
Journal of Engineering Science and Technology
Vol. 11, No. 2 (2016) 193 - 211
© School of Engineering, Taylor’s University

193

ANALYSIS OF A DATABASE REPLICATION ALGORITHM
UNDER LOAD SHARING IN NETWORKS

SANJAY KUMAR YADAV
1,
*, GURMIT SINGH

1
, DIVAKAR SINGH YADAV

2

1Department of Computer Science & IT, Sam Higginbottom Institute of Agriculture,

Technology & Sciences, Allahabad, India
2Department of Computer Science & Engineering, Institute of Engineering and

Technology, Lucknow, India
*Corresponding Author: yadav_sk@rediffmail.com

Abstract

Recently, (PDDRA) a Pre-fetching based dynamic data replication algorithm

has been published. In our previous work, modifications to the algorithm have

been suggested to minimize the delay in data replication. In this paper, a
simulation framework is presented and results are obtained to estimate the

throughput and average delay. The overall network is divided into two parts as

local and global networks. The data requests are generated only at the local

nodes. However, the service can be obtained form both local and global servers.

In our previous work it has been found that the throughput and average delay

heavily depends on buffer capacity of sever node and if server load is below

80% then, nearly 100% throughput is possible with very small average delay. In

this paper, we have shown that shown the delay can be further minimized by

sharing the load among servers, still throughput remains nearly 100 percent.

Keywords: Database replication, Throughput, Average delay.

1. Introduction

The growing need towards decentralization in any enterprise has created a strong

necessity for database replication. This is because businesses today are more

geographically dispersed and it is expected to provide location transparency to the

employees of an organization [1]. Data replication and synchronization have been

topics of research for quite some time in the area of distributed databases.

Nowadays database replication techniques see applications in many fields like

mobile computing, wireless sensor networks, mobile ad-hoc networks, etc. [2].

Thus, research has to be applied to a new area of applications.

194 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Nomenclatures

a Fraction of load transferred to the global network

B Buffer size

BR Bit rate

D Total delay

D
L
 Delay at local server

D
G
 Delay at global server

DF Latency due to frame size

DN/W Round trip delay

Fs Frame size

K Number of request arrive at a server

l Number of request served at local network

N Number of servers

P Probability of local service

P[K] Probability that K requests arrive at the particular server

Pr Probability of request generation at local network

r Total number of requests generated at local network

tq Access time of master node

ts Access time of local node

S Server

T Throughput

Greek Symbols

λ Transaction arrival rate

λG Mean value of request served globally

λL
 Mean value of request served locally

Abbreviations

M-PDDRA Modified-PDDRA

PDDRA Pre-fetching Based Dynamic Data Replication Algorithm

VO Virtual Organisation

In distributed systems, identical data items may be managed at physically

distributed places or machines. Data items that are located within a database, a file

system or in memory as a variable within a program can be modified by processes

If only one process at a time is trying to modify a data item, there is no need for

synchronization. If more than one process at a time try to modify a data item, it is

necessary to ensure that no two processes access the data item at the same time.

These data items can be manipulated independently from each other, resulting in

different versions. These logically connected data items need to be merged back

into a consistent state. This process is called data synchronization [3].

In Internet applications, a large number of users that are geographically

dispersed all over the world may routinely query and update the same database. In

the environment which generally changes with time, the location of the data can

have a significant impact on an application’s response time and availability [4]. In

a centralized approach, only one copy of a database is managed. This approach is

simple since contradicting views among replicas are not possible. However, the

centralized replication approach suffers from two major drawbacks:

Analysis of a database replication algorithm under load sharing in networks 195

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

• High server load or high communication latency for remote clients.

• Sometime server may not be available due to the down time or lack of

connectivity. Clients in portions of the network that are temporarily

disconnected from a server cannot be serviced.

A server load and server downtime problems can be addressed by replicating

the database servers to form a cluster of peer servers that coordinate updates.

Wide area database replication coupled with a mechanism to direct clients to the

best available server (network-wise and load-wise) [5] can greatly enhance both

the response time and availability.

Wahid et al., [11] describe distribution problem of replicated databases and its

optimization in a computer network. As replication enables data availability in

case of any site failure and also provides local access of data. This paper presents

a bio-inspired replication management approach which is based on swarm

intelligence. Chen et al., [12] discuss structure for grid databases replication. As

database replication enables data availability, fault tolerance and minimal access

time in grids. Most systems that use grid replication now-a-days deals with only

read files. Some of the relational database products offer transaction based

replication but these tools cannot cope with the grid issues. The approach

discussed in this paper provides metadata registry using grid mechanism and also

makes replicas of data resources.

In [14], Goel and Buyya state that replication is one of the known phenomena

in which copies of data are stored at different locations. In a distributed

environment through replication technique data is accessed efficiently.

Replication provides data consistency and availability each time without

bothering failure of any site because of its data replicas. If any request of data

access is originated, it finds its closely located replica which increases

performance of system. Sears et al., [16] propose a database replication engines

which provides high throughput regardless of database size and query content.

Serrano et al., [19] discuss the performance gain which is achieved by partial

replication configurations is analyzed analytically, like the configuration of all

sites which does not store all data. A partial replication protocol is also derived

which provides 1-copy snapshot isolation, which is correctness criteria.

When taking a look at the types of communication models that are being used,

it is like a client server model. In the client-server model, the request will be

generated by a client, from another computing system, to a system which plays

role of a server, which is located at the fixed network. Once data replication is

done at the network layer, there are many issues that come into the picture.

Challenges in database replication:

• Response time is an important parameter. It is defined as the time taken for
the client to access the data from servers. If a server is far away from the

network; response time will be more to service a client.

• Another issue in data replication is to synchronize the replicas of data at all
nodes.

• A fundamental challenge in database replication is maintaining a low cost of
updates while assuring global system consistency. The problem is magnified

196 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

for wide area replication due to the high latency and the increased likelihood

of network partitions in wide area settings [5].

Therefore, in database replication, the location of nodes and their availability

is important. In our previous work, PDDRA (Pre-fetching Based Dynamic Data

Replication Algorithm [6]) has been modified to reduce the network based latency

and a mathematical model is presented to evaluate the throughput and average

delay [7]. In this paper, main points of the algorithm are highlighted, simulation

environment is created and results are presented to evaluate the throughput and

average delay.

The rest of the paper is organized as follows: In section 2, the points of M-

PDDRA algorithm is highlighted. The simulation framework and results are

discussed in section 3. Network propagation delay is discussed in section 4. The

major conclusions of the paper are discussed in section 5.

2. M-PDDRA Algorithm

In past, A PDDRA (Pre-fetching Based Dynamic Data Replication Algorithm) is

presented. The main idea is to pre-fetch some data using the heuristic algorithm

before actual replication start to reduce latency. In our previous work [9],

modifications in PDDRA (M-PDDRA) are suggested to further reduce the

latency. For more detail please refer to Refs. [7, 9]. In summary, the main points

of the algorithm are:

• In the modified scheme the internet cloud will be considered as master node
as it can be assumed that the data is available in the internet for the

replication (Fig. 1).

• If any replication request is generated by a node then via edge node first it
will be searched in same local network, then it will search in internet, if data

is locally available at any node then it will be replicated and there will not be

any need to connect through the master node.

• There is a possibility that the data may not be available at any local node or
waiting time is too large, as simultaneous request is sent to both to a local

node and master node, if access of master node is in queue for let’s say time

qt then local search will only be done for time s qt t< . These simultaneous

requests to both local and global network will reduce latency in comparison

to first request is sent to local network then thereafter to global network.

3. Simulation Framework and Results

The replicated data is either available locally or it is available globally i.e., at the

internet. Therefore, when requests are generated, some of the generated requests

will be full-filled locally and leftover requests will be fetched from internet

(master node). In this section simulation framework is developed to estimate the

average response time of all the transactions.

In nutshell, there are four processes in database replication:

• Request generation at a local node

Analysis of a database replication algorithm under load sharing in networks 197

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

• Request serving at a local node

• Network propagation

• Servicing at a remote site in the global network

The important network parameters are:

Network Throughput: It refers to the volume of data that can flow through a

network, or in other words, the fraction of the generated request which can be served.

Network Load: In networking, load refers to the amount of data (traffic) being

carried by the network.

Network Delay: It is an important design and performance characteristic of data

network. The delay of a network specifies how long it takes for a request to

travel across the network from one node or endpoint to another. Delay may differ

slightly, depending on the location of the specific pair of communicating nodes.

Fig. 1. Schematic of the database replication in network.

Let in the local network, r requests are generated with probability rp (it is

assumed that each request are generated with equal probability), out of which l

requests are served locally with probability p, and then (r - l) requests will be

transmitted to the outer world (global network). Hence, transaction arrival rate is

represented byλ

i rr pλ = (1)

Then the mean value of the requests served locally is

L

av i pλ λ= (2)

and the requests served globally are

()1G

av i pλ λ= −

 (3)

Total requests served are

198 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

L G

i av avλ λ λ= + (4)

(1)i r rrp p r p pλ = + − (5)

The throughput can be calculated as

()1

100 100

L G

av av

a a
T T T

−
= +

(6)

where, ‘a’ is the faction of load transferred to the global network.

The total delay can be evaluated as

L G

av avD D D= + (7)

The simulation is done in MATLAB. The simulation pattern is based on

random number generation and well known as Monte Carlo simulation. In the

simulation first random traffic model is considered and in the later part Poison

traffic model is considered.

3.1. Random traffic model

In the simulation we have assumed:

• Request can be generated at any of the input with probability rp .

• With probability p

the generated request served locally.

• Each request is equally likely to go to any of the server (locally or globally)

with probability
1

N
, where N is the number of servers available.

The probability that K requests arrive at the particular server is given by

[] 1

K N K

N

K

p p
P K C

N N

−
   = −   
   

 (8)

In the simulation synchronous network is considered hence time is divided

into slots. Therefore following assumptions are made:

• The requests can be generated at the slot boundary only.

• Updates can be made at the slot boundary only.

• Once replication is started, then further updation is not allowed till
replication complete.

In the previous work, we have obtained the simulation results under various

buffering conditions and it has been fount that, as the buffer space increases the

average throughput increases, with reasonable amount of increase in the average

delay [8]. In [8], we have also shown that the sharing of the load on the local and

global networks further improves the system.

Analysis of a database replication algorithm under load sharing in networks 199

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

In this paper, we have analyzed that if load is distributed among the servers,

then how delay will reduce as throughput will surely be increased. Here, we have

simulated three cases, for the load distribution as shown in Figs. 2 to 11.

In Fig. 2, the value of ‘a’ is considered to be 100% and 20%. It is examined

from the figure if the entire load is given to a particular server then at the higher

load throughput decreases, and if load is shred as 20% of the load is on the server,

the throughput always remains one.

Fig. 2. Throughput vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers

are 4 and assuming a=20% and 100%.

Considering Fig. 3, it is also seen that when the entire load is given to a

particular server than the average delay increases and attain the value of 4 at the

load one. However when the load is shared, the average delay at the load of 1 is

only 0.8 slots.

Fig. 3. Delay vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes

and servers are 4 and a=20% and 100%.

Figure 4 is very much similar to Fig. 2, here the value of ‘a’ is chosen to be

100% and 30%. It is seen from the figure if the entire load is given to a particular

server than at the higher load throughput decreases, and if load is shared as 30%

200 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

of the load is on the server, the throughput always remains one. Hence, 30% of

the load does not affect the throughput performance. Considering Fig. 5, it is also

seen that when the entire load is given to a particular server than the average

delay increases and attains the value of 4 slots at the load of 1. However, when

the load is shared, the average delay at the load of 1 is only 1.2 slots.

Fig. 4. Throughput vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming a=30% and 100%.

Fig. 5. Delay vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming a=30% and 100%.

In Fig. 6, the value of ‘a’ is considered to be 100% and 50%. It is clear from

the figure, even for ‘a’ is 50%, the throughput performance remains the same as

for a=20 and a=30%. Considering Fig. 7, the average delay at the load of 0.5 is

one slot, and at the load of one average delay is of only 2 slots.

In Fig. 8, the value of ‘a’ is considered to be 100% and 25%. It is examined

from the figure, even for ‘a’ is 25%, the throughput performance remains the

same as for a=20 and a=30%. Considering the Fig. 9, the average delay at the load

of 0.5 is 0.4 slots and at the load of 1 average delay is of only 1.0 slot.

Analysis of a database replication algorithm under load sharing in networks 201

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Fig. 6. Throughput vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and Assuming a=50% and 100%.

Fig. 7. Delay vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming a=50% and 100%.

Fig. 8. Throughput vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and Assuming a=25% and 100%.

202 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Fig. 9. Average delay vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming a=25% and 100%.

In Fig. 10, the various values of value of ‘a’ are considered. It is seen from the

figure if all the load is given to a particular server than at the higher load,

throughput decreases and if load sharing is increased the throughput start

improving. If the value of ‘a’ is 100% the throughput is 93% and when ‘a’ is start

decreases the throughput improves and finally attains a value 100%. Considering

Fig. 11, it is also seen that when the load increases, the average delay and as the

value of ‘a’ increases the average delay also increases.

Fig. 10. Throughput vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming various values of ‘a’.

Fig. 11. Delay vs. load with fixed buffering capacity (B)

of 4 while considering request generating nodes and servers (N)

are 4 and assuming various values of ‘a’.

Analysis of a database replication algorithm under load sharing in networks 203

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

From Figs. 2 to 11, the main noticeable points are

• If load is distributed that the throughput is very high and nearly one.

• The distribution of load among various servers reduces the waiting time
latency to a significant low level.

Considering Figs. 2 to 7, where we have considered that the load is shared

between the three servers with the values of ‘a’ as 20%, 30% and 50%. The

throughput is given by

31 2
2 0 3 0 5 0

1 0 0 1 0 0 1 0 0

0 .2 1 0 .3 1 0 .5 1 1 .0

SS S

a v a v a vT T T T

T

= + +

= × + × + × =

and the average delay at the load of 1 is given by

0.8 1.2 2.0 4.0D = + + = slots

But the above delay will happen only when one request is sent after another,

but as we suggested, once requests are generated they are shared among the

servers. Hence, simultaneous request to various servers will reduce the delay and

net delay will be given by

()max 0.8,1 .2, 2 .0 2 .0D = = slots.

In the same view considering the Figs. 8 and 9, it is very clear that if the load

is shared between four servers 25% to each, then the throughput will be 100% and

average delay will be 1.0 slot. Similarly for the other values of ‘a’ the throughput

and average delay can be obtained by considering the Figs. 10 and 11.

Hence, it can be summarized that if the load is shared between the servers,

then the throughput increases and average delay decreases. But this distribution of

load will lead to the deployment of more number of servers or same data has to be

placed on the large number of servers. The optimal value of the server that can

maintain high throughput and reasonable delay depends on various parameters

like; type of networks, quality of service, server capacity and request type etc. that

analysis can be part of further study.

3.2. Results based on Poisson traffic arrival

Till in chapter we have assumed that the generation of requests and service is random

in nature, and a particular server K request arrive is given by following equation

[] 1

K N K

N

K

p p
P K C

N N

−
   = −   
   

Now, if the generation of requests are relatively small and requests generating

nodes are large in numbers (generally it is true in any networks) then under the

condition the above equation will be modified as

[]
!

m Ke m
P K

K

−

= , where
rNPm =

In Fig. 12, the random traffic data is compared with the Poisson data. Here,

number of request generating nodes and servers considered as four. It can be

easily examined that in case of random traffic, as the load increases, the

204 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

throughput decreases. However, in case of Poisson traffic, due to the less number

of arrivals the throughput remains at one.

In Fig. 13, the random traffic data is again compared with the Poisson data for

average delay. Here, number of request generating nodes and servers considered as four.

It can be easily seen that in case of random traffic, as the load increases, the delay

increases. However, in case of Poisson traffic, due to the less number of arrivals the

average delay remain nearly zero at lower load at attain a value of 0.2 slot at load of 1.

Fig. 12. Throughput vs. load with fixed buffering capacity (B)

of 8 while considering request generating nodes and servers (N)

are 4 and considering random and Poisson traffic.

Fig. 13. Average delay vs. load with fixed buffering capacity (B)

of 8 while considering request generating nodes and servers (N)

are 4 and considering random and Poisson traffic.

In Fig. 14, throughput vs. load is plotted. Here, number of request generating

nodes and servers are varying from 2 to 8 and the buffering capacity is fixed of 4

requests. It can be examined from the figure, as the request generating nodes

increases the throughput decreases. However, in the each case, due to the less

number of arrivals the throughput is nearly one.

Analysis of a database replication algorithm under load sharing in networks 205

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Fig. 14. Throughput vs. load with buffering capacity (B)

of 4 while varying the request generating nodes and servers (N)

and considering Poisson traffic.

In Fig. 15, the average delay vs. load is plotted. Here, number of request

generating nodes and servers are varying and the buffering capacity is kept of 4

requests. It can be seen that the average delay increases as the request generating

nodes increases and is 0.05 slot for N=2 and is of ~0.7 slot for N=8.

In Fig. 16 the throughput vs. load is plotted. Here, number of request generating

nodes and servers are 4 and the buffering capacity is varied from 2 to 8 requests. It

can be seen from the figure, as the buffering capacity increases the throughput

increases. However, still throughput attains a very high value in each case.

In Fig.17, the average delay vs. load is plotted. Here, number of request

generating nodes and servers considered as four and the buffering capacity is

varied from 2 to 8 requests. It can be visualized that the average delay increases

as the buffering capacity of server increases and is 0.54 slot for B=2 and is of

~0.78 slot for B=8.

Fig. 15. Average delay vs. load with buffering capacity (B)

of 4 while varying the request generating nodes and servers (N)

and considering poisson traffic.

206 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Fig. 16. Throughput vs. load with varying buffering capacity (B)

while the request generating nodes and servers (N)

as 4 and considering poisson traffic.

Fig. 17. Average delay vs. load with buffering capacity (B)

of 4 while varying the request generating nodes

and servers (N) and considering Poisson traffic.

The results obtained under the Poisson traffic clearly show that, the

throughput is nearly one with very less average delay. Hence, data distribution

among the servers is not necessary. The Poisson traffic analysis is valid till date,

but the more data centric applications are coming up, in near future the random

traffic analysis needs to be considered for real time data replication processes.

In the above analysis, the server delay is taken into considerations. However,

in WAN data may have to traverse to a geographically far node in such a case the

network delay becomes an important parameter. The network delay estimation is

presented in the next section.

3.3. Performance comparision of the proposed M-PDDRA
 and the PDDRA schemes

The PDDRA scheme mailny relies on the pre-fetching of the probable data to

reduce the overall latency. In PDDRA scheme, required data is fetched form the

master node for replication i.e., the internet. There is no provision to fetch data

from the other nodes in the local network where data may be available. As in

PDDRA scheme all the generated requests are sent to the global network, i.e.

100% of the load is given to the global network. It fetches the required data along

with the probable data that may be needed in future from global network in order

Analysis of a database replication algorithm under load sharing in networks 207

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

to reduce the overall latency. As the bandwidth between RS and global network is

lesser than that between VOs, it takes too much time to replicate the data as the

existing PDDRA algorithm has to perform pre-fetching of probable data along

with the required data. Howerver, in the proposed scheme a simultaneous request

is sent to both local and global networks (master node) by taking into

consideration that sometimes it may possible that data may be available locally at

some other node.

In the following figures throughput and average delay of the proposed and

PDDRA schemes have been given to analyze the comparative performance of

both the schemes. Consider Fig. 18., here, it is considered that the number of

request generating nodes are four and servers are also four and each server has a

buffering capacity of a 8 requests. This figure shows the simulation results of

throughput with varying loads.

According to the PDDRA scheme, all the generated requests are sent to the

global server; hence, ‘a’ which denotes the fraction of traffic being sent to the

global server will be 100% i.e. ‘a’=100%. It can be seen that till load 0.7 both the

schemes have same throughput, but as the load increases beyond the 0.7 mark, the

throughput starts decreasing and attains the value of 0.96 at the load of 1.

In comparison to this, the proposed scheme also looks for the availability of

the data at the local servers. If data is not available at local network then the

proposed scheme has the same performance as the PDDRA scheme. However, if

data is available at a local server, then the proposed scheme performs better than

the PADRA scheme as shown in Fig. 18.

Now considering the value of ‘a’ as 20%, meaning 80% of the data can be

fetched from the local servers. In such a case, the throughput of the proposed

scheme is one irrespective of the load. Similarly, if the value of ‘a’ is considered

to be 80%, meaning 20% of the data can be fetched from the local servers, and

results are shown in the figure. Here, the throughput remains one till load 0.9 and

it decreases slightly at the load of 1.0. In a nut shell both the schemes provide

very high throughput even at the higher loads.

Fig. 18. Throughput vs. load for N=4, S=4, B=8

with ‘a’=20%, ‘a’=80%, ‘a’=100%.

Another important performance criterion is the average delay. In Fig. 19, the

average delay is plotted vs. load on the servers for both the schemes. Here, it is

very clear that the average delay in PDDRA scheme is much larger in comparison

208 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

to the proposed scheme. As the load crosses the 0.7 mark, the delay rises

exponentially to attain a value of 5 slots at the load of 1.0.

Fig. 19. Average delay vs. load for N=4, S=4,

B=8 with ‘a’=20%, ‘a’=80%, ‘a’=100%.

However, with the proposed scheme while considering 80% of the traffic

being transferred to the global servers the average delay is zero till 0.5 load and

attains a value of one slot at the load of 1.0, which is very small in comparison to

the PDDRA scheme. Similarly considering that 20% of the traffic being

transferred to the global servers, in such a case the average delay remains zero for

all the loads.

From Figs. 18 and 19, it is concluded that the throughput performance of both

the proposed and the PDDRA schemes is nearly same, but on the higher loads the

performance of the proposed scheme is slightly better than the PDDRA scheme.

However, in case of average delay the proposed scheme performs much better

than the PDDRA scheme as the PDDRA algorithm requires much time for mining

the file access sequences and patterns for pre-fetching.

4. Network delay

When data request traverse through the network, the network delay may be

significant, and it becomes an important delay parameter. If we incorporate the

network delay (
/N WD), then the total delay (D) will be formulated as

/

L G

a v a v N WD D D D= + +

Here, DN/W, is the round trip delay.

Now, as the more data centric applications are coming up, the whole computer

network system is slowly transferring in fiber optic network.

Consider the fiber optic network the latency in the network would be

 / 8

3

/

100 1000 2

3 10

0 .67 10 1

N W

N W

L Ln
D

v c

D ms−

× ×
= = =

×
= × ≈

Analysis of a database replication algorithm under load sharing in networks 209

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

Let the global node is 100 km away for the request generating node, then there

will be a network delay of 1.0 ms and thus the round trip delay would be 2.0 ms.

Similarly, if a local node is only 100 m away from the request generating node

then the round trip network delay would be 2 µs. It also introduces a latency that
is proportional to the size of the frame being transmitted and inversely

proportional to the bit rate as follows:

S
F

R

F
D

B
=

In the above equation,
S

F is the frame size and
RB is the bit rate. For a

frame of 64 bytes and data rate of 1000 Mbps the delay is 0 . 5 sµ . As average

queuing delay is in terms of frame size, for example a delay of 4 slots will be

equal to 0 .5 4 2 .0 sµ× = .

In case of global network, the main contribution in the delay is due to the

propagation delay. Considering the case, when all the generated request are

transferred to global network (refer Fig. 3) is

msmssDDD WN

G

av 0.20.245.0/ ≈+×=+= µ

Again considering the case, when all the generated request are served at local

network (refer Fig. 3) is

sssDDD WN

L

av µµµ 2.20.245.0/ ≈+×=+=

Overall, it can be observed that on the overall delay the network delay plays

very significant role in case of global network. However, in case of local network

it plays a minor role in the overall delay.

5. Conclusions

In this paper, detailed simulation of the database replication based algorithm is

presented. The main idea behind the algorithm is to reduce the network latency

in WAN. Simulation results are presented to obtain the mean waiting time and

throughput for a database replication algorithm. For the in-depth analysis of the

algorithm various cases are considered and it has been found that the storage

capacity has deep impact on the throughput and average delay. If server load is

below 80% then, nearly 100% throughput is possible with very small average

delay (in slots), even at the higher load the throughput is very acceptable. It is

also found that if the numbers of servers that can serve the request are larger,

than throughput is very high and average delay is very less. The overall,

throughput and average delay also depends heavily on the load and if load is

comparatively less (0.8) then the throughput is very high and average delay is

nearly zero. In case of the Poisson traffic arrivals the throughput and average

delay are under acceptable limits. However, if data has to be replicated form a

distant node then the propagation delay overshadowed other delays. Finally, it

is concluded that the throughput performance of both the proposed and the

PDDRA schemes is nearly same, but on the higher loads the performance of the

proposed scheme is slightly better than the PDDRA scheme. However, in case

of average delay the proposed scheme performs much better than the PDDRA

210 S. K. Yadav et al.

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

scheme as the PDDRA algorithm requires much time for mining the file access

sequences and patterns for pre-fetching.

References

1. Kemme, B.; and Alonso, G. (2010). Database replication: a tale of research

across communities. Proceedings of the International Conference on VLDB

Endowment. Switzerland, 3(1), 5-12.

2. Ratnasamy, S.; Karp, B.; Yin, L.; Yu, F.; Estrin, D.; Govindan, R.; and

Shenker, S.G. (2002). A geographic hash table for data-centric storage.

Proceedings of the 1st ACM International Workshop on Wireless Sensor

Networks and Applications. Atlanta, GA, USA, 78–87.

3. Wiesmann; Pedone; Schiper; Kemme; and Alonso (2000). Understanding

replication in databases and distributed systems. Proceedings of 20th

International Conference on Distributed Computing Systems. Zurich, 1-23.

4. Yair, A.; Claudiu, D.; Michal, M.A.; Jonathan, S.; and Ciprian, T. (2002).

Practical wide-area database replication. Retrieved December 10, 2011, from

http://www.cnds.jhu.edu/publications.

5. Amir, Y. (1995). Replication using group communication over a partitioned

network. Retrieved October 5, 2010, from www.cs.jhu.edu/~yairamir.

6. Saadat, N.; and Rahmani, A.M. (2012). PDDRA: A new pre-fetching based

dynamic data replication algorithm in data grids. Springer: Future

Generation Computer Systems,28, 666-681.

7. Yadav, S.K.; Singh, G.; and Yadav, D.S. (2013). Mathematical framework

for a novel database replication algorithm. International journal of Modern

Education & Computer Science, 5(9), 1-10.

8. Yadav, S.K.; Singh, G.; and Yadav, D.S. (2013). Analysis of database

replication algorithm in local and global networks. International Journal of

Computer Applications, 84(6), 48-54.

9. Yadav, S.K.; Singh, G.; and Yadav, D.S. (2013). Throughput and delay

analysis of database replication algorithm. International journal of Modern

Education & Computer Science, 5(12), 47-53.

10. Khan, M.; and Khan, M.N.A. (2013). Exploring query optimization
techniques in relational databases. International Journal of Database Theory

& Application, 6(3), 11-20.

11. Abdul-Wahid, S.; Andonie, R.; Lemley, J.; Schwing, J.; and Widger, J.

(2007). Adaptive distributed database replication through colonies of pogo

ants. Proceedings of IEEE International Symposium on Parallel and

Distributed Processing Symposium.USA, 1-8.

12. Chen, Y.; Berry, D.; and Dantressangle, P. (2007) Transaction based grid
database replication. Proceedings of UK e-Science. Edinburgh, U.K. 166-

173.

13. Correia, A.; Pereira, J.; Rodrigues, L.; Carvalho, N.; Vilaça, R.; Oliveira, R.;
and Guedes, S. (2007). GORDA: An open architecture for database

replication. Proceedings of Sixth International Symposium on Network

Computing and Applications. Boston, USA, 287-290.

Analysis of a database replication algorithm under load sharing in networks 211

Journal of Engineering Science and Technology February 2016, Vol. 11(2)

14. Goel, S.; and Buyya, R. (2006). Data replication strategies in wide area
distributed systems. Retrieved September 12, 2011, from

http://www.buyya.com

15. Daudjee, K..; and Salem; K. (2006). Lazy database replication with snapshot
isolation. Proceedings of the 32nd International Conference on Very large

data bases Endowment. Seoul Korea, 715-726.

16. Sears, R.; Callaghan, M.; and Brewer, E. (2008). Rose: compressed, log-
structured replication. Proceedings of the International Conference on VLDB

Endowment. Auckland, New Zealand, 1(1), 526-537.

17. Agrawal, P.; Silberstein, A.; Cooper, B.F.; Srivastava, U.; and Ramakrishnan,
R. (2009). Asynchronous view maintenance for VLSD databases.

Proceedings of the ACM SIGMOD International Conference on Management

of data. New York, USA, 179-192

18. Thomson, A.; Diamond, T.; Weng, S.C.; Ren, K..; Shao P.; and Abadi, D.J.

(2012). Calvin: fast distributed transactions for partitioned database systems.

Proceedings of the ACM SIGMOD International Conference on Management

of Data. Scottsdale, Arizona, USA, 1-12.

19. Serrano, D.; Patiño-Martínez, M.; Jiménez-Peris, R.; and Kemme, B. (2007).
Boosting database replication scalability through partial replication and 1-

copy-snapshot-isolation. Proceedings of IEEE 13th Pacific Rim International

Symposium on Dependable Computing. Melbourne, 290-297.

20. Armendáriz-Inigo, J.E.; Mauch-Goya, A.; de Mendívil, J.R.; and Muñoz-
Escoí, F.D. (2008). SIPRe: a partial database replication protocol with SI

replicas. Proceedings of the ACM Symposium on Applied Computing.

Fortauza, Ceara, Brazil, 2181-2185.

