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Abstract 

Monte Carlo simulation using Simple Random Sampling (SRS) technique is 

popularly known for its ability to handle complex uncertainty problems. 

However, to produce a reasonable result, it requires huge sample size. This 

makes it to be computationally expensive, time consuming and unfit for online 

power system applications. In this article, the performance of Latin Hypercube 
Sampling (LHS) technique is explored and compared with SRS in term of 

accuracy, robustness and speed for small signal stability application in a wind 

generator-connected power system. The analysis is performed using 

probabilistic techniques via eigenvalue analysis on two standard networks 

(Single Machine Infinite Bus and IEEE 16–machine 68 bus test system). The 

accuracy of the two sampling techniques is determined by comparing their 

different sample sizes with the IDEAL (conventional). The robustness is 

determined based on a significant variance reduction when the experiment is 

repeated 100 times with different sample sizes using the two sampling 

techniques in turn. Some of the results show that sample sizes generated from 

LHS for small signal stability application produces the same result as that of the 
IDEAL values starting from 100 sample size. This shows that about 100 sample 

size of random variable generated using LHS method is good enough to 

produce reasonable results for practical purpose in small signal stability 

application. It is also revealed that LHS has the least variance when the 

experiment is repeated 100 times compared to SRS techniques. This signifies 

the robustness of LHS over that of SRS techniques. 100 sample size of LHS 
produces the same result as that of the conventional method consisting of 50000 

sample size. The reduced sample size required by LHS gives it computational 

speed advantage (about six times) over the conventional method. 

Keywords: Monte Carlo simulation, Latin hypercube sampling, Simple random 

                   sampling, Small signal stability, Power system. 
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Nomenclatures 
 

h  
T  

Function of the model 

Transpose of matrix 

x  Vectors of input variables 
y  Vector output variables  

D  Known probability distribution 

N  Number of samples 

yi  Model output 

y( srs ) ( )srs
var y

( lhs )y  

 

Mean of the output using SRS 

 

Variance of the output mean using SRS 

Mean of output using LHS 

( )( lhs )var y

ƒW ( v )  

 

 Variance of the sample using LHS 

Probability of observing wind speed, v , 
k  Weibull shape parameter  
c  Weibull scale parameter 

eP  Electrical power generated from wind turbine 

 

Cp  Coefficient of performance of wind turbine 

ηm  Mechanical transmission efficiency 

ηg
 Generator efficiency 

iv   Vector of wind speeds, m/s 

civ  Cut-in wind speed, m/s 

rv  Rated wind speed, m/s 

vco  Cut-out wind speed, m/s 

rP  Wind turbine rated power, Watt 

U  Terminal voltage, volt 

1X  Stator reactance, pu 

2X  Rotor reactance, pu 

Xm  Magnetising reactance, pu 

2r  

is  
( v )i

Q
 

g( N )P
   

( ni )
f

   

 
ƒ
  

Rotor resistance, pu 

Vector of rotor slip 

 

Vector of reactive power, Var 

 

Probability of generating unit with N discrete status 

Probability of dispatch 

Damping frequency, hertz 

Greek Symbols 

ρ  
ξ
 

λ  

Air density, kg/m3. 

Damping ratio 

Eigenvalues 
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Abbreviations 

 

MCS 

SRS 

LHS 

CDF 

SCIG 

DFIG 

SMIB 

 

 

Monte Carlo Simulation 

Simple Random Sampling 

Latin Hypercube Sampling 

Cumulative Distribution Function 

Squirrel Cage Induction Generator 

Doubly Fed Induction Generator 

Single Machine Infinite Bus 

1.  Introduction 

The electric power system is naturally confronted with many uncertainties as a 

result of randomness associated with its operation. Random changes in load take 

place all the times, with subsequent adjustment of power generations; there are 

also variations in the transmission line parameters as a result of changes in the 

environmental conditions. Any of these stochastic processes can cause a change 

in the equilibrium state of a power system. In the transition period, synchronism 

may be lost, or growing oscillation may occur over a transmission line, which 

could eventually lead to instability of the power system. This kind of instability is 

referred to as small signal instability. With the recent deregulation of electricity 

markets, electric power from renewable energy sources has been integrated into 

the grid. Hence, the power system is now faced with greater uncertainties and is 

operated closer to security limits than in the past following the intermittent nature 

of most of the renewable energy sources such as wind, solar, tidal, small hydro, 

and so forth. Of these various sources, wind energy is the most stochastic due to 

incessant changes in weather conditions. As more wind power is injected into the 

grid, the possible implications on the overall power system dynamics is of great 

concern. A key aspect of such dynamics is the study of the small signal stability.  

There are various methods that have been proposed in literature to study the 

uncertainty regarding the small signal stability of a power system [1-7]. Of these 

methods, the Monte Carlo Simulation (MCS) is the most popular [8]. This is 

because of its ability to handle large complex  non-linear power systems [2] with 

high levels of flexibility and accuracy [7].  However, many sample data are required 

to obtain reasonable results which could make it to be computationally intensive 

and time consuming [9;10]. In [6], probabilistic small signal stability was conducted 

using MCS, the uncertainty considered includes nodal load and conventional 

generation dispatch. The authors later conducted the same study using a grid 

computing framework in [5] to enhance the computational speed and memory space 

lacking in the conventional MCS approach. Macdonald [11] sets out to examine 

three aspect of the sampling method used in MCS applied to a typical building 

simulation problem. It was concluded that Monte Carlo analysis in building 

simulation application is most effective with SRS techniques. The probability small 

signal stability in all the aforementioned researches was conducted using MCS with 

different sampling techniques. However, none considered the impact of the 

sampling techniques on the small signal stability of a power system incorporating 

intermittent wind power generation. This paper therefore explores the usage of LHS 

techniques in generating random numbers from known probability distribution for 

the uncertainty assessment of small signal stability of wind connected power system 

using MCS and then compares the technique with the popular SRS techniques in 

term of accuracy, robustness and speed. 
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The MCS algorithm for small signal stability analysis begins with the modelling 

of the input parameters using random numbers. Subsequently, the load flow 

analysis is carried out using the Newton Raphson algorithm, followed by the 

eigenvalue computation using the method of modal analysis, and finally, the results 

are analysed statistically. The procedure used for the analysis is depicted in Fig. 1. 
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Fig. 1. Flowchart depicting the procedure for MCS Algorithm for Small 

Signal Stability.  

2. Methodology 
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Monte Carlo simulations are set of computer algorithms for solving various kinds of 

uncertainty problems using random numbers. It is a numerical method which 

involves three basic steps as depicted in Fig 2: first, a random number from a given 

probability distribution is generated. Then, a mathematical model is solved 

deterministically to obtain the quantities of interest. Finally, a statistical analysis is 

performed. The first two steps are repeated a finite number of times.  

 

Fig. 2. Monte Carlo Simulation Steps. 

Uncertainty analysis relating to the MCS can be described by a function given 

in (1)  

( )=y h x                                                                                                                       (1) 

where h  represents the function that describes the behaviour of the model under 
study, x and y  are the vectors of input and output variables respectively,  which are 

given by   

[ ]
[ ]

1 2

1 2

, , .....

, , .....

=

=

T

n

T

n

x x x x

y y y y
                                                                                                       (2) 

T denotes the transpose of matrix. The objective is to determine the probability 

distribution of the output variable y  from the known probability distribution of the 

input variable x  in a repeated simulation process. 

The uncertainties in the input variable x  are defined by the sequence of known 

probability distribution D , which is given by eq. (3): 

1, 2
( ,..... )=

qx
D D D D                                                                                      (3) 

where 
i

D  is the distribution associated with the element 
i
x of x  and qx  is the 

number of elements that is contained in x . It should be noted that dependency and 

additional relationship between the elements of x can be defined. 

 

2.1. Simple random sampling technique 

SRS is a standard sampling technique in MCS.  It gives each sample of the variable 

an equal probability of being chosen and it serves as a theoretical basis for the 

design of other sampling methods. The generation of random samples in SRS 

mainly depends on the ability to generate uniformly distributed random numbers 

from the interval [0, 1]. From the uniform random numbers, one can reproduce 
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random numbers for other distribution through a deterministic transformation 

known as the inversion method.  

The relationship between two probability distribution function p( b )  and q( a )  

can be written as (4) based on the fundamental transformation law of probabilities 

[8]. 

=p( b )db q( a )da                                                                                         (4) 

Equation (4) can be re-written as 

=
da

p( b ) q( a )
db
                                                                                                   (5) 

Equation (5) relates a random variable b from the distribution of p( b ) to a 

random variable  a  from the distribution of q( a ) . If a  is from a uniform 

distribution [0, 1], then q( a )  is constant, hence (5) becomes (6) 

=
da

p( b )
db
                                                                                                       (6) 

The solution to (6) is given by equation (7), where P(b ) is the cumulative 

distribution function (CDF)  

= = ∫
b

0

a P(b ) p( c )dc                                                                                         (7) 

The relationship in (7) yields the target random variable given the source random 

variable.  

The robustness of SRS in the MCS conforms to the law of statistics in 

determining the variance of the means of the output variables [11]. The mean of the 

samples can be estimated as (8): 

=

=
∑
N

1
y yi( srs )

N
i 1

                                                                                               (8) 

where N is the number of samples and 
i
y is the model output.  

Sample variance can be estimated as (9): 

( ) ( )
=

= −∑
2N

( srs )( srs ) i

i 1

1
ar y y y

N
v                                                                          (9) 

The variance in estimating the mean can be determined as (10) 

( ) ( )=
srs ( srs )

1
var y var y

N
                                                                         (10) 

 

2.2. Latin hypercube sampling 

Latin Hypercube Sampling (LHS) is a stratified sampling technique for sampling 

random variables from the entire distribution. It was first proposed by McKay in 
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1979 [12] and was developed as a result of concerns in the reactor safety 

community over the treatment of uncertainty analysis of complex systems [8]. The 

technique being used in LHS is known as stratified sampling without replacement 

where the random variable distributions are divided into equal probability intervals. 

Each sub-interval for each variable is sampled exactly once in a manner such that 

the entire range of each variable is represented. The sampling procedure can be 

viewed as follows: 

Let 
1 N

G ,.......,G  be the N input random variables in a probability problem. The 

cumulative distribution of  
n

G  which belongs to 
1 N

G ,.......,G  can be written as 

=
n n n

Y F (G )                                                                                                      (11) 

For a sample size k , the range of 
n

Y  from [0, 1] is divided into k non overlapping 

intervals of equivalent length; hence the length of each interval is givens as 1
k
 

One sample value is selected from each interval randomly without replacement.  

Subsequently, the sampling values of 
n

G  can be calculated by the inverse function 

of the equation (11). The nth sample of 
n

G can be determined by equation (12): 

− −
=

 
 
 

1

nk n

n 0.5
G F

k
                                                                                      (12) 

The sample value of  
n

G  can now be assembled in a row of the sampling matrix as 

(13): 

n1 n2 nk nN
[G ,G ,........,G ......G ]                                                                                 (13) 

Once all the N input random variables are sampled, an Nxk primary samplingG  

can be obtained, where k is the size of the sample. 

LHS can always start with the generation of uniform distributed samples in 

interval [0, 1]. The CDF can then be  inverted to obtain the target distribution [13]. 

The robustness of the sampling techniques depends on the mean output statistic  

[11]. Therefore, the mean and the variance of the sample can be evaluated by (14) 

and (15) respectively.  

=

= ∑
N

( lhs ) i

i 1

1
y y

N
                                                                                                (14) 

( ) ( )
=

= −∑
2N

( lhs )( lhs ) i

i 1

1
var y y y

N
                                                                       (15) 

The variance of the mean can be calculated as (16) 

−
= −( lhs ) ( lhs )

1 N 1
Var( y ) var( y ) cov( A1, A2 )

N N
                                    (16) 

where cov( A1, A2 )  is the covariance between random variables. 
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3. Uncertainty Model of Input Variables for Small Signal Stability Analysis 

The input random variables for the analysis of small signal stability of wind 

generator-connected power system include the stochastic active and reactive wind 

power generated by the wind turbine, the change in the conventional generation 

dispatch and the variation in nodal loads.  

3.1. Active and reactive power of wind generator 

3.1.1. Wind speed model 

The variation in wind speed was modelled using two parameters Weibull 

distribution as expressed by (17).  

−

ƒ = −
    

    
    

k 1 k

W

k v v
( v ) exp

c c c
                                                                 (17)

  

where ƒ
W
( v )  is the probability of observing wind speed, v . The Weibull shape 

( k ) and scale ( c ) parameters as used in this paper to generate wind speeds are 

provided in Table A1 in the appendix. The wind speed is generated from either the 

SRS 
(srs)
y  or LHS (

( lhs )
y ) 

 3.1.2. Modelling the active power generated by wind generator 

Not all the energy in the mass of moving air can be converted into electrical power. 

The amount of energy that can be converted into useful electrical power ( eP ) 

depends on the coefficient of the performance of the turbine, the transmission 

efficiency and the generator efficiency which can be written as (18)   

ρ η η= 3

e p m g

1
P AC v

2
                                                                                      (18) 

where pC is the coefficient of the performance of the turbine [14], ηm  is the 

mechanical transmission efficiency and η
g
is the generator efficiency. For pitch-

controlled wind turbine, the generated active power of WECS can be modelled as 

eq. (19) [15;16]. 

ρ η η

≤ ≤

≤ ≤
i

v -v
                        P                   (v  v  v )

v -v

1
     P  =    P = AC v      (v  v   v )

2
              

                        0                                ( v

2 2
i ci

r ci i r
2 2
r ci

3
e( v ) r p m g r r i co

i ≤ ≥v  , v  v )ci i co

                                         (19) 

where iv  is the vector of wind speeds generated according to the Weibull 

distribution of the known parameters, e( v )i
P  is the active wind power generated in 

accordance with the generated wind speeds and the power curve of a wind turbine; 
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civ  is the cut-in wind speed, rv is the rated wind speed, cov is the cut-out wind 

speed, rP is the rated power. The parameters of the commercially available wind 

turbine (VESTAS-V82) as provided in Table A2 in the appendix are selected for the 

simulation.   

3.1.3. Reactive power generated by wind generator  

Most generators used in wind power applications are asynchronous generators and 

can be classified into four groups [17] : (i) the SCIG, (ii) the wound rotor induction 

generator with variable rotor resistance, (iii) the DFIG, and (iv) the induction 

generator with a full scale converter. The generators in group (i) and (ii) absorb 

reactive power from the grid. The reactive power absorbed is a function of the 

active power generated. However, the reactive power for generators in group (iii) 

and (iv) can be controlled independently using the frequency converter to maintain 

unity power factor. It can be assumed that there is no exchange of reactive power 

between the generator and the grid; hence the reactive power is maintained at zero. 

 In this study, the generators belonging to group (i) and (ii) are considered and 

they are commonly modelled using RX model when considering them for 

uncertainty studies [18]. The active power injected into the grid is derived from the 

power curve of the wind turbine with the prior knowledge of wind speed and its 

distribution. The reactive power absorbed from the grid can be derived using the 

steady state equivalent circuit of an asynchronous induction generator as shown in 

Fig 3. 

 

Fig. 3. Simplified steady state equivalent circuit of an asynchronous generator 

 

where U  is the terminal voltage, 
1X  is the stator reactance, 2X  is the rotor reactance, 

Xm  is the magnetising reactance, 2r  is the rotor resistance, s is the rotor slip of the 

asynchronous generator. The stator resistance is neglected. From the circuit, the real 

power injected to the grid is given by (20). 

−

=

+
 
 
 

2 2

i
( v ) 2i

22

i

r
U

s
Pe

r
X

s

                                                                                      (20)
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where = +1 2X X X  and iPe( v ) is the generated active power at different wind speeds 

according to the power curve in equation (19). The amount of reactive power 

absorbed from the grid depends on the rotor slip is , which also changes as the wind 

power varies in accordance with the variations in wind speed. Based on equation 

(20), is  was derived as (21). The reactive power ( v )i
Q  absorbed at different wind 

speeds can be computed as (22). 

− + −
=

4 2 2 2 2

2 2 2( v )i

i 2

( vi )

Ur U r Pe X r

s
2Pe X

                                                                       (21)

  

+ +
=

2 2

i m 2
( v ) ( v )i i

i m 2

s X ( X X ) r
Q Pe

s X r
                                                                       (22) 

Different slip and reactive power can be obtained from the relation between active 

power and reactive power for different generated active power, depending on the 

wind speed.  

3.1.4 Active and reactive power of wind farm 

The combination of several Wind Energy Conversion System (WECS) constitutes a 

Wind Farm (WF) which may be of the same type or different types. The power 

output of WF consisting of the same types of wind turbines as in the case of this 

study can be determined as (23) and (24), respectively. 

=e( v )wf e( vi )i
P NP                                                                                                      (23) 

=( v )wf ( vi )i
Q NQ                                                                                                      (24) 

3.2 Modelling nodal loads for uncertainty study 

It is generally accepted that the electrical loads in power systems can be modelled 

using normal probability distribution function (25) [4;19]. This distribution has been 

selected for modelling all the nodal loads.   

( )−µ
−

σµ σ =
σ π

2
y

22 2
1

f ( y; , ) exp
2

                                                                       (25) 

where µ is the mean vector, σ2 is the variance matrix and σ is the standard 
deviation. 

3.3 Uncertainty modelling of conventional generator’s dispatch 

The variation in the generation output of conventional synchronous generators is 

mainly due to maintenance plan and unit dispatches as a result of market rules [6]. 

These uncertainties are commonly modelled using either the binomial distribution 

or the discrete probability model [6;20]. The discrete probability model is chosen 

for modelling the output of synchronous generators in this study because it can 

enhance the fast convergence of the simulation. The model assumes that generation 

units have distinct statuses in terms of output power. Each of the N generating 
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status assumes a certain probability which adds up to unity as given in equation 

(26).   

= =

=
∑
N

P f 1g( N ) ( ni )

i 1

                                                                                      (26) 

where g( N )P is the probability of generating unit with N discrete status, f( ni ) is the 

probability of dispatch. Discreet probabilities of generation are provided in Table 

A4 in the appendix. 

4. Power System Model and Small Signal Stability Analysis 

The dynamic behaviour of a large complex non-linear system such as a power 

system can be represented by equation (27). 

( )
( )

= ƒ
=

x x,u,t

y g x,u,t

&
                                                                                                     (27) 

where 

( )
( )

=

=

T

1, 2 n
T

1 2 n

x x x ,....., x

u u ,u ,....,u
   

x  is the state vector,  u  is the input vector and y  is the output vector. 

Linearising at the system equilibrium yields equation (28) 

∆ = ∆ + ∆
∆ = ∆ + ∆
x A x B u
y C x D u

&
                                                                                            (28) 

Subsequently, the system stability subject to a small disturbance is studied based on 

the state matrix A  

λ − =det( I A ) 0                                                                                                      (29) 

The values of λ  that satisfy equation (29) are the eigenvalues of matrix A . 
They contain information about the response of the system to small perturbation. 

The eigenvalue can be real and/or complex. The complex values appear in 

conjugate pairs if A  is real (30). 

i i ijλ σ ω= ±                                                                                                      (30) 

where σ i and ωi are the real and imaginary part of the eigenvalue λi . The frequency 

of oscillation in, Hz, and the damping ratio are given by equation (31) and (32). 

ω
ƒ =

π2
i                                                                                                                     (31) 

σ
ξ

σ ω

−
=

+

i

2 2
i i

                                                                                                     (32) 

5.  System under Study 
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The performance of LHS in comparison with SRS in small signal stability 

application of a wind connected power system was first carried out using single 

machine infinite bus (SMIB) system as depicted in Fig 4. The load on bus 3 was 

modelled with normal distribution generated using SRS and LHS in turn. 2MW 

Wind generator made of SCIG is connected to the grid through a 0.69/33kV 

transformer. The wind speeds that were used to generate the wind power through 

the turbine power curve were drawn using Weibull distribution via SRS and LHS in 

turn.   

 

Fig. 4. Single machine infinite bus (SMIB) test system 

 

In order to demonstrate confidence in the result obtained from the SMIB test 

system in the evaluation of the sampling techniques, a further numerical experiment 

was conducted using a larger network (IEEE 16–machine 68 bus systems) as 

depicted in Fig 5.  

 

Fig. 5. IEEE 16–machine 68 bus system with 5 wind farms 
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The system consists of 58 varying quantities, i.e. 5 wind farms generating both 

active and reactive power in accordance with changes in wind speeds modelled 

using Weibull distribution, 15 synchronous generators modelled with 5 discrete 

probability units and 33 electrical nodal loads modelled as a normal distribution. All 

the synchronous generators were modelled as 4th order and were equipped with an 

IEEE type 1 exciter model. The network data for both systems can be found in [21]. 

The Weibull parameters for the generation of wind speed, the wind turbine 

parameters, the discrete probability for generation dispatch of the conventional 

generators and the nodal loads mean and standard deviation are provided in Table 

5–Table 8 in the appendix. Each WF consists of 100 wind turbines.  

6.  Simulation Result and Discussion 

6.1. Single Machine Infinite Bus (SMIB) System 

The modal analysis of wind generator-connected SMIB was performed using 

different sample sizes of wind speeds and nodal loads generated from required 

distribution using SRS and LHS in turn. A total of 12 eigenvalues was obtained in 

each case in which 4 (2 pairs) of the eigenvalues are oscillatory. The mean real part 

of the eigenvalues, the mean damping ratio and the mean frequency of oscillation of 

one of the oscillatory modes obtained from the two sampling techniques are 

compared for different sample sizes. It is generally believed in Monte Carlo 

simulation  uncertainty analysis that the higher the sample size, the better the results 

[7]. The result obtained using a sample size of 50000 is regarded in this paper as 

reasonable results (IDEAL).The modal analysis results obtained from each sample 

size using SRS and LHS in turn are compared to the IDEAL results (i.e acceptable 

result). The results of the comparison are presented in Figs 6-8. It can be observed 

from the figures that random variables drawn using LHS techniques produces the  

same results as that of the IDEAL starting from about 100 sample size. This 

indicates that, rather than using huge sample size to generate input variables i.e. 

wind speeds and nodal loads for the small signal stability study, about 100 sample 

size drawn from LHS technique is enough to produce reasonable results. This will 

reduce the computer required memory and increase the speed of computation. 

However, the random samples drawn from SRS techniques fluctuates to about 5000 

sample size before it could produce the same result as that of the IDEAL value. 
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Fig. 6. Comparison of output Mean real part eigenvalue using different sample 

sizes and sampling method (SRS and LHS) on the SMIB test system 
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Fig. 7. Comparison of output mean damping ratio using different sample sizes 

and sampling method (SRS and LHS) on the SMIB test system 
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Fig. 8. Comparison of output oscillatory frequency (Hz) using different sample 

sizes and sampling methods (SRS and LHS) on the SMIB test system 

 

The results of the two oscillatory modes obtained from the modal analysis of 

wind generator-connected SMIB system are compared in term of computational 

speed in Table 1. It is evident from the table that the LHS technique achieved the 

same result in 100 iterations as the result obtained from 50,000 iterations (ideal 

sample size) with lesser simulation speed and memory. The simulation speed for 

IDEAL is estimated to be about 2.57 hours while that of LHS and SRS techniques 

with 100 sample size are estimated as 58.6s and  46.7s respectively. This shows the 

computational advantage of LHS over the SRS method. 
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Table 1. Comparison of the 2 oscillatory modes obtained from SMIB 

using 100 sample size of SRS and LHS 

Result   (IDEAL) 100 sample size 

of SRS 

100 sample size of 

LHS 

E( )λλλλ  i -1.2037± 0.2205i -1.023 ± 0.456i -1.2037± 0.2205i 

ii -0.1462±4.5970i -0.1320 ± 4.907i -0.1463± 4.5972i 

E( )ξξξξ  i 0.9836 0.8130 0.9836 

ii 0.0318 0.0290 0.0318 

E( f )

 

i 0.0345 0.0296 0.0341 

ii 0.7316 0.6819 0.7317 

Time   2.57hrs 56.8s 48.7s 

 

 

6.2. IEEE 16–Machine 68 Bus Systems 

To increase the confidence in the initial results presented, large network (IEE 16-

machine 68 bus systems) was used with more random input variables. 68 

eigenvalues (modes) were obtained in which 24 (12 pairs) of it are oscillatory 

modes. For the purpose of this study, one oscillatory mode (one with least damping) 

was picked for analysis. The results of the modal analysis using different sample 

sizes are compared in Figs 9-11. It is again revealed that reasonable results could be 

obtained with approximately 100 sample size using LHS. This shows that, 

irrespective of the size of the electrical network, about 100 sample size is good 

enough to produce the same result as that of the IDEAL.  
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Fig. 9. Comparison of output mean real part eigenvalue using different sample 

sizes and sampling method (SRS and LHS) on the IEEE 16–machine 68 bus 

test system. 
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Fig. 10. Comparison of output mean damping ratio using different sample sizes 

and sampling methods (SRS and LHS ) on the IEEE 16–machine 68 bus test 

system 
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Fig. 11. Comparison of output mean oscillatory frequency using different 

sample sizes and sampling methods (SRS and LHS) on the IEEE 16–machine, 

68 bus test system 

Table 2 shows the result of the modal analysis of the least damping ratio of wind 

connected IEEE 16–machine 68 bus test system and the time taking to complete the 

computation. The table also indicates that about 100 sample size of LHS present 

basically the same result as that of IDEAL with lesser simulation time.  

 

Table 2. Comparison of local mode with the least damping ratio obtained 

from the IEEE 16–machine 68 bus system 

Result 50000 sample size 

(IDEAL) 

100 sample size of 

SRS 

100 sample size of 

LHS 

E( )λλλλ  0.0993± 7.3644i 0.1002 ± 8.105 0.0993±7.3643i 

E( )ξξξξ  -0.0135 -0.0218 -0.0135 
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Ε(ƒ)  1.1721 1.310 1.1722 

tim e  5.23hrs 1.08min 58.6s 

 

6.3 Robustness of the sample techniques 

The robustness of a sampling technique can be measured in terms of the 

significant reduction in variance between repeated analyses [11] . To measure the 

robustness of the output mean results obtained by the two sampling techniques, 

different sample sizes of 100, 1000, 5000 and 50000 were run repeatedly 100 

times and the variance in the output statistic were evaluated using equations (10) 

and (16) in a repeated MCS. The flowchart of the algorithm is depicted in Fig 12 

and was programmed based on the power system toolbox (PST) [21] in 

MATLAB
TM
 2011b on an Intel(R) xeon (R), core 2 duo CPU T8300 @ 2.4Ghz, 

16 GB of RAM. 

 

 

Fig 12. The flowchart to test the robustness of the sampling techniques 
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The results comparing the robustness of both sampling techniques are given in 

Table 3 and Table 4 for the SMIB and IEEE 16–machine 68 bus systems, 

respectively. The LHS method yielded a lower variance compared with the SRS 

of the same sample size. The tables also indicate that the variance reduced with 

the increase in sample size. This is expected, but interestingly, the value of 

variance in the result of LHS with a sample size of 100 yielded a comparable 

value to that of SRS with a sample size of 50000. This further corroborates the 

earlier simulation results.  

 

 

Table 3: Variance of mean output variables for 100 repetitions 

( runM  =100) on SMIB 

Sample 

size 

Output variables SRS LHS 

100 ( )ξvar  6.90x10-8 1.53x10-10 

1000 ( )ξvar  8.95x10-9 1.83x10-12 

5000 ( )ξvar  1.39x10-9 5.05x10-14 

50000 ( )ξvar  1.26x10-10 1.09x10-15 

 

 

Table 4: Variance of mean output variables for 100 repetition ( runM  

=100) on the IEEE 16–machine 68 bus system 

Sample size Output variables SRS LHS 

100 ( )ξvar  7.57x10-9 3.89x10-11 

1000 ( )ξvar  2.52x10-10 5.99x10-12 

5000 ( )ξvar  8.74x10-11 2.24x10-12 

50000 ( )ξvar  1.82x10-11 4.55x10-13 

 

It can be inferred from the results presented in both tables that LHS is preferable 

compared to SRS in terms of robustness. It has also been demonstrated that 100 

samples of LHS are sufficient to produce a reasonable result for the practical 

Monte Carlo-based small signal stability application. In this manner, the 

computation cost is greatly reduced. 
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7.  Conclusion 

The comparison in terms of accuracy, speed and robustness of two sampling 

techniques namely simple Random Sampling (SRS) Latin Hypercube (LHS) 

sampling techniques commonly used in the MCS has been examined for 

application in the probabilistic small signal stability analysis. Based on the results 

presented, it is concluded that LHS is preferable compared to SRS in terms of 

accuracy, speed and robustness. It has also been demonstrated that a sample size 

of 100 drawn from the LHS is adequate to produce a reasonable result for 

practical Monte Carlo based small signal stability applications. This in turn 

reduced the computational cost of the simulation. 
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 Appendix A 

Parameters used for the study 

Table A-1 The Weibull parameters and the location of wind farms on IEEE 16-

machine 68 bus system 

           Bus 

Parameters 

5 14 17 34 38 

 Mean (m/s) 6.74 8.73 6.90 7.28 7.59 

St. deviation 3.20 4.15 3.09 3.67 3.44 

Shape (k) 2.24 2.23 2.40 2.08 2.35 

Scale(c), m/s 7.61 9.86 7.80 8.22 8.58 

 

Table A-2  Parameters of the induction generator 

Asynchronous generator Parameters 

Rotor resistance r2 (pu) 0.009 

Stator reactance x1 (pu) 0.01 
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Rotor reactance x2 (pu) 0.01 

Magnetising reactance Xm (pu) 3.0 

Inertia (H) (s) 2 

 

 

Table A-3  Wind turbine parameters 

Wind Turbine (VESTAS-V82) Parameters 

Rated turbine power, Pr  (kW) 1650 

Hub height (m) 70 

Overall efficiency (%) 95 

Cut-in wind speed , vci (m/s) 3 

Rated wind speed , v
r
(m/s) 13 

Cut-out wind speed, vco  (m/s) 20 

 

Table A-4  Discreet probabilities of generation dispatch on IEEE 16-machine 

68 bus system 

States 

 

SG1 SG2 SG3 SG4 

Mean Prob Mean Prob Mean Prob Mean Prob 

1 2.30 0.10 5.50 0.05 6.80 0.10 6.0 0.20 

2 2.80 0.15 5.30 0.10 6.20 0.15 6.80 0.20 

3 3.20 0.20 5.00 0.15 6.00 0.20 6.50 0.20 

4 2.20 0.25 5.45 0.20 7.20 0.25 5.60 0.20 

5 2.50 0.30 5.10 0.50 6.50 0.30 6.32 0.20 

States SG5 SG6 SG7 SG8 

 mean Prob mean Prob mean Prob mean Prob 

1 5.50 0.10 6.80 0.10 6.00 0.05 5.50 0.10 

2 4.80 0.15 6.20 0.15 5.00 0.10 4.50 0.15 

3 5.00 0.22 6.00 0.20 5.80 0.10 6.00 0.15 

4 6.30 0.23 7.20 0.25 6.20 0.15 6.20 0.20 

5 5.02 0.30 7.00 0.30 5.60 0.60 5.40 0.40 

States SG9 SG10 SG11 SG12 

 mean Prob Mean Prob Mean Prob Mean Prob 

1 7.60 0.10 6.00 0.20 11.00 0.05 14.30 0.10 

2 8.30 0.15 4.90 0.20 9.80 0.10 13.20 0.15 

3 6.00 0.20 4.80 0.20 10.50 0.15 12.80 0.25 

4 7.20 0.25 5.50 0.20 9.30 0.20 14.00 0.25 

5 8.00 0.30 5.0 0.20 10.00 0.50 13.50 0.25 

States SG13 SG14 SG15 SG16 

 mean Prob Mean Prob Mean Prob Mean Prob 

1 29.80 0.05 19.30 0.05 8.80 0.1 41.00 0.05 
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2 36.50 0.05 17.00 0.10 10.80 0.15 39.00 0.15 

3 33.80 0.10 18.20 0.15 9.50 0.20 43.00 0.20 

4 38.20 0.10 16.00 0.20 11.30 0.25 40.50 0.20 

5 35.91 0.70 17.85 0.50 10.00 0.30 40.00 0.40 

            All values are in pu on the MVA base of 100MVA 

 

 

 

 

 


