
Journal of Engineering Science and Technology
Vol. 10, No. 3 (2015) 269 - 281
© School of Engineering, Taylor’s University

269

NECESSITY OF LEARNING ANALYTICS
IN SOFTWARE ENGINEERING EDUCATION

N. PRATHEESH*, T. DEVI

Department of Computer Applications, School of Computer Science

and Engineering, Bharathiar University, Coimbatore – 641 046, India

*Corresponding Author: pratheesh_n@hotmail.com

Abstract

Computers are necessary and unavoidable part of the modern lifestyle. Software
is the key factor to satisfy all the desires and keep up this rock status. Software

engineers are the people who develop the software to satisfy the user needs and

make their work easier. Software engineers are academically mold up to the

industry requirements through the proper software engineering education.

Hence software engineering education plays an imperative role in computer
education, but it falls short to fabricate the genius software engineers to satisfy

the industries need. To overcome these issues researchers proposed number of

software engineering learning/teaching methods to egg-on students to reap their

depth knowledge in software engineering, albeit these allusions does not utterly

conquer this decisive issue since the suggested approaches does not meet with

the student’s learning style. Learning analytics plays a vital role to improve the
students learning activities. This paper describes the software engineering

students’ requirements through learning analytics and proposes a

teaching/learning tool to engage the students learning activities to overcome

such issues and inspire them in gathering software engineering knowledge.

Keywords: Software engineering education, Learning analytics, Social learning

 analytics, Learning style, Learning engagement, Software engineering,
 Learning/Teaching methods.

1. Introduction

While the software production has had amazing triumph in emergent software that

is of mounting degree and intricacy, it has also practiced a stable and noteworthy

flow of collapses. The majority of are well-known with open tragedy such as

270 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

failed Mars landings, rockets carrying satellites needing to be destroyed shortly

after takeoff or unavailable telephone networks and many more “private”

tribulations crop up that can be similarly disastrous or at least, problematic and

infuriating to those occupied. Exploratory, one of the major forums documenting

these failures, the risk forum, supplies an enlightening insight: a considerable

section of documented failures can be credited to software engineering process

breakdowns [1]. This collapses range from individuals not following an approved

procedure such as not performing all required tests, not informing a colleague of a

changed module interface, to group coordination problems, such as not using a

configuration management system to coordinate mutual tasks, not being able to

deliver a subsystem in time, to organisations making strategic mistakes such as

choosing to follow the waterfall process model where an incremental approach

would be more appropriate, not accounting for the complexity of the software in

budget estimate. As a result, it is estimated that billions of dollars are wasted each year

due to ineffective processes and subsequent faulty software being delivered [2].

The root cause of the above said problems is the fabrication in the software

engineering education. Present software engineering education typically pays

poor concentration to students being able to prepare the crises encircle the

software engineering. The archetypal software engineering course consists of a

series of lectures in which theories and concepts are discussed and make an effort

to learn this knowledge into practice. For this a small piece of software

engineering project must be developed by the students. Even though in

cooperation of these mechanisms is necessary because lectures as a source to

feed the basic knowledge of software engineering and the projects are the ways to

acquire hands on experience with some of the techniques of software engineering,

but this tactic not sufficient to satisfactorily teaches the complete software

engineering education [2-4].

2. Issue in Software Engineering Education

Software development companies need the talented software engineers to develop

the software. Studies highlighted that the quality of software engineering

workplace is a direct function of the quality of software engineering education

even though other factors may also play a role. Practical issues in software

engineering are a consequence of the insufficient software engineering knowledge

[5, 6]. Software engineering courses or training programs emphasise on deeper

understanding of the topic and highlights on cognitive learning goals of

knowledge and understanding. Higher order cognitive ambitions especially

application and analysis, followed by evaluation and synthesis, since these skills

are highly used and valued by the industry [4]. Some of the highlighted issues are,

substantial numbers of development projects are never completed, many of the

completed projects do not meet the user’s needs, poor quality and failure occurs

because of misunderstanding of requirements, mismatches in system design and

implementation, unrealistic expectations and bad project planning [6, 7].

Contemporary software engineering education has been lacking to produce the

knowledgeable software engineers to meet the industry’s need. University

graduates entering into the software engineering professionals are generally

unsatisfied with the level of real-world preparedness [8, 9]. Investigations show

that software professionals received the knowledge, as part of their graduate

Necessity of Learning Analytics in Software Engineering Education 271

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

education, which is not sufficient to analysed the industrial software engineering

problems. This atmosphere focuses on the significant mismatches between

software engineering education and the knowledge that is needed by the industry

to perform the required task [1, 10].

In the case of India, software engineering education pattern is divided into

modules and each module converses the individual sections and are covered

through a series of lectures. Assessments are done at the completion of each

module and there may be a final cumulative assessment at the end of the training

program [11]. Most of the training programs follow the traditional approaches of

lecture based training and performance-based assessments. These approaches are

not only less effective, but are also labour intensive on part of training [11].This

model of learning might not satisfies the industry’s needs and expectations of the

clients and changing market conditions and neglects to impart the constantly

incorporating newer technologies, techniques, tools, methods and standards [11].

In general, graduates enter to the industry are willingly or unwillingly good in

following the syntax, semantics, logic and process. But they are not well in

software engineering concepts because, software engineering is offered as just

one of the subject in a computer science course. Most of the computer science

graduates study software engineering for at most one semester. For some students

this is the only opportunity to get familiar with software engineering concepts

before starting their career as software engineers [11].

Employers carp about the communication inability of fresh graduates’ as they

fail to properly communicate with customers and within team members. Most of

the new recruits have insufficient experience in working as part of a team,

inability to manage their individual work in an efficient and productive manner

and do not understand or appreciate organisational structures or business practices

[7]. Computer education too often focuses on individual contributions rather than

on managed group efforts that depend on defined standards, methodologies and

processes [7]. However, such group efforts are the norm in the software industry.

Principles and theories of software engineering may not be directly applicable,

and students should be motivated to learn. This practice shapeup the student’s

mentality and improve their approach to solving practical problems [12].

Industry’s aggravation is explicable in order that fresh graduates to be prolific in

an industrial setting. However, the industries need the resources, hence, these

organisations that employ the fresh graduates, provide comprehensive on-the-job

training other than their university education and smarten them up with the skills

and knowledge, they lack [8].

3. Software Engineering Teaching/Learning Methods

Traditional teaching of software engineering is short of the relationship between

theoretical mastery and practice skills development. In addition, software

engineering is an important field, especially in the programming language,

software development and design tools, software reuse technology and design

patterns. However the current software engineering materials and teaching content,

knowledge structure and practice have so serious shortcomings, which restrict the

effect of the teaching of software engineering [13, 14]. Software engineering

researchers proposed numerous teaching/learning methods such as group project,

case tools, educational game and web based learning to overcome these challenges.

272 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

3.1. Group project

Most of the software engineering teaching model highlight the magnitude of

projects and wish for prototypes such as “Small Group Project” and “Large

Project Team”. Students necessitate to work on projects supported by an external

organisation, deliberately employing real-world difficulties during the class

project, such as changing requirements while the design is in progress, fit in

multiple universities and branch of learning into the project, sustaining a major

continuing project in that dissimilar cluster of students work on from semester to

semester, and many others. All of these come up to share the identical objective

that is to bridge the association between theories and practice. Moreover, students

are set in an environment that highly simulates the real software development

world and are assigned with jobs such as principle architect, project administrator

and configuration manager. The advantages of this method are its intensive

simulation of real projects and students are propelled to learn and do more than

they would in traditional courses [15-21].

3.2. CASE tools

An extensive assortment of positive hope has been credited to the professional use

of CASE tools in software engineering education. This incorporates the thinking

of the students use of a CASE tool will smooth the progress of the discipline.

This standardise the development process, enhance stability and fullness of the

models that are developed, amplify the capability for quality assurance, transform

the concentration of assessing away from mere correction of minor errors, make

better project planning and management by providing general idea of the

development process, cheer on reverse engineering, expand the capability to

fabricate high-quality documentation, and bridge the gap between design and

implementation [4, 22-25].

3.3. Educational game

An educational game is used in software engineering education to simulates the

software engineering process from requirements specification to product delivery.

This game provides students with an overall, high-level, practical experience of

the software engineering process in a speedy enough method to be used

continually in a limited amount of time. Educational game has a number of other

traits that contribute to its learning efficiencies. Competition motivates students to

play the game and encourages collaborative learning. This atmosphere makes sure

that all of the fundamental technicalities of the software engineering process

being simulated are able to be seen. Game has a fun, engaging nature and quality

that is known to be highly conducive for learning [26, 27].

3.4. Web-based learning

Looking for mainly a complement and not a replacement to traditional education,

a set of learning resources particularly designed for the world-wide-web. As a

complement to the lectures and printed material, the students have right of entry

to the web-based courseware which contained an improved adaptation of the

lessons material in electronic form and useful links to pertinent material on the

Necessity of Learning Analytics in Software Engineering Education 273

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

internet. Furthermore, asynchronous communication amenities were presented via

a web-based discussion forum and class management was included in the web-

based software engineering learning environment. Information procedures are

computerised by software systems and this kind of automation is precious, since

such procedures are monotonous, tiring, disagreeable and time consuming.

Software engineering is the technological branch anxious with the creation of

software systems, which can always be thought of as gears of larger artificial

systems. The enriched instructional delivery mode has several advantages over

the traditional mode such as students can progress at their own pace and study the

instructional material in the order that best look good on their skills or

preferences. The learning material is stored online and the course is ‘‘open’’ at

any time and from anywhere for the students registered in it and the lecturer plays

the function as a facilitator and helps out the learning procedure [28-30].

4. Need of Learning Analytics in Software Engineering Education

Learning analytics is one of the fastest mounting fields of technology enhanced

learning (TEL); research that has emerged during the last decade. Growth of this

field offered in a broadly sequential structure, demonstrating the increasingly

rapid pattern of development as new drivers emerge, new fields are appropriated

and new tools developed. Tracing the development of learning analytics over time

highlights a gradual shift away from a technological focus towards an

educational focus, and the introduction of tools, initiatives and methods that are

significant in the field today [31]. Learning analytics consists of ‘socialised’

approaches, which can readily be applied in social settings. These include content

analytics – a broad heading for the variety of automated methods that can be used

to examine, index and filter online media assets, with the intention of guiding

learners through the ocean of potential resources available to them [32]. These

analytics take on a social aspect when they draw upon the tags ratings and

metadata supplied by learners [33]. A second group of socialised analytics

focuses on the learning dispositions that can be used to render visible the mixture

of experience, motivation and intelligences that influences responses to learning

opportunities. Dispositions analytics can be regarded as socialised learning

analytics when the emphasis is on the learner in a social setting, engaged in a

mentoring or learning relationship [28].

Social Learning Analytics (SLA) are strongly grounded in learning theories

and focus attention on elements of learning that are relevant when learning in a

participatory online culture [34]. Approaches to analytics that can be classified in

this way include intrinsically the social forms of analytic: social network analytics

and discourse analytics [35]. Social learning analytics also includes ‘socialised’

approaches, which can readily be applied in social settings. These include content

analytics – a broad heading for the variety of automated methods that can be used

to examine, index and filter online media assets, with the intention of guiding

learners through the ocean of potential resources available to them [32, 36].

Software engineering education composed of enormous areas of knowledge

and every area contains more information. It is very intricate to students and

teachers to find the proper information for their needs and the retrieved

information may not motivate them to study the software engineering concepts.

Learning analytics is a new thought which helps to measure and improve the

274 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

learning. Learning style and learning engagement influence the acquisition of

knowledge, since these are considered as influential factors of learning analytics.

Previous study proves that learning style plays a vital role in acquire knowledge

in software engineering education and suggested to think about students learning

style when deliver the knowledge in the software engineering class [37]. This

supports to improve and inspire the software engineering education and fabricate

knowledgeable software engineer to fulfil the industry needs.

5. Results and Discussions

Data for the study were gathered from self-administrated questionnaire for

student’s learning engagement with the variable of active participation, emotional

engagement, avoidance of text book dominated instruction, reflective thinking,

student decision making and problem solving choice, behavioural engagement

and relevance. Active participation was measured from the statements like “free

to share ideas in class”, “discouraged to make judgments on issue within

classroom”, etc., emotional engagement was measured through “feel happy in the

software engineering technology-based class”, “feel happy in software

engineering traditional-based class”, etc., avoidance of text book was identified

using “do not use a textbook for software engineering”, “teachers lecture from the

textbook and we take notes”, etc., reflective thinking was measured via

“memorizing is the best way to get a good mark”, “encouraged to make

arguments supporting our own opinions”, etc., student decision making and

problem solving choice skill was identified through the statements “encouraged to

take our own initiative”, “learn difficult study concepts more easily when I am

able to picture them”, etc., behavioural engagement was identified using “prefer

independent learning opportunity”, “I can illustrate what was learned in software

engineering”, etc., and relevance was measured via “I can apply the software

engineering learning in the real world”, “I can work with challenging real world

issues in software engineering”, etc.

Survey was conducted among Master of Computer Applications (M.C.A.)

students to identify the students learning engagement in traditional based teaching

software engineering class from equal number of arts and science and engineering

and technology streams. Two hundred questionnaires were distributed to M.C.A.

students of various institutions in Coimbatore such as Bharathiar University, Sri

Ramakrishna Mission Vidyalaya College of Arts and Science, Dr. N.G.P. Institute

of Technology and Sri Krishna College of Engineering and Technology. These

institutions were selected based on lottery method. Bharathiar University and Sri

Ramakrishna Mission Vidyalaya College of Arts and Science are under arts and

science stream and offer the courses such as M.Sc. in Mathematics, M.Sc. in

Computer Science, M.Sc. in Information Technology, M.C.A., M.B.A. and M.Sc.

in Statistics. Dr. N.G.P. Institute of Technology and Sri Krishna College of

Engineering and Technology are offering the programme under engineering and

technology stream. These institutions offer courses such as M.E. in Computer

Science & Engineering, M.E. Embedded Systems, M.E. Engineering Design,

M.B.A., M.C.A. and M.E. Power Electronics & Drives. However, this survey

considers M.C.A. degree programme, because M.C.A. is one of the important

course offered by both the streams and it contains software engineering course in

the second year programme. After the screening, one hundred sixty eight

questionnaires were fully completed and useable, yielded a response rate of 84%.

Necessity of Learning Analytics in Software Engineering Education 275

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

SPSS version 17.0 was used to analyse the collected data. Table 1 shows the

summary of descriptive statistic for M.C.A. software engineering students’

learning engagement.

Table 1. Descriptive statistic for student learning engagement.

Variables Mean Median Mode SD

Active Participation 27.0 26.0 22 5.2

Emotional Engagement 30.0 29.5 26 5.4

Avoidance of Text book Dominated

Instruction

28.9 29.0 30 4.2

Reflective Thinking 30.1 29.0 28 6.0

Student Decision Making and Problem Solving

Choice

30.0 29.0 27 6.1

Behavioural Engagement 30.8 30.0 29 5.1

Relevance 28.1 27.5 24 5.4

5.1. Active participation

Figure 1 attests that the students distributed with the mean score of 27, median of

26 and mode of 22 for the variable active participation among traditional based

learning software engineering students. The standard deviation for the factor

active participation is 5.2. It revealed that 68% of students are clustered closely

around the mean and they fall in the range of 21.8-32.2. This value is above the

factor average 20 (10×4). It renders that the distribution is skewed positively

since the mean score is higher than the median and mode. It confirms that

traditional based learning software engineering students are not incited to reveal

their thoughts, disagree with views, raise technical issues, and make judgment for

the problem. Therefore students are not active in traditional based teaching

software engineering classes.

5.2. Emotional engagement

Figure 2 authenticates that the students distributed with the mean score of 30,

median of 29.5, mode of 26 and standard deviation of 5.4 for the variable

emotional engagement among traditional based learning software engineering

students. It exemplifies that the distribution is skewed positively while the mean

score is more than the median and mode. The score of the standard deviation

expound that 68% of students in traditional based software engineering teaching

class-room are assemblage near to the mean and they fall in the range of 21.8-

32.2. It points out that most of the students prefer the technology based

collaborative learning than the pure traditional based system, as they felt that

existing teaching method is tediousness and do not invent much interest in

learning process.

276 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

Fig. 1. Distribution of

active participation.

Fig. 2. Distribution of

emotional engagement.

5.3. Avoidance of text book dominated instruction

Figure 3 bear outs that the students distributed with the mean score of 28.9,

median of 29 and mode of 30 for the variable avoidance of text book dominated

instruction among traditional based learning software engineering students. It

directs that the distribution is skewed negatively while the mode value is higher

than the median and mean score. Further the standard deviation for the factor

avoidance of text book instruction is 4.2. It revealed that 68% of students are

clustered closely around the mean and they fall in the range of 24.7-33.1. This

value is above the factor average 20 (10×4). It rendering that most of the

students keep up to date their knowledge and come across the solution for

software engineering problems from watching software engineering lecture

videos, browsing information from internet, reading magazines, newsletters,

books and articles, chatting with colleagues, discussion forum, etc., than the

traditional dictation method of teaching.

5.4. Reflective thinking

Figure 4 substantiates that the students distributed with the mean score of 30.1,

median of 29 and mode of 28 for the variable reflective thinking among

traditional based learning software engineering students. It represents that the

distribution is skewed positively since the mean score is exceeding the median

and mode. The standard deviation for the factor reflective thinking is 6.0. It

revealed that 68% of students are clustered closely around the mean and they fall

in the range of 24.1-36.1. This value is above the factor average 20 (10×4). It

exposes that a large amount of traditional based learning software engineering

students expect encouragement from teachers to counter different opinions and

gathering knowledge through discussion forum rather than focus on facts and

memorisation. Students prefer to have the discussion in practical issues and the

use of technology in software engineering concepts.

Necessity of Learning Analytics in Software Engineering Education 277

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

Fig. 3. Distribution of avoidance of

text book dominated instruction.

Fig. 4. Distribution of

reflective thinking.

5.5. Student decision making and problem solving choice

Figure 5 confirms that the students distributed with the mean score of 30, median

of 29 and mode of 27 for the variable student decision making and problem

solving choice among traditional based learning software engineering students. It

depicts that the distribution is skewed positively though the mean score is higher

than the median and mode. Further the standard deviation for the factor student

decision making and problem solving choice is 6.1. It revealed that 68% of

students are clustered closely around the mean and they fall in the range of 23.9-

36.1. This value is also above the factor average 20 (10×4). It discloses that mass

number of the students perceive they do not have enough freedom to participate

and influence the decision making in the traditional based software engineering

classes. Further they perceive they don’t have abundant opportunity to make up

their own minds about issues related to software engineering concepts, teachers

determine the class activities and force them to enrol the activities.

5.6. Behavioral engagement

Figure 6 corroborates that the students distributed with the mean score of 30.8,

median of 30 and mode of 29 with the standard deviation of 5.1 for the variable

behavioural engagement between the traditional based learning software

engineering students. It symbolizes the distribution is skewed positively seeing as

the mean score is higher than the median and mode. The score of the standard

deviation divulge that 68% of students in traditional based software engineering

class-room are congregation around the mean and they fall in the range of 25.7-

35.9 for behavioural engagement. It demonstrates that nearly everyone in the

traditional based teaching software engineering class tend to have disruptive

behaviour such as skipping lectures and getting in trouble in traditional learning

method. This makes students to have low involvement in learning effort,

persistence, concentration, attention, asking questions and contribution to class

discussions and classroom activities.

278 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

Fig. 5. Distribution of student

decision making and problem

solving choice.

Fig. 6. Distribution of

behavioural engagement.

5.7. Relevance

Figure 7 illustrates that the students distributed with the mean score of 28.1,

median of 27.5 and mode of 24 for the variable relevance among traditional based

learning software engineering students. It makes clear that the distribution is

skewed positively whereas the mean score is exceeding the median and mode.

Further the standard deviation for the factor relevance is 5.4. It revealed that 68%

of students are clustered closely around the mean and they fall in the range of

22.7-33.5. This value is above the factor average 20 (10x4). It provides an

evidence that, traditional based learning software engineering students are of the

opinion that technology based course make them more marketable in their chosen

field, since it coincide with the challenging real world issues compare to

traditional-based learning environment.

Fig. 7. Distribution of relevance.

Necessity of Learning Analytics in Software Engineering Education 279

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

6. Conclusion

Software engineering education commonly practices the traditional method

teaching. Research findings focus that, students are not active in traditional based

teaching software engineering classes. They felt that existing teaching method is

tediousness and do not invent much interest in the learning process. Students

prefer to watch software engineering lecture videos, browsing information from

internet, reading magazines, newsletters, books and articles, chatting with

colleagues, discussion forum, etc., to gather their knowledge than the traditional

dictation method of teaching. Students expect the encouragement from teachers to

counter different opinions and gathering knowledge through discussion forum

rather than focus on facts and memorisation. They prefer to have the discussion in

practical issues and the use of technology in software engineering concepts.

Students don’t have abundant opportunity to make up their own minds about

issues related to software engineering concepts, teachers determine the class

activities and force them to enrol the activities. They have low involvement in

learning effort, persistence, concentration, attention, asking questions and

contribution to class discussions and classroom activities. Students have the

opinion that technology based course make them more marketable in their chosen

field, since it coincide with the challenging real world issues compare to

traditional-based learning environment.

Hence it concluded that majority of the traditional based learning software

engineering students prefer technology based collaborative learning environment

than the pure traditional based teaching method. Students feel that this

atmosphere swells their learning engagement and motivates them to study

software engineering in depth. This study proposes a simulated web based

software engineering teaching tool. This tool has the features such as dynamically

detects the learning style of the learner and evokes the learning materials in line

with their learning style, discussion forum, update the activities and events to the

students and leisure activities using social software concepts. The propose tool

also guides the students to select the appropriate learning materials and lecturer to

find the student’s needs using learning analytics concepts. This mounts the

learning engagement of the students and impels their learning activity enjoyably

in software engineering. This would triumph over the issues and bring forth the

clued-up software engineers to the industry requirements.

References

1. Kitchenham, B.; Budgen, D.; Brereton, P.; and Woodall, P. (2005). An

investigation of software engineering curricula. Journal of Systems and

Software, 74(3), 325-335.

2. Aasheim, C.L.; Li, L.; and Williams, S. (2009). Knowledge and skills

requirements for entry level information technology workers: a comparison

of industry and academia. Journal of Information Systems Education, 20(3),

349-356.

3. Kim, Y.; Hsu, J.; and Stern, M. (2006). An update on the IS/IT skills gap.

Journal of Information Systems Education, 17(4), 395-402.

280 N. Pratheesh and T. Devi

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

4. Lee, C.K.; and Han, H.-J. (2008). Analysis of skills requirement for entry-

level programmer/analysis in fortune 500 companies. Journal of Information

Systems Education, 19(1), 17-27.

5. Beckman, H.; Coulter, N.; Khajenoori, S.; and Mead, N.R. (1997).

Collaborations: Closing the industry-academia gap. IEEE Software, 14(6), 49-57.

6. Gibbs, W.W. (1994). Software’s chronic crisis. Scientific American, 271(3),

86- 95.

7. Denning, P.J. (1999). Educating a new engineer. Communications of the

ACM, 35(12), 83-97.

8. Richard, Conn. (2002). Developing software engineers at the C-130J

Software Factory. IEEE Software, 19(5), 25-29.

9. Callahan, D.; and Pedigo, B. (2002). Educating experienced IT professionals

by addressing industry’s needs. IEEE Software, 19(5), 57-62.

10. Surakka, S. (2007). What subjects and skills are important for software

developers? Communications of the ACM, 50(1), 73-78.

11. Kirti, G.; and Vasudeva, V. (2008). Software engineering education in India:
issues and challenges. Proceedings of the 21

st
 Conference on Software

Engineering Education in India: Issues and Challenges, IEEE Computer

Society, IEEE, 110-117.

12. Carlo, G.; and Dino, M. (2005). The challenges of software engineering

education. Proceedings of the ICSE 05, St. Louis, Missouri, USA. ACM, 637-638.

13. Song, H.Y.; Li, X.Z.; and Zheng, H.X. (2008). Investigation and practice of
cultivating software engineering specialty talents. Journal of Dalian

Nationalities University, 5(10), 473-476.

14. Wang, Z.-H.; and Yuan, F.-Y. (2006). Study on teaching reform of course

software engineering. Computer Knowledge and Technology, 23, 219-220.

15. Burnell, L.J.; Priest, J.W.; and Durrett, J.R. (2002). Teaching distributed

multi disciplinary software development. IEEE Software, 19(5), 86- 93.

16. Dawson, R. (2000). Twenty dirty tricks to train software engineers.
Proceedings of the 22

nd
 International Conference on Software Engineering,

ACM, 209-218.

17. Hayes, J.H. (2002). Energizing software engineering education through real-
world projects as experimental studies. Proceedings of the 15

th
Conference on

Software Engineering Education and Training, IEEE, 192-206.

18. Jeffrey, C.; Letizia, J.; Sandro, M.; and Forrest, S. (2003). Issues in using

students in empirical studies in software engineering education. Proceedings

of the Ninth International Software Metrics Symposium (METRICS’03),

IEEE, 239-249.

19. Mayr, H. (1997). Teaching software engineering by means of a virtual

enterprise. Proceedings of the 10
th
 Conference on Software Engineering,

IEEE Computer Society, IEEE, 176-184.

20. Pfleeger, S.L. (1998). Software engineering, theory and practice. Prentice-
Hall, Inc.

21. Sebern, M.J. (2002). The software development laboratory: incorporating

industrial practice in an academic environment. Proceedings of the 15
th

Conference on Software Engineering and Trainin, IEEE, 118-127.

Necessity of Learning Analytics in Software Engineering Education 281

Journal of Engineering Science and Technology March 2015, Vol. 10(3)

22. Bromell, J; and Preston, J. (1989). Will CASE help me develop more reliable

software? Proceedings of the IEEE Colloquium on The Application of

Computer Aided Software Engineering Tools, IEEE, 1-4.

23. McClure, C. (1989). The CASE for structured development. PC Tech

Journal, 6(8), 51-67.

24. McClure, C. (1989). CASE in software automation. Prentice-Hall.

25. Orlikowski, W. (1988). CASE Tools and the IS Workplace: Some findings

from empirical research. Proceedings of the ACM SIGCPR Conference on

the Management of Information Systems Personnel, ACM, 88-97.

26. Bruffee, K.A. (1983). Collaborative learning: higher education, interde-
pendence, and the authority of knowledge. John Hopkins University Press.

27. Ferrari, M.; Taylor, R.; and VanLehn, K. (1999). Adapting work simulations

for schools. The Journal of Educational Computing Research, 21(1), 25-53.

28. Deakin, C.R.; Broadfoot, P.; and Claxton, G. (2004). Developing an effective
lifelong learning inventory: the ELLI project. Assessment in Education:

Principles, Policy & Practice, 11(3), 247-272.

29. McCormack, C.; and Jones, J.D. (1997). Building a web-based education

system. Wiley, New York.

30. Pratheesh, N.; Devi, T; and Prithvi Vidhya, P. (2012). Web enabled learning

tool for software requirements analysis. International Journal of Software

Engineering Research & Practices, 2(1), 6-11.

31. Rebecca, F. (2012). The state of learning analytics in 2012: a review and
future challenges. Technical Report KMI-12-01, Knowledge Media Institute,

The Open University, UK.

32. Verbert, K.; Drachsler, H.; Manouselis, N.; Wolpers, M.; Vuorikari, R.; and

Duval, E. (2011). Dataset-driven research for improving recommender

systems for learning. Proceedings of the LAK11: 1
st
International Conference

on Learning Analytics and Knowledge, ACM, 44-53.

33. Clow, D.; and Makriyannis, E. (2011). iSpot analysed: participatory learning

and reputation. Proceeding of the 1st International Conference on Learning

Analytics and Knowledge, ACM, 34-43.

34. Rebecca, F.; and Simon, B.S. (2012). Social learning analytics: five

approaches. Proceedings of the 2
nd
 International Conference on Learning

Analytics and Knowledge, ACM, 23-33.

35. De Liddo, A.; Simon, B.S.; Quinto, I.; Bachler, M.; and Cannavacciuolo, L.

(2011). Discourse-centric learning analytics. Proceedings of the LAK11: 1
st

International Conference on Learning Analytics and Knowledge, ACM, 23-33.

36. Drachsler, H.; Toine, B.; Riina, Vuorikaric.; Katrien, V.; Erik, D.; Nikos, M.;

Guenter, B.; Stephanie, L.; Hermann, S.; Martin, F.; Martin, W. (2010). Issues

and considerations regarding sharable data sets for recommender systems in

technology enhanced learning. Procedia Computer, 1(2), 2849-2858.

37. Pratheesh, N.; and Devi, T. (2013). Influence of learning analytics in
software engineering education. Proceeding of the IEEE International

Conference on Emerging Trends in Computing, Communication and

Nanotechnology (ICECCN 2013), IEEE, 712-716.

