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Abstract 

Determining of optimal laser cutting conditions for improving cut quality 
characteristics is of great importance in process planning. This paper presents 
multi-objective optimisation of the CO2 laser cutting process considering three 
cut quality characteristics such as surface roughness, heat affected zone (HAZ) 
and kerf width. It combines an experimental design by using Taguchi’s method, 
modelling the relationships between the laser cutting factors (laser power, 
cutting speed, assist gas pressure and focus position) and cut quality 
characteristics by artificial neural networks (ANNs), formulation of the multi-
objective optimisation problem using weighting sum method, and solving it by 
the novel meta-heuristic cuckoo search algorithm (CSA). The objective is to 
obtain optimal cutting conditions dependent on the importance order of the cut 
quality characteristics for each of four different case studies presented in this 
paper. The case studies considered in this study are: minimisation of cut quality 
characteristics with equal priority, minimisation of cut quality characteristics 
with priority given to surface roughness, minimisation of cut quality 
characteristics with priority given to HAZ, and minimisation of cut quality 
characteristics with priority given to kerf width. The results indicate that the 
applied CSA for solving the multi-objective optimisation problem is effective, 
and that the proposed approach can be used for selecting the optimal laser 
cutting factors for specific production requirements. 
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1.  Introduction 

Laser cutting is one of the most used thermal-based advanced machining 
processes in the industry. It is effective method for straight and contour cutting of 
a wide range of materials with a high degree of dimensional accuracy and surface 
finish,  and is particularly suitable for large batch processing. Laser cutting  is realised 
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Nomenclatures 
 
f Focus position, mm 
Kw Kerf width, mm 
P Laser power, kW 
p Assist gas pressure, bar 
Ra Average surface roughness, µm 
v Cutting speed, m/min 
 

Abbreviations 

ANN Artificial neural network 
CSA Cuckoo search algorithm 
DOE Design of experiment 
HAZ Heat affected zone 

by localised heating, melting and evaporation as a result of focusing the laser 
beam into a very small spot.  

Laser cutting is a complex, multifactor machining process. The principal 
factors that affect the cutting process include [1]: beam power and characteristics, 
cutting speed, type of assist gas and flow, and focus position. Multiple interaction 
effects between these factors further complicate cutting process making it difficult 
to develop relationships between process factors and performance characteristics. 
The effects of these factors on the laser cutting performances such as cut quality 
characteristics, productivity and operational costs have been widely studied [2]. 

Satisfying multiple performance characteristics in laser cutting is of particular 
interest for manufacturers. However, it could be difficult to achieve all them at the 
same time, since the laser cutting factors have different contributions on them. 
Therefore each of these goals is assured only through proper selection of process 
factors. In real industrial environment it is common practice to select process 
factor values on the basis of handbooks, manufacturer recommendations and/or 
previous experience in a trial and error procedure. But, this trial and error 
approach is high costly in time and labour [3].  

To assist in selection of near optimal process factor values various classical 
and meta-heuristic optimisation techniques were proposed in literature. An 
effective application of these methods requires accurate mathematical models. An 
alternative approach for laser cutting optimisation is the application of Taguchi 
method which requires no mathematical model and is particularly popular for 
multi-objective optimisation [4-8]. The multi-objective optimisation was done by 
coupling Taguchi method, through design of experiment and calculation of the 
appropriate category of the signal to noise ratio, and grey relational analysis or 
principal component analysis. However, as it is well known, Taguchi method 
limits the search for the optimal factor settings only on discrete factor values used 
in the experiment matrix. 

Consequently, it is of great importance to exactly quantify the relationships 
between laser cutting factors and cutting performance characteristics through 
mathematical modelling and subsequently determinate optimal or near optimal 
cutting conditions through the use of optimisation algorithms. Ciurana et al. [3] 
presented an approach for simultaneous minimisation of surface roughness and 
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volume error in pulsed laser micromachining by using artificial neural network 
(ANN) modelling and particle swarm optimisation algorithm. On the basis of the 
obtained results the authors concluded that proposed ANN models and swarm 
optimisation approach are suitable for identification of optimum process settings. 
In another study in the field of laser micromachining, Dhupal et al. [9] developed 
mathematical models based on ANNs and response surface methodology for 
correlating responses such as the upper width, lower width and depth of the 
microgroove and different laser input process factors. Subsequently, multi-
objective optimisation analysis was performed to achieve the target value of all 
three responses. Recently, Pandey and Dubey [10] presented an approach for 
simultaneous optimisation of kerf taper and surface roughness in the Nd:YAG 
laser cutting of titanium alloy sheet using regression models and genetic 
algorithm. The applied hybrid approach resulted in the improvements of 19.16% 
and 17.32% in kerf taper and surface roughness, respectively, i.e., overall 
improvement of 18% has been registered in multiple quality characteristics. 

The present paper deals with multi-objective optimisation of the laser cutting 
process considering three cut quality characteristics such as surface roughness, 
HAZ and kerf width. Four cutting factors, laser power, cutting speed, assist gas 
pressure and focus position were considered in the experiment which was planned 
and conducted according to the Taguchi’s experimental design using the L27 
orthogonal array. Using the obtained experimental data, three ANN prediction 
models were developed in order to explicitly express the relationships between 
the laser cutting factors and the cut quality characteristics. Multi-objective 
optimisation problem was formulated using the weighting sum method. This 
paper presents the application of novel meta-heuristic optimisation algorithm 
cuckoo search algorithm [11] for solving multi-objective optimisation problem. 
Optimisation results with corresponding optimal values of laser cutting factors 
were presented for four different combinations of weighting factors. 

 

2.  CO2 Laser Cutting Experiment 

Taguchi experimental designs provide an efficient plan to study the entire 
experimental region of interest for the experimenter with the minimum number of 
trials as compared with the classical DOE, therefore it was chosen for performing 
the laser cutting experiment [12]. They can be efficiently used for the analysis of 
a number of process factors and their interactions. Moreover, the implementation 
of these experimental plans enables process optimisation by Taguchi’s 
optimisation methodology. Finally, the use of orthogonal arrays can significantly 
reduce the number of ANN training data without affecting too much the accuracy 
of the ANN prediction [13]. 

The laser cutting experiment was performed by means of ByVention 3015 
(Bystronic) CO2 laser delivering a maximum output power of 2.2 kW at a 
wavelength of 10.6 µm, operating in continuous wave mode. The cuts were 
performed with a Gaussian distribution beam mode (TEM00) on a 3 mm thick 
AISI 304 stainless steel using a focusing lens of focal length of 127 mm. The 
conical shape nozzle (HK20) with inner diameter of 2 mm was used. The nozzle-
workpiece stand-off distance was controlled at 1 mm. In this study nitrogen with 
purity of 99.95% was used as assist gas.  
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Four laser cutting factors at three levels such as laser power (P), cutting speed 
(v), assist gas pressure (p) and focus position (f) were taken as input variables. 
These factors were arranged in the standard L27 (3

13) Taguchi’s orthogonal array 
to columns 1, 2, 5 and 9, respectively. Twenty-seven samples were cut according 
with a combination of laser cutting factors listed in Table 1. 

Table 1. Combination of the laser                                                            

cutting factors for each experimental trial. 

Trial 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

P 
(kW) 

1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8 

v 

(m/min) 
2 2 2 2.5 2.5 2.5 3 3 3 2 2 2 2.5 2.5 

p 

(bar) 
9 10.5 12 9 10.5 12 9 10.5 12 9 10.5 12 9 10.5 

f 

(mm) −2.5 −1.5 −0.5 −1.5 −0.5 −2.5 −0.5 −2.5 −1.5 −1.5 −0.5 −2.5 −0.5 −2.5 

Trial 15 16 17 18 19 20 21 22 23 24 25 26 27  
P 

(kW) 
1.8 1.8 1.8 1.8 2 2 2 2 2 2 2 2 2  

v 

(m/min) 
2.5 3 3 3 2 2 2 2.5 2.5 2.5 3 3 3  

p 

(bar) 
12 9 10.5 12 9 10.5 12 9 10.5 12 9 10.5 12  

f 
(mm) −1.5 −2.5 −1.5 −0.5 −0.5 −2.5 −1.5 −2.5 −1.5 −0.5 −1.5 −0.5 −2.5  

 

Cut quality obtained was assessed in terms of average surface roughness (Ra), 
width of HAZ, and top kerf width (Kw). Surface roughness measurement was 
taken along the cut at approximately the middle of the thickness using a Surftest 
SJ-301 (Mitutoyo) profilometer. Top kerf width and width of HAZ were 
measured using the optical microscope (Leitz, Germany). All measurements were 
repeated three times to obtain averaged values. 

 

3.  Multi-objective Optimisation 

In laser cutting there are often more than one objective or criteria, and usually 
these multiple objectives conflict with each other. For example, it is often 
required to obtain high cut quality while maximising the material removal rate 
and minimising cost. Such kind of optimisation problems are the subject of multi-
objective optimisation and can generally be formulated as: 

( ) ( ) ( ) ( )[ ]
( ) n,...,j;xg:to subject

xf,...,xf,xfxf :Minimize

j

T

m

10
21

=≤

=
                (1) 

where x is a vector of design variables, m is the number of objective functions and 
n is the number of inequality constraints. 

In general, no solution vector x exists that minimises all the m objective 
functions simultaneously. Hence, a concept of the Pareto optimum solution is 
used in multi-objective optimisation problems. A solution point for problem 
formulated in Eq. (1) is Pareto optimal if and only if it is not possible to move 
from that point and improve at least one objective function without detriment to 
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any other objective function [14]. The set of all Pareto solutions of a multi-
objective optimisation problem is known as the Pareto frontier (or Pareto set). 

The most widely used method for multi-objective optimisation is the weighted 
sum method [15]. The method transforms multiple objectives into an aggregated 
single objective function by multiplying each objective function with a weighting 
factor and summing up all contributors: 

mm fwfwfwf ⋅++⋅+⋅= ...2211sum weighted                 (2) 

where wi (i = 1,…,m) is a weighting factor for the i-th objective. 

Such a scalar function is often referred to as the preference function or utility 
function [16]. This approach is called a priori approach since the user is expected 
to provide the weighting factor values. The relative value of the weighting factors 

reflects the relative importance of the objectives. If ∑
=

=
m

i
iw

1

1 and 10 ≤≤ iw , then 

the weighted sum is said to be a convex combination of objectives [15]. If all of 
the weighting factors are positive, then minimising Eq. (2) provides a sufficient 
condition for Pareto optimality, which means the minimum of Eq. (2) is always 
Pareto optimal [14]. With systematic variation in weighting factor values, 
minimising the weighted sum can yield all of the Pareto optimal points if the 
considered multi-objective optimisation problem is convex [17]. 

 

4.  Cuckoo Search Algorithm 

Cuckoo search algorithm (CSA) is a novel population based stochastic global 
search meta-heuristic algorithm developed by Yang and Deb [11]. CSA is 
inspired by natural mechanisms and mimics the breeding behaviour of some 
cuckoo species that lay their eggs in the nests of host birds. Each egg in a nest 
represents a solution, and a cuckoo egg represents a new solution. The goal is to use 
new and potentially improved solutions (cuckoos) to replace worse solutions in the 
nests. CSA can be briefly described using the following three idealised rules [18]: 

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest. 

• The best nests with high quality of eggs (solutions) will carry over to the  
next generations. 

• The number of available host nests is fixed, and a host can discover an alien 
egg with a probability pa ∈ [0, 1]. In this case, the host bird can either throw 
the egg away or abandon the nest so as to build a completely new nest in a 
new location. 

An important issue is the applications of Levy flights and random walks for 

generating new solutions )1( +t
ix [11]: 

)(Levyxx )t(

i

)t(

i
λα ⊕+=+1                                 (3) 

where α (α>0) represents a step size. The product ⊕ means entry-wise multiplications. 

The random step length is drawn from a Lévy distribution which has an 
infinite variance with an infinite mean [11]: 
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~ ,  (0,3]Levy u t λ λ−= ∈                 (4) 

The salient feature of the CSA is its ability to find all the optima 
simultaneously if the number of nests is much higher than the number of local 
optima. As noted by Yang and Deb [11] this advantage may become more 
significant when dealing with multi-objective optimisation problems. The main 
control parameters of the CSA include the number of host nests (or the population 
size n) and the probability pa. From the analysis of the CSA performance, Yang 
and Deb [11] observed that n = 15 to 25 and pa = 0.15 to 0.30 are sufficient for 
most optimisation problems. 

CSA has been applied to solve various benchmark and engineering 
optimisation problems and the results indicate that CSA performs superior to 
different existing algorithms. For more details the reader should refer to existing 
literature on CSA and its implementation [11, 18-22]. 

 

5.  Results and Discussion 

5.1. Mathematical functions of the cut quality characteristics 

ANN is one of the most popular nonlinear mapping systems with ability to model 
complex processes with many interactions between multiple inputs and outputs 
using the experimental data. In this paper, for ANN modelling, three cut quality 
characteristics, Ra, HAZ and Kw, are considered as the output variables. In order 
to have an accurate models, three separate ANN models were used for relating 
input variables consisting of laser power (P), cutting speed (v), assist gas pressure 
(p) and focus position (f), and cut quality characteristics.  

Three ANN models with four input neurons, three hidden neurons and one 
neuron in output layer, have been developed using the MATLAB. The 
architecture of the ANN models was selected considering the total number of 
connection weights biases in the ANN as well as the available number of data for 
training. Hyperbolic tangent sigmoid and linear transfer functions were used in 
hidden layer and output layer, respectively. In order to faciliate ANN training 
process, the experimental data was normalised in the range [−1, 1]. 

In order to determine the connection weights and biases of the ANN models, 
the training process was carried out using Levenberg-Marquardt training 
algorithm by using randomly selected 19 out of 27 sets of input/output 
experimental data and the rest was used for testing the ANNs performance. The 
ANNs training was stopped by considering the well known bias-variance trade-
off in model development. The comparison between experimental and predicted 
values for the cut quality characteristics is shown in Fig. 1. 

From the analysis of the Fig. 1, one can observe that particular combination of 
laser cutting factors variously affects the cut quality characteristics. A given 
combination of the laser cutting factor settings results in enhancement of one of 
the cut quality characteristics but decreases the other cut quality characteristics, 
raising the need for multi-objective optimisation. As seen, in most cases, for          
both training and testing data, the experimental and predicted values are in          
good agreement. 
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a) 

 
b) 

 
c) 

Fig. 1. Experimental results and                                                           

comparison with the ANN models predictions. 
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The estimated mean absolute percentage errors of the ANN models were 
obtained as: 

• for surface roughness ANN model: 8.71% and 9.66% on training and testing 
data respectively, 

• for HAZ ANN model: 1.26% and 7.3% on training and testing data respectively, 

• for kerf width ANN model: 5.5% and 6.5% on training and testing                    
data respectively. 

The obtained results suggest that the developed ANN models can be used to 
acquire a function that maps laser cutting factors and the cut quality 
characteristics in a range considered in the experiment and they can be used to 
optimise the CO2 laser cutting process. 

 

5.2.  Multi-objective optimisation of CO2 laser cutting 

In multi-objective optimisation of the CO2 laser cutting process, instead of 
treating the responses separately, all three of them are optimised simultaneously. 
Using the weighted sum method, the following objective function is developed: 

wa
KwHAZwRwz ⋅+⋅+⋅= 321                 (5) 

where w1, w2 and w3 are weighting factors decided based on the priorities among 
the various responses to be simultaneously optimised.  

In the present investigation, weighting factors of 0.33 for each of the 
responses are considered (case I: w1=w2=w3=0.333), which gives equal priorities 
for all three cut quality characteristics for simultaneous optimisation. Also, three 
additional combinations of weighting factors are given consideration, that is: case 
II: w1=0.5, w2=0.25 and w3=0.25 (priority given to surface roughness); case III: 
w1=0.25, w2=0.5 and w3=0.25 (priority given to HAZ); and case IV: w1=0.25, 
w2=0.25 and w3=0.5 (priority given to kerf width). Note that the estimations of the 
Ra, HAZ and Kw in Eq. (5) are based on ANN models developed with the scaled 
input/outputs in the range [−1, 1]. Also, according to the experimental 
investigation in this study, the limits on the input variables of laser power (P), 
cutting speed (v), assist gas pressure (p) and focus position (f) are: 1.6 ≤ P ≤ 2 
kW, 2 ≤ v ≤ 3 m/min, 9 ≤ p ≤ 12 bar and −2.5 ≤ f ≤ −0.5 mm. 

 

5.3.  Optimisation results 

For solving the multi-objective optimisation problem formulated in Eq. (5), 
MATLAB computer code was developed so as to integrate ANN models with the 
CSA. Due to the fact that different initial populations affect directly to the final 
result, a series of simulation runs are done to obtain best results. Running the 
simulations for 50 times it was found that the best results are obtained using the 
n=25 and pa=0.25. The results obtained after solving the multi-objective 
optimisation using the CSA algorithm are shown in Table 2. 

As seen from Table 2, for all four cases considered, high cutting speed is 
preferable. On the other hand, depending on the weighting factors, combination of 
high laser power and high assist gas pressure or combination of low laser power 
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and low assist gas pressure yield optimal results. Also, focusing the laser beam up 
to 1/3 of material thickness is beneficial for all four cases considered. 

 
Table 2. Multi-objective optimisation results. 

 Input variables Output variables 

P 
[kW] 

v 
[m/min] 

p 
[bar] 

f 
[mm] 

Ra 

[µm] 
HAZ 

[µm] 
Kw 

[mm] 
Case I 1.6 2.94 9.53 −0.72 2.190 13.61 0.338 
Case II 2 3 11.86 −0.5 1.653 17.03 0.349 
Case III 1.6 2.89 9.17 −1 2.188 12.57 0.356 
Case IV 1.6 3 9.8 −0.5 2.187 14.60 0.325 

 

Under the optimal laser cutting factor settings for case study 2, in the 
confirmation experiment trial the following values for cut quality characteristics 
were obtained: Ra = 1.834 µm, HAZ = 18.92 µm and Kw = 0.326 mm. By 
comparing these results with ANN predictions for optimal values of Ra = 1.653 µm, 
HAZ = 17.03 µm and Kw = 0.349 mm, as determined by the CSA, one can observe 
differences of 9.86%, 10.52% and 6.6%, respectively, which approximately 
correspond to the prediction accuracy of the developed ANNs. Considering 
statistical assessments of all ANN mathematical models, one can expect similar 
differences in optimisation results and experimental values for cut quality 
characteristics for other case studies.  

 

6.  Conclusions 

In this paper, multi-objective optimisation of the cut quality characteristics such 
as surface roughness, width of HAZ and kerf width in CO2 laser cutting of 
stainless steel was presented. The applied methodology integrates modelling of 
the relationships between the laser cutting factors (laser power, cutting speed, 
assist gas pressure and focus position) and cut quality characteristics using ANNs, 
formulation of the multi-objective optimisation problem using weighting sum 
method and solving it by CSA.  

From the analysis of the effect of the laser cutting factors on the cut quality 
characteristics the following was observed: (i) cut quality characteristics are 
highly sensitive to variation of laser cutting factors, (ii) there is no best 
combination of the laser cutting factors which improves all three cut quality 
characteristics at the same time, (iii) focusing the laser beam up to 1/3 of material 
thickness is beneficial for improving cut quality.  

In the context of multi-objective optimisation of cut quality characteristics, the 
optimal laser cutting factors dependent on the importance order of the cut quality 
characteristics were determined for four cases. The results indicate that the 
applied CSA approach for solving the multi-objective optimisation problem with 
conflicting objectives is efficient. Based on the specific production requirements, 
the presented methodology is applicable for determining a set of optimal laser cutting 
factor settings for improving cut quality characteristics in CO2 laser cutting.  

In conclusion, the ANN based process modelling and multi-objective 
optimisation approach developed in this work will provide an effective and 
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flexible tool to a process engineer to choose optimal laser cutting factors for 
improving multiple cut quality characteristics in the CO2 laser cutting process. 
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