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Abstract 

The study of vibration in carbon nanotubes (CNTs) is currently a major topic of 

interest that increases understanding of their dynamic mechanical behavior. By 

now, there are three methods to analyze the mechanical properties of carbon 

nanotube (CNT). They are spectroscopy experiment, computational simulation, 

and theoretical analysis. However, technically these are difficult experiments of 

vibrational properties because of the small diameter of the nanotubes, and 

plenty of time will be spent on the molecular dynamics (MD) simulation. 

Theoretical analyses have shown the advancement of the taken cost and the 

spent time of researches compared with the experimental operation and 

molecular dynamic (MD) simulation method, and they can predict some results 

which cannot be achieved by the other two methods by now. Elastic continuum 

models are used to study the vibrational behavior of carbon nanotubes to avoid 

the difficulties encountered during experimental characterization of nanotubes 

as well as the time-consuming nature of computational atomistic simulations. 

To calculate the resonant vibration of double-walled carbon nanotubes 

(DWCNTs) embedded in an elastic medium, a theoretical analysis is presented 

based on Euler-Bernoulli beam model and Winkler spring model. 

Keywords: Buvnov-Galerkin, Differential transformation method (DTM), Double-

walled carbon nanotubes (DWCNTs), MATLAB, Petrov-Galerkin. 

 

 

1. Introduction 

Extensive research work has been carrying out on analysis of carbon nanotube 

due to their high mechanical, electrical and thermal properties [1-4] over other 

materials. Since it was discovered by Iijima [1], various models have been used 
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Nomenclatures 
 

A Area of carbon nanotube, m
2 

c Van der Waals interaction coefficient 

E Elastic modulus of carbon nanotubes, TPa 

I Moment of inertia about the neutral axis, m
4 

k Elasticity of Winkler’s medium, GPa 

L Length of carbon nanotube, m 

w Transverse deflection of carbon nanotube, m 

  

Greek Symbols 

 Natural frequency of carbon nanotube, THz 

ρ Density of carbon nanotube, kg/m
3 

 Non-dimensional frequency 

 Ratio of moment of inertia of outer and inner carbon nanotube 
 

Abbreviations 

C-C Clamped-Clamped 

C-H Clamped-Hinged 

CNT Carbon Nanotube 

DTM Differential transformation method 

DWCNT Double-Walled Carbon Nanotube 

S-S Simply Supported 

to analyse nanostructures theoretically beside experimentally. The atomistic 

models are the more accurate but the computational cost and time are high for the 

relatively large-scale nanostructures. Alternatively, the continuum models provide 

faster and approximate results. 

Carbon nanotubes are the allotropes of carbon with a cylindrical 

nanostructure. Nanotubes have been constructed with a length-to-diameter ratio 

up to 132,000,000:1, significantly larger than any other material [1, 2]. This is 

because of very strong sp
2
 carbon-carbon bond between the atoms. These 

cylindrical carbon molecules have novel properties, making them potentially 

useful in many applications in nanotechnology, electronics, optics, and other 

fields of materials science, as well as potential uses in aerospace fields [3]. Many 

believe that CNTs would provide the ultimate reinforcing materials for the 

development of a new class of nanocomposites [4, 5]. Experiments show that 

carbon nanotubes have extraordinary electrical [6], thermal [7]and mechanical 

properties [2, 3, 8]. Mechanically, CNTs have a tensile strength that is twenty 

times that of high strength steel and Young’s modulus in the order of a terra 

Pascal [8]. Mechanical properties of carbon nanotubes are given in Table 1. 

Several studies related to bending, buckling, and vibration of single walled and 

double walled carbon nanotubes have been reported in literature [9-12].  

In the present work, differential transformation method has been used to study 

the vibration of carbon nanotube with nonlocal effect. Zhou [13] proposed 

differential transformation method to solve both linear and non-linear initial value 

problems in electric circuit analysis. Later Chen and Ho [14] applied this method 

to eigen value problems. Aydogdu [15] applied differential transformation 

method to solve the intergro – differential equation.  
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The superiority of the DTM is its simplicity and good precision and depends 

on Taylor series expansion while it takes less time to solve polynomial series. It is 

different from the traditional high order Taylor’s series technique, which needs 

symbolic computation of the necessary derivatives of the data functions. The 

Taylor series method takes relatively long time for computations involving large 

orders. With DTM technique, it is also possible to compute near exact solutions 

for differential equations.  

Table 1. Comparison of mechanical properties of CNTs [16]. 

Material 
Young’s 

modulus (TPa) 

Tensile strength 

(GPa) 

Elongation at 

break (%) 

SWCNT ~1 (from 1 to 5) 13–53 16 

Stainless Steel 0.186–0.214 0.38–1.55 15–50 

DWCNTs from 2 to 8 16- 65 12 

 

2.  Formulation 

The continuum mechanics method has been successfully applied to analyze the 

dynamic responses of individual carbon nanotubes. Based on the Euler–Bernoulli 

beam model, the governing equation of motion of a beam is given by [17]. 

2 4

2 4
(x)

w w
A EI P

t x


 
 

 
 (1) 

where x and t are the axial coordinate and time, respectively. w (x, t) is the 

deflection of carbon nanotubes. P is the distributed transverse force acted on the 

carbon nanotube. E and I are the elastic moduli and the moment of inertia of a 

cross-section, respectively. A is the cross-sectional area and ρ is the mass density 

of carbon nanotubes. 

 

Fig. 1. Analysis model of CNTs embedded in the elastic medium. 

Figure 1 shows the analysis model carbon nanotubes embedded in an elastic 

medium. The stiffness of the spring medium is k. 

For the double-walled carbon nanotubes, the interaction between inner and outer 

nanotubes is considered to be coupled together through the van der Waals forces. 

Equation (1) can be used to each layer of the inner and outer nanotubes of the 

double-walled carbon nanotubes, assuming that the inner and outer nanotubes 

have the same thickness and effective material constants. Based on the Euler-

Bernoulli beam model, we have: 
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2 4

1 1
1 1 12 4

w w
A EI P

t x


 
 

 
 (2) 

2 4

2 2
2 2 22 4

w w
A EI P

t x


 
 

 
 (3) 

where, the subscripts 1 and 2 denote the quantities associated with the inner and 

outer nanotubes, respectively. Pj (j=1, 2) are the pressures exerted on inner and 

outer nanotubes. 

For small deflection linear vibration, the interaction pressure at any point 

between the two adjacent nanotubes depends linearly on the difference of their 

deflections at that point. 

Thus, the pressure P1 acting on the inner nanotube caused by van der Waals 

interaction is given by 

1 2 1( )P c w w   (4) 

where c is the van der Waal interaction coefficient between inner and outer 

nanotubes. 

Winkler spring model has been widely used to analyse the mechanical 

properties of embedded carbon nanotubes. The pressure acting on the outermost 

layer due to the surrounding elastic medium can be given by 

2wP kw   (5) 

where negative sign indicates that Pw is in the opposite direction of the deflection 

of nanotubes.  

Thus, for the embedded double-walled carbon nanotubes, the pressure of the 

outermost nanotube contacting with the elastic medium is given by 

2 2 1( )wP P c w w  
 (6) 

In the simulation van der Waal interaction coefficient (c) can be obtained from 

the interlayer energy potential, given as [18] 

nm 0.142   ,
cm

erg
 

16.0

)2(320
22

1  d
d

R
c  (7) 

where, R1= Radius of the inner nanotube. 

Thus, by using Eqs. (4), (6) and (7) we have, 

2 4

1 1
1 1 2 12 4

( )
w w

A EI c w w
t x


 

  
 

 (8) 

Similarly, for the second nanotube, the governing equation can be written as:  

2 4

2 2
2 2 2 12 4

( )w

w w
A EI k c w w

t x


 
    

 
 (9) 
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In this analysis, we consider the deflection of double-walled carbonnanotubes 

has different vibrational modes Wj(x), j = 1, 2 for the inner and outer nanotubes.  

The displacements of the vibrational solution in double-walled carbon 

nanotubes can be given by 

( , ) ( ).ei t

j jw x t W x 
 (10) 

Equations (8) and (9) can be further simplified as: 

4
21

1 2 14
( )

d W
W W W

dX
    (11) 

4
22

2 1 2 24
( ) . ( ) .

d W
W W W k W

dX
        (12) 

where 

2 4 4 4
2 1 2 2

1 1 1 1 1

, , , , , .
A L A IcL kL x

k X
EI EI A I EI L

 
        

 

 

3. Differential Transform Method (DTM) and Solution Procedure 

Differential transformation method is based on Tayler series expansion. In this 

technique, the governing equation, and the boundary conditions are transformed 

into a set of algebraic simultaneous equations.  

By solving these equations, one can obtain the governing equation’s solution 

with great accuracy [14]. 

0

0

( )
( ) [ ]

i!

i in

xi
i

x d y x
y x

dx




  (13) 

where the value of n (the number of iterations) is determined by the convergence 

requirement in the study. 

The simplicity of the solutions of the algebraic equations is remarkable 

because equations can be solved very quickly using the symbolic computational 

software, MATLAB. 

Equations (11) and (12) can be solved for natural frequency by using the 

appropriate boundary conditions and transformed boundary conditions. We can 

use the following transformation (referring to Table 2) for this purpose. 

Table 2. Differential transformations for mathematical equations. 

Original function Transformed function 

)()()( xvxuxy 
 

(i) (i) (i)Y U V   
)()( xuxy 

 
(i) (i)Y U  

n

n

dx

xud
xy

)(
)( 

 

(i) (i 1)(i 2)....(i ) (i )Y n U n    
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3.1.  Application of DTM 

By using Table 2, the differential transformation of Eqs. (11) and (12) can be 

written as 

2 1 1
1

( ( ( ) ( ) . ( ))
( 4)

( 1)( 2)( 3)( 4)

W i W i r W i
W i

i i i i

  
 

   
 (14) 

1 2 1 2
2

(( / )( ( ) ( )) ( / ). ( ) ( / ) W (i))
( 4)

( 1)( 2)( 3)( 4)

W i W i r W i k
W i

i i i i

      
 

   
 (15) 

where,
2 4

1

1

.
A L

r
EI

 


 
The above equations can be solved for natural frequency by using the 

appropriate boundary conditions and transformed boundary conditions. 

 

3.2. Simply supported double - walled carbon nanotubes 

For the simply supported CNTs, beam boundary conditions at both ends are 

defined mathematically as 

2 2

1 2
1 22 2

0, 0, w 0, 0
d w d w

w
dx dx

     (16) 

By usingTable 2, differential transformation of the above boundary conditions 

can be written as 

1 1 2 2(0) 0, (2) 0, (0) 0, (2) 0W W W W     (17) 

1 1 2 2

0 0 0 0

( ) 0, ( 1) ( ) 0, ( ) 0, ( 1) ( ) 0
i i i i

W i i i W i W i i i W i
   

   

          (18) 

By assuming W1(1)= c1, W1(3)=c2, W2(1)=c3, W2(3) = c4,one can calculate 

W1(i), W2(i) up to n terms from the Eqs. (14) and (15) and it will be substituted in 

Eqs. (17) and (18) and by solving these four equations for anon-trivial solution, 

one gets natural frequency (ω) of the CNTs. The accuracy of natural frequency 

increases with increasing the value of n (number of iterations) and saturates after 

certain n value. 

3.3.  Clamped-clamped double- walled carbon nanotubes 

For clamped-clamped CNTs case, the boundary conditions at both ends are 

defined as: 

1 2
1 20, 0, w 0, 0

dw dw
w

dx dx
     (19) 

Differential transformation of the above boundary conditions can be written as: 

1 1 2 2(0) 0, (1) 0, (0) 0, (1) 0W W W W     (20) 
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1 1 2 2

0 0 0 0

( ) 0, . ( ) 0, ( ) 0, . ( ) 0
i i i i

W i iW i W i iW i
   

   

        (21) 

By assuming W1(2)= c1, W1(3) = c2, W2(2)= c3, W2(3)= c4the Eqs. (14) and 

(15) can be calculated up to n terms and a similar procedure is followed as that of 

simply supported boundary condition. 

 

3.4. Clamped-Hinged double- walled carbon nanotubes 

For clamped-hinged CNTs case, the boundary conditions are defined as 

At x=0  

1 2
1 20, 0, w 0, 0

dw dw
w

dx dx
     (22) 

At x=L  

2 2

1 2
1 22 2

0, 0, w 0, 0
d w d w

w
dx dx

     (23) 

Differential transformation of the above boundary conditions can be written as: 

At x= 0. 

1 1 2 2(0) 0, (1) 0, (0) 0, (1) 0W W W W     (24) 

At x= L; 

1 1 2 2

0 0 0 0

( ) 0, ( 1) ( ) 0, ( ) 0, ( 1) ( ) 0
i i i i

W i i i W i W i i i W i
   

   

          (25) 

By assuming W1(2) =c1, W1(3) = c2, W2(2) = c3, W2(3) = c4the Eqs. (14) and 

(15) can be calculated up to n terms and a similar procedure is followed as that of 

simply supported boundary condition. 

 

4.  Results and Discussion 

4.1.  Comparison with analytical solution 

In this study, we consider double-walled carbon nanotubes embedded in an elastic 

(Winkler) medium having the inner and outer diameters of 0.7 nm and 1.4 nm, 

respectively. The effective thickness of each nanotube is taken to be that of 

graphite sheet with 0.34 nm. The carbon nanotube has an elastic modulus of 1TPa 

and the density of 2.3 gm/cm
3 

[17, 19]. 

By using the differential transformation method as the numerical method, the 

natural frequency for double-walled carbon nanotubes embedded in an elastic 

medium has been computed. Results are compared with Elishakoff and Pentaras 

[17] study in which they used Buvnov-Galerkin, and Petrov-Galerkin methods for 

analysing vibration response of double-walled carbon nanotubes. Also, results are 
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compared with Xu et al. [20] study in which they used the exact method to find the 

vibration responses of double-walled carbon nanotubes embedded in an elastic 

medium. Comparison results are shown in Tables 3, 4, and 5. 

Very good agreement is observed with the exact solutions for simply 

supported boundary condition as of Elishakoff and Pentaras [17]. Again, good 

agreement with Bubnov method of Elishakoff and Pentaras [17] and Xu et al. [20] 

results are demonstrated. We have taken n= 45 so that the result converges up to 

four decimal places. Where n is the number of iterations.  

Clearly, it is observed that Fundamental frequency of double-walled carbon 

nanotubes decreasing with increasing aspect ratio L/d, where d=diameter of 

outer nanotube. 

 

Table 3.Simply supported DWCNTs fundamental frequency in THz. 

L/d 10 12 14 16 18 20 

Present [DTM] 0.46830 0.32527 0.23899 0.18298 0.14467 0.11716 

Exact [17] 0.46830 0.32527 0.23899 0.18298 0.14467 0.11716 

Bubnov [17] 0.47211 0.32791 0.24093 0.18447 0.14576 0.11806 

Petrov [17] 0.46884 0.32564 0.23926 0.18319 0.14475 0.11725 

Xu et al. [20] 0.46 ……. ……. …….. …….. 0.11 

Table 4.Clamped-Clamped DWCNTs fundamental frequency in THz. 

L/d 10 12 14 16 18 20 

Present [DTM] 1.06406 0.73683 0.54256 0.41371 0.32654 0.26546 

Bubnov [17] 1.07986 0.75063 0.55171 0.42248 0.33385 0.27043 

Petrov [17] 1.06478 0.73087 0.54341 0.41135 0.32505 0.26331 

Xu et al.[20] 1.06367 …… …… ……. ……. 0.2660 

Table5.Clamped-hinged DWCNTs fundamental frequency in THz. 

L/d 10 12 14 16 18 20 

Present [DTM] 0.73140 0.50857 0.37288 0.28583 0.22585 0.18294 

Buvnov [17] 0.73277 0.50909 0.37409 0.28644 0.22634 0.18334 

Petrov [17] 0.72843 0.50607 0.37188 0.28474 0.22499 0.18225 

Xu et al. [20] 0.728 ……. ……. ……. …….. 0.1834 

4.2. Influence of surrounding medium on vibration frequencies of 

double-walled carbon nanotubes(DWCNTs) 

Now if we change the value of Winkler elasticity constant (k) from 0-300 GPA 

and L=20 nm, we can obtain different values of vibration frequencies which are 

listed in Figs. 2 to 4. 

It is observed that vibration frequencies of first in-phase modes are highly 

influenced by the Winkler elastic medium. 
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From Figs. 2, 3, and 4, it can be found that vibration frequencies of the 

embedded double walled carbon nanotubes are larger than those of the nested 

double walled carbon nanotubes. Especially, the influences of surrounding medium 

on the vibration frequency are significant for the first in-phase modes. On the other 

hand, stiffness of surrounding medium impacts little on the vibration frequencies of 

the antiphase modes. Results for the first six modes have been demonstrated. 

 

Fig. 2. Vibration frequencies for simply-supported DWCNTs. 

 

Fig. 3. Vibration frequencies for clamped–clamped DWCNTs. 

 

Fig.4. Vibration frequencies for clamped – Hinged DWCNTs. 
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5.  Conclusions 

In this study, the vibration analysis of double-walled carbon nanotubes embedded 

in an elastic medium for various boundary conditions like clamped-clamped, 

simply supported, and clamped hinged are studied by a semi-analytical numerical 

technique called the Differential transform method in a simple and accurate way. 

The solution of the present vibration analysis problem using the differential 

transformation method includes transforming the governing equations of motion 

into algebraic equations and solving the transformed equations.Some concluding 

observations from the investigation are given below. 

 Fundamental frequency decreases with increasing aspect ratio (L/d). 

 Results indicate that phase modes have a strong influence on vibration 

frequencies of carbon nanotubes. 

 The stiffness of surrounding medium affects the resonant frequencies of 

double-walled carbon nanotubes, especially for the first in-phase modes. 

 On the other hand, the stiffness of the surrounding medium impacts little on 

the resonant frequencies of the antiphase modes. 
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