arabian 

Journal of Geosciences, 9(3), 1-16.  

33. Pradhan, B.; and Lee, S. (2009). Landslide risk analysis using artificial neural 

network model focusing on different training sites. International Journal 

Physical Sciences, 3(11), 1-15. 

34. Pradhan, B.; Oh, H.J.; and Buchroithner, M. (2010). Weight-of-evidence 

model applied to landslide susceptibility mapping in a tropical hilly area. 

Geomatic Natural Hazards & Risk, 1(3), 199-223. 

https://en.wikipedia.org/wiki/International_Journal_of_Geographical_Information_Science
https://en.wikipedia.org/wiki/International_Journal_of_Geographical_Information_Science
http://www.springer.com/earth+sciences+and+geography/journal/12517
http://www.springer.com/earth+sciences+and+geography/journal/12517


Geostatistical Based Susceptibility Mapping of Soil Erosion and . . . . 2893 

 
 
Journal of Engineering Science and Technology     November 2017, Vol. 12(11) 

 

35. Netra, R.R.; John, R.G.; and John, D.V. (2010). Modeling susceptibility to 

landslides using the weight of evidence approach: Western Colorado, USA. 

Geomorphology, 115, 172-187. 

36. Haoyuan, H.; Hamid, R.P.; and Zohre, S.P. (2016). Landslide susceptibility 

assessment in Lianhua County (China): A comparison between a random 

forest data mining technique and bivariate and multivariate statistical models. 

Geomorphology, 259, 105-118. 

37. Matori, A.N.; Basith, A.; and Harahap, I.S.H. (2012). Study of regional 

monsoonal effects on landslide hazard zonation in Cameron Highlands, 

Malaysia. Arabian Journal of Geosciences, 5(5), 1069-1084. 

38. Tehrany, MS; Pradhan, B.; and Jebur, N.M. (2014). Flood susceptibility 

mapping using a novel ensemble weight-of-evidence and support vector 

machine models in GIS. Journal of Hydrology, 512, 332-343. 

39. Tehrany, MS.; Pradhan, B.; and Jebur, N.M. (2013). Spatial prediction of 

flood susceptible areas using rule based decision tree (DT) and a novel 

ensemble bivariate and multivariate statistical models in GIS. Journal of 

Hydrology, 504, 69-79. 

40. Omid, R.; Hamid R.P.; and Hossein,  Z. (2016). Flood susceptibility mapping 

using frequency ratio and weights-of-evidence models in the Golastan 

province, Iran. Geocarto International, 31(1), 42-70. 

41. Sarkar, S.; and Kanungo, D.P. (2004). An integrated approach for landslide 

susceptibility mapping using remote sensing and GIS. Photogrammetric 

Engineering & Remote Sensing, 70(5), 617-625. 

42. Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; and 

Marker, M. (2014). Gully erosion susceptibility assessment by means of GIS-

based logistic regression: A case of Sicily (Italy). Geomorphology, 204, 399-411. 

43. Conoscenti, C.; Agnesi, V.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; and 

Marker, M. (2013). A GIS-based approach for gully erosion susceptibility 

modeling: A test in Sicily, Italy. Environmental Earth Sciences, 70, 1179-

1195. 

44. Mueller, T.G.; Cetin, H.; Fleming, R.A.; Dillon, C.R.; Karathanasis, A.D.; 

and Shearer, S.A. (2005). Erosion probability maps: Calibrating precision 

agriculture data with soil surveys using logistic regression. Journal of Soil 

Water Conservation, 60(6), 462-468. 

45. Angileri, S.E.; Conoscenti, C.; Hochschild, V.; Marker, M.; Rotigliano, E.; 

and Agnesi, V. (2016). Water erosion susceptibility mapping by applying 

stochastic gradient treeboost to the Imera Meridionale river basin (Sicily, 

Italy). Geomorphology, 262, 61-76. 

46. Magliulo, P. (2012). Assessing the susceptibility to water-induced soil 

erosion using a geomorphological, bivariate statistics-based approach. 

Environmental Earth Sciences, 67(6), 1801-1820. 

47. Pravat, K.S.; Rumpa, P.; GouriSankar, B.; and Ramkrishna, M., (2015) 

Modeling of potential gully erosion hazard using geo-spatial technology at 

Garbheta block, West Bengal in India. Modeling Earth Systems and 

Environment, 1(2), 1-16.  

http://www.springer.com/earth+sciences+and+geography/journal/12517
http://www.springer.com/earth+sciences+and+geography/earth+system+sciences/journal/40808
http://www.springer.com/earth+sciences+and+geography/earth+system+sciences/journal/40808


2894       T. S. Abdulkadir et al. 

 
 
Journal of Engineering Science and Technology     November 2017, Vol. 12(11) 

 

48. Guzzetti, F.; Carrara, A.; Cardinalli, M.; and Reichenbach, P. (1999). 

Landslide hazard evaluation: A review of current techniques and their 

application in a multi-scale study, central Italy. Geomorphology, 31, 181-216. 

49. Jebur, M.N; Pradhan, B.; and Tehrany, M.S. (2014). Optimization of 

landslide conditioning factors using very high resolution airborne laser 

scanning (LiDAR) data at catchment scale. Remote Sensing of 

Environment, 152, 150-165. 

50. Massimo, P.; Artemi, C.; and Paolo, T. (2016). Soil water erosion on 

Mediterranean vineyards: A review. Catena, 141, 1-21. 

51. Gournellos, T.H.; Evelpidou, N.; and Vassilopoulos, A. (2004). Developing 

an erosion risk map using soft computing methods (case study at Sifnos 

Island). Natural Hazards, 31, 63-83. 

52. Vaopoulos, D.; Nikolakopoulos, K.; Skianis, G.; Korompilis, G.; and 

Antonakakis, A. (2002). Erosion risk and desertification risk at Pyrgos, 

Greece. WIT Transactions on Information and Communication Technologies, 

26, 235-243. 

53. Moore, I.D.; and Burch, G.J. (1986). Physical basis of the length-slope factor 

in the universal soil loss equation. Soil Sciences Society America Journal, 50, 

1294-1298.  

54. Kakembo, V.; Xanga, W.W.; and Rowntree, K., (2009). Topographic 

thresholds in gully development on the hillslopes of communal areas in 

Ngqushwa local municipality, Eastern Cape, South Africa. Geomorphology, 

110, 188-195.  

55. Gokceoglo, C.; Sonmez, H.; Nefeslioglu, H.H.; Duman, T.Y.; and Can, T. 

(2005). The 17 March 2005 Kuzulu landslides (Sivas, Turkey) and 

Landslide-susceptibility map of its near vicinity. Engineering Geology, 81, 

65-83. 

56. Dube, F.; Nhapi, I.; Murwira, A.; Gumindoga, W.; Goldin, J.; and Mashauri, 

D.A. (2014). Potential of weight of evidence modelling for gully erosion 

hazard assessment in Mbire District-Zimbabwe. Physics and Chemistry of the 

Earth, 67, 145-152. 

57. Imeson, A.C.; and Lavee, H. (1998). Soil erosion and climate change: The 

transect approach and the influence of scale. Geomorphology, 23, 219-227. 

58. Pulice, I.; Scarciglia, F.; Leonardi, L.; Robustelli, G.; Confort, M.; Cuscino, 

M.; Lupiano, V.; and Critelli, S. (2009). Studio multidisciplinare diforme e 

processi denudazionali nell’area di Vrica (Calabria orientale). Memorie Della 

Societa Geografica Italiana, 87(2), 403-417. 

59. Moore, I.D.; and Burch, G.J., (1986). Physical basis of the length-slope factor 

in the universal soil loss equation. Soil Science Society of America 

Journal, 50, 1294-1298. 

60. Gournellos, T.H.; Evelpidou, N.; and Vassilopoulos, A. (2004). Developing 

an erosion risk map using soft computing methods (Case study at Sifnos 

Island). Natural Hazards, 31, 63-83. 

61. Amarakul, V. (2001). GIS application on geological characteristics as the 

predicting for soil erosion in Khaew Noi watershed Phitsanulok province. In: 

Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 

November, 5-9. 

https://www.journals.elsevier.com/remote-sensing-of-environment
https://www.journals.elsevier.com/remote-sensing-of-environment
https://www.journals.elsevier.com/physics-and-chemistry-of-the-earth
https://www.journals.elsevier.com/physics-and-chemistry-of-the-earth
http://www.scijournal.org/impact-factor-of-SOIL-SCI-SOC-AM-J.shtml
http://www.scijournal.org/impact-factor-of-SOIL-SCI-SOC-AM-J.shtml


Geostatistical Based Susceptibility Mapping of Soil Erosion and . . . . 2895 

 
 
Journal of Engineering Science and Technology     November 2017, Vol. 12(11) 

 

62. Remondo, J.; Gonzalez-Dıez, A.; Dıaz-de-Teran, J.R.; Cendrero, A.; Fabbri, 

A.; and Chung, C.F. (2003). Validation of landslide susceptibility maps; 

examples and applications from a case study in Northern Spain. Natural 

Hazards, 30, 437-449. 

63. Ayalew, L.; and Yamagishi, H. (2005). The application of GIS-based logistic 

regression for landslide susceptibility mapping in the Kakuda-Yahiko 

mountains, Central Japan. Geomorphology, 65, 15-31. 

64. Conforti, M.; Robustelli, G.; Muto, F.; and Critelli, S. (2012). Application 

and validation of bivariate GIS-based landslide susceptibility assessment for 

the Vitravo river catchment (Calabria, South Italy). Natural Hazards, 61, 

127-141. 

65. Lee, M.J.; Kang, J.E.; and Jeon, S. (2012). Application of frequency ratio 

model and validation for predictive flooded areas susceptibility mapping 

using GIS. In: IEEE International of Geoscience and Remote Sensing 

Symposium (IGARSS), 895-898. 

66. Jamali, H.M.B., (2004). Study of soil moisture in relation to soil erosion in 

the proposed Tamcitaro Geopark, Central Mexico: A case of the Zacandaro 

sub-watershed. MSc thesis submitted to International Institute for Geo-

information Science and Earth Observation, Enschde, Netherlands. 

67. Abdulkadir, T.S.; Muhammad, R.U.M.; Khamaruzaman, W.Y.; and Ahmad, 

M.H. (2016). Evaluation of rainfall-runoff erosivity factor for Cameron 

Highlands, Pahang, Malaysia. Journal of Ecological Engineering, 17 (3), 1-8. 

68. KCCC-Kalkaska county community center, (2003). Factors influencing 

erosion. Retrieved 22nd June, 2016, Available online at 

www.kalkaskacounty.net/planningedu0043.asp 

69. Sakthivel, N.R.; Saravanamurugan, S.; Binoy, B.N.; Elangovan, M.; and 

Sugumaran, V. (2016). Effect of kernel function in support vector machine 

for the fault diagnosis of pump. Journal of Engineering Science and 

Technology, 11(6), 826-838. 

70. Isik, Y. (2009). Landslide susceptibility mapping using frequency ratio, 

logistic regression, artificial neural networks and their comparison: A case 

study from Kat landslides (Tokat-Turkey). Computers and Geosciences, 

35(6), 1125-1138. 

71. Hemalatha, K.; Wooi, N.T.; Sin, L.L.; Mohammad, F.; and Ahmad, F. 

(2015). Assessing frequency ratio method for landslide susceptibility 

mapping in Cameron Highlands, Malaysia. In: Proceedings IEEE Student 

Conference on Research and Development (SCOReD), 93-99. 

http://www.sciencedirect.com/science/journal/00983004
http://www.sciencedirect.com/science/journal/00983004/35/6

