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Abstract 

Soft computing is commonly used as a modelling method in various 

technological areas. Methods such as Artificial Neural Networks and Fuzzy 

Logic have found application in manufacturing technology as well. Neuro-

Fuzzy systems, aimed to combine the benefits of both the aforementioned 

Artificial Intelligence methods, are a subject of research lately as have proven 

to be superior compared to other methods. In this paper an adaptive neuro-fuzzy 

inference system for the prediction of surface roughness in end milling is 

presented. Spindle speed, feed rate, depth of cut and vibrations were used as 

independent input variables, while roughness parameter Ra as dependent output 

variable. Several variations are tested and the results of the optimum system are 

presented. Final results indicate that the proposed model can accurately predict 

surface roughness, even for input that was not used in training. 
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1.  Introduction 

Milling is one of the most commonly used metal removal operations in industry 

because of the ability to remove material fast and at the same time provide 

reasonably good surface quality. It is used in a variety of manufacturing industries 

including aerospace and automotive sectors, where quality is an important factor. 

Milling is the process of cutting away material by feeding a workpiece past a 

rotating multiple tooth cutter; the cutting action of teeth provides a fast method of 

machining. The machined surface may be flat, angular or curved. Milling can be 

classified into peripheral milling, face milling and end milling. In peripheral or 

slab milling, the milled surface is generated by teeth located on the periphery of  
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Nomenclatures 
 

A, B Non-linear parameters  

Oj Membership function 

Pi Potential 

p, q, r Linear parameters 

Ra Surface roughness parameter, μm 

wi Weight function 
 

Greek Symbols 

 Radius parameter, 2/4 ar  

 Neighbourhood parameter, 2/4  r  

 

Abbreviations 

ANFIS Adaptive Neuro-Fuzzy Inference System 

CNC Computer Numerical Control 

FEM Finite Elements Method 

HSS High Speed Steel 

MSE Mean Square Error 

NN Neural Networks 

the cutter body. The axis of cutter rotation is generally in a plane parallel to the 

workpiece surface to be machined. In face milling the cutter is mounted on a 

spindle having an axis of rotation perpendicular to the workpiece surface. The 

milled surface results from the action of cutting edges located on the periphery and 

face of the cutter. The cutter in end milling generally rotates on an axis vertical to 

the workpiece. It can be tilted to machine tapered surfaces. Cutting teeth are located 

on both the end face of the cutter and the periphery of the cutter body.  

Surface roughness, which is a key factor in machining, is used to evaluate and 

determine the quality of a product. It influences several attributes of a part such as 

fatigue behaviour, wear, corrosion, lubrication and surface friction. Surface 

roughness refers to deviations from the nominal surface of the third up to the sixth 

order. First and second order deviations refer to form and waviness respectively. 

Third and fourth order deviations refer to periodic grooves, cracks and 

dilapidations, which are connected to the shape and condition of the cutting edges, 

chip formation and process kinematics. Fifth and sixth order deviations refer to 

workpiece material structure, which is connected to physical chemical mechanisms 

acting on a grain and lattice scale. Generally surface roughness can be described as 

the inherent irregularities of workpiece left by various machining processes. The 

most common way to describe surface roughness is the average roughness which is 

often quoted as Ra. Average roughness is defined as the arithmetic value of the 

deviation of profile from centreline along a sampling length. It is calculated as: 

 dxxy
l

Ra

l



0

1
                     (1) 

where l is the sampling length and y is the ordinate of the profile curve. Surface 

roughness is influenced by controlled machining parameters, such as feed rate, 

spindle speed, depth of cut, as well as by non-controlled influences, such as non 
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homogeneity of workpiece and tool, tool wear, machine motion errors, formation of 

chips and unpredictable random disturbances. It has been shown that both the 

controlled and the non controlled parameters cause relative vibrations between the 

cutting tool and the workpiece.  

Modelling and simulation techniques are popular for the analysis of 

manufacturing processes; especially FEM and NN [1-3]. More specifically, many 

researchers have made several efforts in order to predict the surface roughness in 

milling; statistical and empirical models to predict surface roughness have been 

proposed [4-6]. Soft computing techniques are quite common; NN [7-9], genetic 

algorithms [10-12] and fuzzy logic [13, 14] have been employed. In this paper a 

combined method of neural networks and fuzzy logic, namely the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is proposed for the prediction of surface 

roughness in end milling. Several models with different characteristics are built 

and tested and the optimum is selected. The analysis results indicate that the 

proposed model can be used to predict surface roughness in end milling with a 

less than 10% error, even for tests with cutting conditions that were not used in 

the training of the system. 

 

2.  ANFIS Modelling  

Fuzzy logic systems and neural networks are complementary technologies. Neural 

networks extract information from a system, while fuzzy logic systems use 

linguistic information from experts. An ANFIS is an integrated system comprised of 

neural networks and a fuzzy logic system. It possesses the advantages of the two 

aforementioned methods, such as learning or optimization ability from neural 

networks and humanlike if-then rules of thinking from the fuzzy logic system.   

An adaptive neuro-fuzzy system that has a structure similar to that of a neural 

network and which maps inputs through input membership functions and associated 

parameters, and then through output membership functions and associated 

parameters to outputs, can be used to interpret the input/output map. The parameters 

associated with the membership functions will change through the learning process. 

The computation of these parameters is facilitated by a gradient vector which 

provides a measure of how well the fuzzy inference system is modelling the 

input/output data for a given set of parameters. Once the gradient vector is obtained, 

any of several optimization routines could be applied in order to adjust the 

parameters so as, most of the times, to reduce the sum of the squared errors. In the 

optimization method used in this paper, a combination of least squares estimation 

and back-propagation is adopted. 

 

2.1.  ANFIS architecture 

The ANFIS architecture and its learning algorithm for the Sugeno fuzzy model are 

described in this section. For simplicity it is assumed that the fuzzy inference 

system under consideration has two inputs x and y, and one output. For a first order 

Sugeno fuzzy model, a typical rule set with two if-then rules can be expressed as:  

Rule 1: IF x is A1 and y is B1 then:  1111 ryqxpf   

Rule 2: IF x is A2 and y is B2 then: 2222 ryqxpf   
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with p, q and r linear parameters and A and B non linear parameters.  

Fuzzy reasoning and the corresponding equivalent ANFIS architecture are 

illustrated in Fig. 1(a) and (b) respectively.  

 

 

(a) Fuzzy reasoning. 

 

(b) Equivalent ANFIS. 

Fig. 1. ANFIS architecture. 

 

As it can be seen from Fig. 1(b), ANFIS consists of five layers. In the first layer 

every node is a square node with a node function  xO
iAi 1  (or  yO

iBi 1 ), 

where x (or y) is the input to node i, and Ai (or Bi) is the linguistic label associated 

with this node function. In other words, 1
iO , is the membership function of Ai and it 

specifies the degree to which the given x satisfies the quantifier Ai. In the at hand 

paper the chosen membership function was the Gaussian one:   

 


























 


2

1

1

exp

i

icx
x


                   (2) 

where c is the centre and σ is the spreading. 

In layer 2, the product layer, every node is a circle node labeled Π. The number 

of nodes in this layer equals to the number of the system’s rules; for the case 

examined there should be two nodes. The output w1 and w2 are the weight functions 

of the next layer. The output of this layer is the product of the input signals which is 

defined as: 

   yxw
iBiAi    , for i=1,2                        (3) 
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In layer 3, the normalized layer, every node is a circle node labelled N. The i-th 

node calculates the ratio of the i-th rule’s firing strength to the sum of all rules firing 

strengths:  

21 ww

w
w i

i


 , for i=1,2                                (4) 

In layer 4, the de-fuzzy layer, every node is adaptive and is represented as a 

square. The relationship between the input and the output of this layer can be 

defined as:  

 iiiiiii ryqxpwfwO 4 , for i=1, 2                   (5) 

where p, q and r denote the linear parameters or so called consequent parameters of 

the node.  

Finally, layer 5, the total output layer, computes the overall output as the 

summation of all incoming signals: 




 

i
i

i
ii

i

iii
w

fw
fwO5                  (6) 

 

2.2.  Subtractive clustering 

In order to obtain a set of m fuzzy conditional rules capable of representing the 

system under study, clustering algorithms are particularly suited, since they permit a 

scatter partitioning of the input-output space, which results in finding only the 

relevant rules. Comparing to grid-based partitioning methods, clustering algorithms 

have the advantage of avoiding the explosion of the rule base, a problem known as 

the curse of dimensionality. In this work Chiu’s subtractive clustering was applied. 

The subtractive clustering method to initialize the membership functions and to 

reduce the number of fuzzy rules before they got trained by the neuro-fuzzy 

network was used. Subtractive clustering is an unsupervised algorithm and it is 

based on a measure of the density of data points in the feature space. A set of points 

are defined as possible group centres, each of them being interpreted as an energy 

source.  The centre candidates are the data samples themselves.  

Let XN  be a set of N data samples x1, x2,…xN defined in an m+n space, where m 

denotes the number of inputs and n the number of outputs.  In order to make the 

range of values in each dimension identical, the data samples are normalized, so that 

they are limited by a hypercube.  

The potential associated to xi is:  









 

N

j
jii xxP

1

2

exp                    (7) 

with 
2

4

ar
 , rα being the radius parameter, a constant which defines the 

neighbourhood radius of each point and xi, xj are the input and the output vectors 

respectively.  
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Points xj located out of the radius of xi will have a smaller influence on its 

potential. On the other hand, the effects of points close to xi will grow with the 

proximity. Radius parameter is directly related to the number of clusters found. 

Thus, a small radius will lead to a high number of rules, which if excessive, may 

result in over fitting. On the other hand, a higher radius will lead to a smaller 

number of clusters, which may originate under fitting and models with reduced 

representation accuracy. Therefore in practice it is necessary to test several values 

for radii and select the most adequate according to the results obtained.  

After the potential value of each data point has been calculated, the data point 

with the highest potential value is selected as the first cluster centre. Let *
1x be the 

first cluster centre and its potential *
1P . The potential of all the data points is 

changed as:  

2
*
1*

1

xx

ii ePPP





                               (8) 

where 
2

4

br
 , rb defining the neighbourhood radius with sensitive reductions in 

its potential.  

Therefore, the data points near the first cluster centre will have significantly 

reduced potential value, thereby making the point unlikely to be selected as the 

next cluster centre. The process of acquiring new centre and revising potentials 

repeats until the remaining potential of all data points are below some fraction of 

the potential of the first cluster centre *
1P . Another advantage of subtractive 

clustering is that the algorithm is noise robust, since outliers do not significantly 

influence the choice of centres, due to their low potentials.  

 

2.3.  Application of the method 

For the application of the method, experimental results from the relevant literature 

were exploited [15]. The experiments pertain to the CNC end milling 6061 

aluminium alloy blocks. The tool used was a four-flute 3/4 inch diameter milling 

cutter of HSS. During the machining an accelerometer sensor was used to 

measure the vibrations. In order to get a vibration voltage average value per 

revolution, a proximity sensor was utilized to count the rotations of spindle. 

Vibration voltage values and rotation signals were collected and converted into 

digital data by A/D converter which was connected with a personal computer. 

Spindle speed, feed rate, depth of cut and vibrations were selected as independent 

variables in this study. Vibrations depend partly on the other three independent 

variables and thus they could be treated as a dependent variable. However, due to 

the complex structural system consisting of workpiece, fixture, cutting tool and 

machine tool the vibrations and consequently the roughness parameter Ra cannot 

be described quite accurately by the limited set of independent variables. 

Therefore, vibrations are treated as an independent variable, as well.  

Two sets of experimental data were obtained: training data set and testing data 

set. The training data set was obtained on the basis of four levels of spindle speed 

(750, 1000, 1250, 1500rpm), six levels of feed rate (152.4, 228.6, 304.8, 457.2, 
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533.4, 609.6 mm/min) and three levels of depth of cut (0.254, 0.762, 1.27mm). 

For each combination of spindle speed, feed rate and depth of cut, the 

corresponding vibration data (in μV) were recorded. The corresponding value of 

the roughness average Ra (in μm), the dependent output, was collected for each 

measurement. The training data used for the analysis are presented in Table 1. 

In this work, training data comprised 21 measurements selected randomly out of 

the 400 measurements originally presented in [15]. The test data set was obtained 

on the basis of four levels of spindle speed (750, 1000, 1250, 1500rpm), seven 

levels of feed rate (152.4, 228.6, 304.8, 381, 457.2, 533.4, 609.6mm/min) and three 

levels of depth of cut (0.254, 0.762, 1.27mm). Also for the test data set the data on 

vibrations and surface were recorded. The test data set comprised 10 measurements 

that are shown in Table 2. Note that in the test data set a value for the feed rate, 

namely 381mm/min that has not been used in the training data set was also 

considered. This was chosen in order to check whether the constructed system could 

predict correctly the value of the roughness parameter Ra when it has as input 

values that it has not been trained for. This is an ability that some systems have and 

it is called interpolation. The aim of this work was to create a system that could 

predict the roughness parameter Ra quite accurately; it is quantified as a small value 

of Mean Squared Error (MSE) of training and test data respectively.  

Table 1. Training set data. 

     No of 

Training 

data 

Speed 

(min
-1

) 

Feed 

(mm/min) 

Depth of 

cut (mm) 

Vibrations 

(μV) 

Surface 

roughness 

(μm) 

1 1500 152.4 1.27 0.10168 1.4224 

2 1500 457.2 0.254 0.13581 3.048 

3 1500 609.6 0.762 0.19091 2.6162 

4 1500 304.8 0.254 0.11231 2.2352 

5 1250 304.8 0.254 0.1448 2.54 

6 1250 609.6 1.27 0.18291 3.0734 

7 1250 152.4 1.27 0.096899 1.8034 

8 1000 609.6 1.27 0.18417 3.6068 

9 1000 152.4 0.762 0.10976 1.9812 

10 1000 304.8 1.27 0.18001 2.3368 

11 1000 457.2 0.762 0.16149 3.1496 

12 750 457.2 0.762 0.14068 3.7338 

13 750 304.8 0.762 0.12654 2.5908 

14 750 152.4 1.27 0.089752 1.8288 

15 750 609.6 0.762 0.17928 4.3434 

16 1500 228.6 0.254 0.08833 1.3462 

17 1250 228.6 0.762 0.13814 2.0828 

18 1000 533.4 0.254 0.10338 3.7846 

19 750 228.6 0.254 0.093096 2.7686 

20 750 533.4 0.254 0.11352 4.5212 

21 750 533.4 1.27 0.16586 3.81 

Table 2. Test set data. 

No of Test 

data 

Speed 

(min
-1

) 

Feed 

mm/min 

Depth of 

cut (mm) 

Vibrations 

(μV) 

Surface 

roughness 

(μm) 

1 1500 609.6 1.27 0.17874 2.794 
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2 1250 457.2 0.254 0.14558 2.921 

3 1250 381 0.254 0.13378 2.7178 

4 1000 533.4 0.762 0.16794 3.683 

5 1500 381 0.254 0.14637 2.794 

6 1250 533.4 0.254 0.13001 3.2766 

7 1000 228.6 0.254 0.091113 2.3368 

8 1000 381 0.762 0.14862 2.7432 

9 750 533.4 0.762 0.16241 4.1402 

10 750 381 1.27 0.15298 2.6416 

 

3.  Results and Discussion 

The analysis was realized with Matlab. Subtractive clustering algorithm was 

implemented to the training data set. In order to find the value of the radius parameter 

which would give the best results, all possible models with value from 0.1 till 1.2 with 

changing step 0.1, were tested. The membership functions and the fuzzy if-then rules 

which were estimated by the subtractive clustering algorithm were used as initial 

membership functions and if-then fuzzy rules in the neuro-fuzzy system. After the 

completion of each training process the final MSE of training and test data 

respectively was recorded. In the training procedure the final MSE error of training 

data was chosen to be equal to zero. For the termination of the analysis, the maximum 

repetitions made by the program before it stopped, the so-called epochs, were chosen 

to be 600; this value was decided after performing some test runs in Matlab. 

Furthermore, the initial step size of training was adjusted. This value has a severe 

effect in the training process. The default value chosen by the program was equal to 

0.01; for initial step size smaller than 0.01 the final MSE values were prohibitively 

large. In the analysis described in this paper, values of initial step size greater than 

0.01 were examined. In particular, values of the initial step size from 0.01 till 1.2 by 

changing step of 0.01 were considered. All these tests were held for every value of the 

radius parameter. The training process of ANFIS stopped whenever the designated 

epoch number was reached or the training error goal was achieved.  

By comparing all the models with the characteristics described above, it was 

concluded that the ANFIS system that produced smaller training and test mean 

squared errors, was the one that had been created by using an initial training step 

size of 1.2 while the radius parameter was equal to 1.0. For the described system, 

the MSE of training data was equal to 1.81∙10
-8

 while the respective MSE of test 

data was 0.0136. As one can notice, the values of both the mean squared errors of 

training and test data are significantly small.  

In Fig. 2, a high level diagram of the fuzzy inference system, is shown. Inputs 

and their membership functions appear to the left of the FIS structural 

characteristics, while the output appears on the right. All the membership 

functions used in the chosen neuro-fuzzy system were Gaussians ones. The 

membership functions of the four inputs of the system are shown in Fig. 3, as they 

were calculated after the training process.      
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System fuzzytrained: 4 inputs, 1 outputs, 7 rules

speed (7)
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depth (7)

vibrations (7)

f(u)

roughness (7)

fuzzytrained

(sugeno)

7 rules

 

Fig. 2. Fuzzy rule architecture. 

  
(a) Spindle speed. (b) Feed rate. 

  
(c) Depth of cut. (d) Vibrations. 
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Fig. 3. Membership functions of inputs. 

The program evaluated that from the training data set only 7 independent fuzzy 

rules could be derived. The 7 fuzzy rules which correspond to the previously 

mentioned membership functions are:  

1. If (speed is s1) and (feed is f1) and (depth is d1) and (vibrations is v1) then 

(roughness is r1)  

2. If (speed is s2) and (feed is f2) and (depth is d2) and (vibrations is v2) then 

(roughness is r2)  

3. If (speed is s3) and (feed is f3) and (depth is d3) and (vibrations is v3) then 

(roughness is r3)  

4. If (speed is s4) and (feed is f4) and (depth is d4) and (vibrations is v4) then 

(roughness is r4)  

5. If (speed is s5) and (feed is f5) and (depth is d5) and (vibrations is v5) then 

(roughness is r5)  

6. If (speed is s6) and (feed is f6) and (depth is d6) and (vibrations is v6) then 

(roughness is r6)  

7. If (speed is s7) and (feed is f7) and (depth is d7) and (vibrations is v7) then 

(roughness is r7)  

As mentioned, the system used was a first order Sugeno type system. The 

linear equations of the output of the system that can be seen in the fuzzy rules are 

the following:  

r1=0.003517speed-0.0036feed-2.502depth+0.7122vibrations-0.8406 

r2=-8.367×10
-106

speed - 1.275×10
-106

feed - 1.428×10
-106

depth - 4.93×10
-110  

           
vibrations - 5.58×10

-109
 

r3=-0.002005speed + 0.01103feed + 1.318depth + 3.299vibrations + 0.7446 

r4=1.687×10
-17

speed - 3.749×10
-18

feed - 3.386×10
-20

depth - 2.267×10
-21

vibrations 

       -2.541×10
-20

 

r5=0.0002813speed - 0.000596feed - 1.341depth - 5.178vibrations -7.452 

r6=-0.0004338speed - 0.005371feed - 1.279depth - 1.489vibrations + 4.24 

r7=1.679×10
-26

speed + 6.793×10
-27

feed + 8.238×10
-30

depth + 2.131×10
-30

  

      vibrations + 1.114×10
-29

 

The entire implication process from the beginning to the end can be seen in   

Fig. 4, when the vector (speed = 1125, feed = 381, depth = 0.762, vibrations = 

0.1392),  is used as input to the system.  

The structure of the described neuro-fuzzy system is shown in Fig. 5. There 

are 4 input nodes while there are 7 nodes connecting to each of the input nodes, in 

the second layer of the system, which is equal to the total number of the fuzzy 

rules, as described. 

The alteration of the value of mean squared error of training data versus the 

epochs can be seen in Fig. 6. In Figs. 7(a) and (b), the experimental values of 
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surface roughness and the corresponding calculated value of surface roughness by 

the neuro-fuzzy system for the training data and the test data are shown, 

respectively. Figure 8 shows the percentage error in the computation of surface 

roughness of the test data. All the test data have error less than 10%. 

In Fig. 9, the total surfaces which describe the input-output space of the neuro-

fuzzy system, when only two of the input variables are altered each time, are 

shown. The input vector used was (speed = 1125, feed = 381, depth = 0.762, 

vibrations = 0.1392). The two input variables that were not changed each time, 

took their values from the above vector. The two input variables that are altered 

each time take all the possible values between theirs width of rate. 

 

Fig. 4. Implication method. 

 

Fig. 5. Structure of neuro-fuzzy system. 
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Fig. 6. MSE error variation versus epochs. 

 

(a) Training data set. 

 
(b) Test data set. 

Fig. 7. Experimental values and ANFIS                                                           

predicted results for training and test data sets. 
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Fig. 8. Discrepancies between experimental values and ANFIS predicted 

values for each value of the test data set, in percentage. 
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Fig. 9. Input-output surface of neuro-fuzzy system. 

 

From the figures of the input membership functions and the input-output 

surfaces it can be noticed that the two input variables that are the most significant 

ones, the ones that influence more the value of the output, are the spindle speed 

and the feed rate. The membership functions of the depth of cut and the vibrations 

are unchangeable in the whole width of rate. The same conclusion could be 

derived from the linear equations of the output, in which the factors of spindle 

speed and feed rate are significantly higher than those of depth of cut and 

vibrations. It is worth noticing that neuro-fuzzy systems are very stable systems; 

if the initial parameters are not changed, they will give the same results for all the 

runs of the program. 

 

4.  Conclusions 

In this work, a neuro-fuzzy system was implemented in order to predict the surface 

roughness in end-milling. Four independent variables were used as inputs, namely 

spindle speed, feed rate, depth of cut and vibrations. The only output of the system 

was corresponding to the roughness parameter Ra. By applying subtractive 

clustering with a value of radius parameter equal to 1.0 in order to find the initial 

membership functions of the variables and the fuzzy rules, and then train the neuro-

fuzzy system by using as initial step size 1.2, the MSE of training data was equal to 

1.81∙10
-8

 while the MSE of test data was equal to 0.0136. The results were quite 

satisfying. The neuro-fuzzy systems are well suited for all the problems, since they 

combine all the advantages of neural networks and fuzzy logic.           
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