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Abstract 

The aim of this study is to evaluate how far the detrended fluctuation analysis 

(DFA) approach helps to characterize the short-term and intermediate-term 

fractal correlations in the raw electrocardiogram (ECG) signals and thereby 
discriminate between normal and congestive heart failure (CHF) subjects. The 

DFA-1 calculations were performed on normal and CHF short-term ECG 

segments, of the order of 20 seconds duration. Differences were found in short-

term and intermediate-term correlation properties and the corresponding scaling 

exponents of the two groups (normal and CHF). The statistical analyses show 

that short-term fractal scaling exponent alone is sufficient to distinguish 
between normal and CHF subjects. The receiver operating characteristic curve 

(ROC) analysis confirms the robustness of this new approach and exhibits an 

average accuracy that exceeds 98.2%, average sensitivity of about 98.4%, 

positive predictivity of 98.00%, and average specificity of 98.00%. 

Keywords: Congestive heart failure, Detrended fluctuation analysis, ECG classification, 
                     Scaling exponents, Short-term and intermediate-term fractal correlations. 

 

 

1.  Introduction 

Despite numerous recent advances in the field of medicine, congestive heart 

failure (CHF) has been difficult to manage with in clinical practice and mortality 

rate has remained high [1]. As a consequence the development of new methods 

and measures of mortality risk in CHF, including sudden cardiac death, is still a 

major challenge. Besides this, there is a need to reach remote and underserved 

communities with life saving healthcare. A reliable automated classification 

system combined with high-speed communication can resolve this issue. This work 
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Nomenclatures 
 

F(k) Scaling function 

k  Specific scale 

M  Average of the series x(i), V 

x(i) Discrete time series, V 

Yk(i) Detrended fluctuations, V 

y(i) Profile of x(i), V 

yk(i) Local trend in the box, V 
 

Greek Symbols 

α Scaling exponent. 
 

Abbreviations 

AHA American heart association 

AUC Area under curve 

BIDMC Beth Israel deaconess medical center 

CHF Congestive heart failure 

CP  Crossover point 

chfdb CHF database 

DFA Detrended fluctuation analysis 

ECG  ElectroCardioGram 

EEG ElectroEncephaloGram 

HR Heart rate 

HRV Heart rate variability 

nsrdb normal sinus rhythm database 

PVC Premature ventricular contraction 

ROC Receiver operating characteristic 

is an attempt to develop such an automated system to discriminate between 

normal and congestive heart failure subjects. 

There has been growing evidence that the output signals of biological, 

physical and physiological systems exhibit complex self-similar fluctuations 

(fractal) over a broad range of space and/ or time scales, i.e., small fluctuations at 

small scales have similar characteristics to large fluctuations at large time scales. 

Fractal properties have been observed in real-time ECG recordings of the heart 

[2], EEG recordings of brain waves, eye movements, as well as in recordings of 

human movements [3]. Fractal properties are an emergent property of the system 

dynamics, and to the extent that a given pathology disrupts those dynamics the 

resulting properties will be altered. Since the mechanisms which control the 

underlying interactions are nonlinear the output signals are typically nonstationary 

and the conventional methods such as power-spectrum and auto-correlation 

analysis are not suitable for such nonstationary signals. Poincare plot, 

approximate entropy, sample entropy, correlation dimension, sequential trend 

analysis, maximum Lyapunov exponents, and detrended fluctuation analysis 

(DFA) are some of the popular nonlinear methods that can be used. 

The aim of this study is to quantify correlations across time scales in the 

nonstationary electrocardiogram (ECG) time series. Compared to other nonlinear 

methods, DFA is thought to be more robust to nonstationarity [3] and thus, is an 
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obvious choice. This application of DFA to raw ECG signal is motivated first, by 

the fact that heart is a highly complex system and second, by the difficulties in 

satisfying the assumptions of either linear or chaos analysis. DFA is a scaling 

analysis method which provides a quantitative parameter - the scaling exponent – 

that quantifies intrinsic fractal-like correlation properties of the dynamic system 

that generates the signal. One of the usual challenges is that scaling exponent is 

not always constant and crossovers often exist. This means the scaling exponent is 

different for different range of scales [4]. A change in the value of scaling 

exponent is usually due to change in fractal correlation properties of the signal at 

different scales, though it can be due to nonstationarities in the signal. 

The concept of DFA was first introduced by Peng et al. [5] in 1995 and since 

then has been successfully used to quantify fractal correlation properties of 

nonstationary biological, physical and physiological signals. It has found 

applications in diverse research fields like, in medicine, for example, for DNA 

sequences, cardiac dynamics, temperature fluctuations [6], and even, economics [7]. 

In the past extensive work has been carried out by applying DFA on heart rate 

variability (HRV) signals and it was found to be useful in distinguishing between 

normal and arrhythmia subjects [8-12]. However, not much is found in the literature 

where DFA is tried on raw ECG signals. In one of the approaches ECG readings 

were analyzed using DFA along with unassisted K-means clustering algorithm [13]. 

But the success rate of CHF classification was only 86.7%. Lai et al. performed 

automatic ECG classification into normal and premature ventricular contraction 

(PVC) beats using fractal and cross correlation analyses [2]. They claim an accuracy 

of 100% on only some of the American heart association (AHA) ECG records. 

Multifractal properties of two-channel ECG patterns of patients suffering from 

congestive heart failure have been studied and compared with those of healthy 

subjects by Dutta [14]. The degree of correlation was compared between the two 

groups using Holder exponent. He found the normal group to have a higher 

correlation compared to the CHF group.  

In another attempt, Wang Jun et al. used a single scaling exponent to distinguish 

between congestive heart failure and sudden cardiac death [15]. But no details about 

accuracy and specificity are available. Recent HRV studies have shown that some 

indices describing cardiac dynamics, such as fractal scaling exponents, may provide 

useful prognostic information in various clinical settings and their reproducibility 

may be better than traditional indices. For example, the short-term DFA scaling 

exponent, α1, has been shown to be a good marker in the process of aging [16] and 

reliable predictor of mortality in post-myocardial infarction patients [17]. Timo et 

al. have shown that altered short-term fractal scaling exponent of heart rate (HR) 

dynamics is a strong predictor of cardiac death, particularly, of sudden cardiac death 

in an unselected elderly population [18].  

For the purpose of this study, a DFA algorithm similar to the original DFA 

algorithm [5] and short-term DFA scaling exponent to characterize the fractal 

correlations in the ECG signal is adopted and a classification into normal and CHF 

subjects is performed. 

For practical purposes, clinical investigators are usually interested in using 

substantially shorter time series and since DFA is directly applied on raw ECG 

signals, this new approach is highly suitable to clinical investigators. 
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2.  Methods and Materials 

2.1.  ECG records 

Since age and gender of subjects influence upon results of DFA, before any 

comparison between normal and CHF groups, one should make sure that the 

groups are both age- and sex-matched. All the ECG records used are from the 

benchmark PhysioNet databases [19]. For sake of comparison and validation, two 

groups, named, I and II are used. Group-I comprises 5 normal sinus rhythm ECG 

records from MIT-BIH normal sinus rhythm database (nsrdb) and 5 CHF ECG 

records from Beth Israel Deaconess Medical Center (BIDMC) CHF database 

(chfdb). Group-II comprises 5 normal sinus rhythm ECG records from Fantasia 

normal sinus rhythm database (fantasia) and 5 CHF ECG records from BIDMC 

CHF database (chfdb) of PhysioNet. Details of databases from PhysioNet, 

subjects, and their ECG records, used to form Groups I and II, are shown in   

Table 1. The sampling frequency of nsrdb database used in Group-I is 128 Hz, 

that of fantasia used in Group-II is 250 Hz and chfdb database used in Groups I 

and II is 250 Hz. 

 

Table 1. Details of PhysioNet databases, subjects                                                        

and their ECG records used to form Group-I and Group-II. 

Database Group-I Group-II 

Normal 

Subjects 

Age, years 

Channel used 

Record length, hours 

Sampling frequency, samples/s 

nsrdb 

men 3 and women 2 

38-50 

1 (modified lead II) 

0.5 

128 

fantasia  

men 4 and woman 1 

68-71 

2 (modified lead II) 

2 

250 

CHF 

Subjects 

Age, years 

Channel used 

Record length, hours 

Sampling frequency, samples/s 

chfdb 

men 3 and women 2 

22-54 

1 (modified lead II) 

20 

250 

chfdb 

men 4 and woman 1 

63-71 

1 (modified lead II) 

20 

250 

 

Since the sampling frequency does influence upon the calculated indices it 

is necessary to have the same sampling frequency for both the normal and 

CHF databases. For this reason ECG signals from normal database (nsrdb) in 

Group-I are first re-sampled at 250 Hz. However, since the sampling 

frequency is the same for both the fantasia and chfdb databases (250 Hz), 

there is no question of re-sampling in the Group-II. Each record, from Groups 

I and II, is divided into segments of equal time duration (20 s), with                  

5000 samples per segment, for analysis. A total of 3510 segments from 

normal sinus rhythm and an equal number of segments from CHF data base 

are analysed. 
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2.2.  Detrended fluctuation analysis (DFA) 

The prime advantages of using DFA over conventional methods (e.g., spectral-, 

auto-correlation-, and Hurst-analysis) is that it permits the identification of intrinsic 

self-similarity, or fractal correlation, embedded in a seemingly nonstationary signal 

and also avoids spurious detection of long-range correlations that are actually an 

artifact of nonstationarity. For a proper study of intrinsic dynamics of the system it 

is necessary to discard the trends exogenous to the system. 

The DFA method eliminates nonstationarities which are due to trends not 

necessarily related to cardiac dynamics. For example, the first-order DFA 

eliminates constant trends from the original time series, the second-order DFA 

eliminates linear trends from the original time series, and n
th

 order DFA 

eliminates the (n-1)
 th

 order polynomial trends in the time series. In this work, it is 

found that a 1
st
 order DFA is suitable for discrimination of the raw ECG signals 

into normal and CHF. 

DFA is a modified form of root-mean square analysis of random walk which 

provides scaling exponents corresponding to short-term, intermediate-term and 

long-term correlations in the time-varying signals [4]. The scaling exponents 

obtained from DFA have prognostic and diagnostic values [16, 17]. The 

calculation of scaling exponents involves the following steps: 

(1) Starting with the ECG time series x(i), where, i = 1,2,…,N and N is the 

length of the signal the first step in DFA is to integrate x(i) to arrive at a new time 

series y(i), usually called profile, 

���� = � [��	� − �]���                                                                                        (1) 

� = �
�� ��	�����                                                                                                   (2) 

where M is the average of the series x(i). 

(2) The integrated time series, profile y(i), is then divided into boxes of 

equal length k. In each box k, y(i) is fitted with a linear function yk(i)  which 

corresponds to the local trend in that box (using least-square fit). A polynomial fit 

of order-l results in a DFA-l (For l = 1, DFA-1; for l = 2, DFA-2 and so forth). 

(3) Next, the integrated profile y(i) is then detrended by subtracting the local 

trend yk(i) in each box k. 

����� = ���� −��������������������������������������������������������������������������������������                     (3) 

(4) Next, the root-mean squares of the detrended fluctuations ������ are 

calculated for each value of k. 

���� = ���
�� [�����]����                                                                                       (4) 

This computation is repeated for varied box lengths to yield F(k) as a function 

of k (usually, log F(k) as a function of log k).  
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For scale invariant signals with power-law correlations there exists a power-law 

relation between F(k) and the scale k. 

�����~���                                                                                                             (5) 

Because the power-laws are scale invariant F(k) is sometimes called scaling 

function and the parameter α is called scaling exponent. A plot of F(k) vs. k on a 

log-log scale (that is, log F(k) against log k, usually called DFA plot) reveals a 

linear relationship with the slope as the scaling exponent, α. The value of α 

represents the degree of correlation in the signal: if α = 0.5 the signal is 

uncorrelated (white noise); if 0.5 < α < 1.0 the signal is positive-correlated 

(increments in the time series are likely to be followed by increments and vice 

versa); if 0 < α < 0.5 the signal is negative-correlated (increments in the time 

series are likely to be followed by decrements and vice versa); If α = 1.0, it 

corresponds to 1/f noise (pink noise), α = 1.5 corresponds to Brownian noise (the 

integral of white noise is Brownian noise or random walk) and 1<α<1.5 

correspond to different types of noise.  

For this work, in specific, first-order DFA is chosen, as it can accurately 

quantify fractal-like correlations in the nonstationary ECG signals and distinguish 

between normal and CHF subjects. 

 

2.3.  Time variation of scaling behavior and crossover phenomenon 

One of the usual challenges is that scaling exponent is not always constant and 

crossovers often exist. This means the scaling exponent is different for different 

range of scales [4]. A change in the value of scaling exponent is usually due to 

change in fractal correlation properties of the signal at different scales, though it 

can be due to nonstationarities in the signal. 

A DFA plot, typically, exhibits three distinct regions with different slopes while 

studying the scaling behavior of the fluctuation function F(k) on small and large time 

scales in order to find out if there exist short-term, intermediate-term correlations and 

long-term correlations in the signal. The first and second straight lines with slopes α1 

and α2, respectively, intersect at a crossover point (CP1). The second and third straight 

lines with slopes α2 and α3, respectively, intersect at a crossover point (CP2). The 

values of α1, α2 and α3 are found using least-squares technique. Scaling exponent, α1 

reflects power related to short-term fluctuations (high frequency), α2 reflects power 

related to intermediate-term fluctuations (low frequency) and α3 reflects power related 

to long-term fluctuations (very lower frequency). 

 

2.4. Short-term and intermediate-term fractal scaling exponents and t-tests 

In some recent observational HRV studies, the short-term DFA scaling exponent, 

α1, has been shown to be a good marker in the process of aging [16] and reliable 

predictor of mortality in post-myocardial infarction patients [17] and a strong 

predictor of cardiac death, particularly, of sudden cardiac death in an unselected 

elderly population [18]. 

Nevertheless, in this work, short-term fractal scaling exponent α1 and 

intermediate-term scaling exponent α2 are used and it is shown that short-term 

fractal scaling exponent α1 alone is sufficient distinguish between normal and 
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CHF subjects. To assess the use of these parameters individual and pair-wise 

significance tests (Student’s t-tests) are performed. To compare the scaling 

behavior of the fluctuation functions between the normal and CHF groups the 

mean and standard deviation of the difference between the corresponding scaling 

exponents, α1 and α2, of the two groups are computed. Parameters are regarded as 

statistically significant if p < 0.05. 

 

2.5. Receiver operating characteristic (ROC) analysis and C-statistic 

As mentioned above, individual and pair-wise significance tests (Student’s t-tests) 

are used to evaluate the statistical differences between the scaling exponents, α1 

and α2, for normal and CHF subjects. If significant differences between groups 

are found, then the ability of the non-linear analysis method to discriminate 

normal from CHF subjects is evaluated using receiver operating characteristic 

(ROC) plots in terms of C-statistics. 

ROC curves are obtained by plotting sensitivity values (which represent the 

proportion of the patients with diagnosis of CHF who test positive) along the y 

axis against the corresponding (1-specificity) values (which represent the 

proportion of the correctly identified normal subjects) for all the available cutoff 

points along the x axis. Accuracy is a related parameter that quantifies the total 

number of subjects (both normal and CHF) precisely classified. The area under 

ROC curve (AUC), also called C-statistic, measures this discrimination, that is, 

the ability of the test to correctly classify those with and without the disease and is 

regarded as an index of diagnostic accuracy. The optimum threshold is the cut-off 

point in which the highest accuracy (minimal false negative and false positive 

results) is obtained. This can be determined from the ROC curve as the closet 

value to the left top point (corresponding to 100% sensitivity and 100% 

specificity). A C-statistic value of 0.5 indicates that the test results are better than 

those obtained by chance, where as a value of 1.0 indicates a perfectly sensitive 

and specific test. 

 

3.  Results and Discussion 

To test for statistical significance of DFA approach, first the ECG data from 

normal and CHF subjects of Group-I (age and gender matched) are analyzed 

and it is shown that short-term fractal scaling exponent α1 alone is sufficient to 

distinguish between normal and CHF subjects. Next, this approach is validated 

conducting another case study on normal and CHF subjects from Group-II (age 

and gender matched). Both α1 and α2 are analyzed from segments of 5000 

samples and averaged to obtain mean values for the entire recording period. As 

mentioned earlier, a first-order DFA was chosen for this work as it can 

accurately quantify correlations in the nonstationary ECG signal and distinguish 

between the two groups. Both the normal and CHF subjects demonstrated short-

term (small scales) and intermediate-term (large scales) correlations in the 

respective ECG signal.  

The detrending procedure in the first-order DFA using linear fit is illustrated 

through two exemplary box sizes/ scales (k = 10 and k = 200) in Fig. 1, for a 

normal subject from Group-I. The least square linear fit (shown by dotted line 
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in each figure) to the profile (shown by solid line in each figure) is performed in 

each box at every scale. In this work for short-term 20 scales were used over the 

range k = 10 and k = 100 and for long-term 40 scales were used over the range k 

= 100 to k = 500. Comparing Fig. 1(a) with Fig. 1(b), it is clear that larger the 

scale value, k, larger the deviation of the linear fit from the profile. This also 

implies the scaling behavior of the fluctuation function F(k) on small and large 

time scales. 

 

 
Fig. 1. Illustration of detrending procedure in the first-order DFA (DFA-1) 

for a normal subject from Group-I. (a) short-term (k = 10; number of 

windows=50) and (b) long-term (k = 200; number of windows=5).                      

Solid line corresponds to profile and the dotted line                                   

corresponds to least square linear fit to the profile. 

 

Figure 2(a) shows short-term DFA plot and Fig. 2(b) shows long-term DFA 

plot for both, a normal subject and a CHF subject, from Group-I. It is apparent 

that F(k) increases with increasing k since deviations of the fit from the profile 

increase with increasing scale value, k. For the normal case α1 = 0.7541 and α2 = 

0.1001 and for the CHF case α1 = 1.3504 and α2 = 0.2016. It is seen that in both 

the plots the CHF subject exhibits a deviation of the correlation exponents from 

those of the normal. But, α1 in the normal subject is significantly smaller than α1 

in the CHF subject. The distribution of α1 and α2 for the normal and CHF groups 

(Group-I) are shown using Box-whiskers plots in Figs. 3(a) and (b), respectively. 

In Fig. 3(a) for α1, the boxes (inter-quartile range) as well as the whiskers of 

normal and CHF subjects are apparently non-overlapping. In Fig. 3(b) for α2, the 

boxes (inter-quartile range) as well as the whiskers of normal and CHF subjects 

are overlapping. These plots show that short-term fractal scaling exponent α1 is 

sufficient to distinguish between normal and CHF subjects. 
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Fig. 2. (a) Short-term DFA plot for normal and CHF subjects from Group-I. 

Solid line corresponds to normal subject and the dotted line corresponds to 

CHF subject. (b) Long-term DFA plot for normal and CHF subjects from 

Group-I. Solid line corresponds to normal subject and the dotted line 

corresponds to CHF subject. 

 

Fig. 3. The distribution of scaling exponents (a) α1 and (b) α2 using Box-

whiskers plots (without outliers) for normal and CHF subjects from Group-I. 

 

The results of statistical analysis of non-paired Student’s t-test for normal and 

CHF groups of Group-I are depicted in Table 2. All values are expressed as mean 

± Standard Deviation (median) [95% Confidence Interval]. For normal subjects, 

the following short-term and intermediate-term scaling exponents (mean ± S.D.): 
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α1 = 0.6898 ± 0.1252 and α2 = 0.4224 ± 0.2572, respectively, were found. For 

CHF subjects, on the other hand, the following short-term and intermediate-term 

scaling exponents (mean ± S.D.): α1 = 1.0458 ± 0.1057 and α2 = 0.5844 ± 0.4136 

(both different from normal), were found. These distributions show that short-

term fractal scaling exponent α1 alone is sufficient to distinguish between normal 

and CHF subjects. It can be observed that both the groups show a larger value of 

α1 as compared to that of α2. This implies stronger correlations on short time 

scales compared to intermediate timescales. 

Table 2. Descriptive results of DFA analysis for Group-I.                                            

All values are expressed as mean ± SD (median) [95% CI].                                                  

(non-paired Student’s t-test; p < 0.0001). 

Subject alpha1 alpha2 

Normal 0.6898 ± 0.1252(0.7068) 

[0.6787    0.7008] 

0.4224 ± 0.2572(0.3757) 

[0.3998    0.4450] 

CHF 

 

1.0458 ± 0.1057(1.04) 

[1.0365    1.0551] 

0.5844 ± 0.4136(0.4599) 

[0.5480    0.6207] 

It is also found that α1 and α2 for normal group are always smaller than the 

respective values of the CHF group, the former being significantly smaller. This 

implies an increase in the correlations on short time scales, as well as, 

intermediate time scales in the CHF group, the former being more pronounced. Of 

course, experimental studies are necessary to confirm the mechanisms behind the 

increase in the correlation of the short-term records of CHF subjects. 

The Student’s t-test was also performed for the paired data. The results are 

tabulated in Table 3. Parameters are regarded as statistically significant if p < 0.05. 

The values of test statistic and p-value reveal that both the scaling exponents for 

both the groups are statistically significant, α1 being predominantly significant than 

α2. Next, the ability of the short-term fractal scaling exponents α1 and α2 to 

discriminate normal from CHF subjects (Group-I) is evaluated using receiver 

operating characteristic (ROC) plots, which are shown in Fig. 4. The diagonal line 

(dotted line) from 0 to 1.1 in Fig. 4 represents ROC curve that cannot discriminate 

between normal and CHF from Group-I. For the case of α2 (shown by dashed 

curved line), it is found that the area under the curve (AUC) is found to be 0.5968 

with sensitivity = 54.4%, specificity = 68.4%, positive predictivity = 63.3%, and 

accuracy = 61.4%. For the case of α1 (shown by solid curved line), the area under 

the curve (AUC) is found to be 0.98755 with sensitivity = 98.4%, specificity = 98%, 

positive predictivity = 98.0%, and accuracy = 98.2%. These results substantiate the 

findings of this study that short-term fractal scaling exponent α1 alone is sufficient 

to distinguish between normal and CHF subjects. 

 

Table 3. p-values and tstat (test statistic ) values of paired t-test                                     

for α1 and α2 of healthy and CHF subjects from Group-I. 

Parameter alpha1-CHF alpha2-CHF 

alpha1-normal p = 3.1379 x 10
-265

; 

tstat = -48.5852 

 

alpha2-normal  p = 2.2160 x 10-13; 

tstat = -7.4369 
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Fig. 4. ROC curve for α1 (solid line) and α2 (dashed line).                                         

The diagonal line (dotted line) from 0,0 to 1,1 represents ROC curve                   

that cannot discriminate between normal and CHF from Group-I. 

 

A scattergram of α1, with subjects along x-axis and the value of scaling 

exponent along y-axis for 5 normal (shown by ‘o’) and 5 CHF subjects (shown by 

‘+’) are shown in Fig. 5. In Fig. 5, the solid line corresponds to a linear function 

that separates the two groups.It is interesting to see the separation of α1 values 

between normal and CHF subjects (Group-I) and also nonoverlap of α1 values in 

both normal and CHF subjects. This means α1 exhibits variability large enough to 

separate intra-individuals of the respective groups, but small enough to separate 

normal from CHF. These results again confirm the finding that short-term fractal 

scaling exponent α1 has potential in discriminating normal and CHF subjects and 

thus can significantly add to the prognostic value of traditional cardiac analysis. 

Finally, this approach is validated conducting another case study on normal 

and CHF subjects from Group-II (age and gender matched). The results of 

statistical analysis of non-paired Student’s t-test for normal and CHF groups of 

Group-II are depicted in Table 4. All values are expressed as mean ± Standard 

Deviation (median) [95% Confidence Interval]. For normal subjects, the 

following short-term and intermediate-term scaling exponents (mean ± S.D.):     

α1 = 0.8637 ± 0.0841 and α2 = 0.5743 ± 0.2035, respectively, were observed. For 

CHF subjects, the following short-term and intermediate-term scaling exponents 

(mean ± S.D.): α1 = 1.1330 ± 0.2302 and α2 = 0.6416 ± 0.3594 (both different 

from normal), were found. These distributions show that short-term fractal scaling 

exponent α1 is sufficient to distinguish between normal and CHF subjects. 

The Student’s t-test for paired data was also performed to ascertain the results. 

The results are tabulated in Table 5. Parameters are regarded as statistically 
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significant if p < 0.05. The values of test statistic and p-value reveal that both the 

scaling exponents for both the groups are statistically significant, α1 being 

predominantly significant than α2. 

 

Table 4. Descriptive results of DFA analysis for Group-II.                                            

All values are expressed as mean ± SD (median) [95% CI].                                    

(non-paired Student’s t-test; p < 0.0001). 

Subject alpha1 alpha2 

Normal 0.8637 ± 0.0841(0.8744) 

[0.8513    0.8760] 

0.5743 ± 0.2035(0.5652) 

[0.5444    0.6043] 

CHF 

 

1.1330 ± 0.2302(1.045) 

[1.1009    1.1651] 

0.6416 ± 0.3594(0.5268) 

[0.5915    0.6917] 

 

 

Table 5. p-values and tstat (test statistic ) values of paired t-test                                  

for α1 and α2 of healthy and CHF subjects from Group-II. 

Parameter alpha1-CHF alpha2-CHF 

alpha1-normal p = 0; 

tstat = -14.8313 

 

alpha2-normal  p = 0.0276; 

tstat = -2.2119 

 

 
Fig. 5. Scatter plot of scaling exponents α1 for normal subjects (o)               

and CHF subjects (+). Solid line corresponds to a linear                                    

function that separates the two groups. 
 

Next, the ability of the short-term fractal scaling exponents, α1 and α2, to 

discriminate normal from CHF subjects (Group-II) is evaluated using receiver 
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operating characteristic (ROC) plots, which are shown in Fig. 6. For the case of α2 

(shown by dashed curved line), it is found that the area under the curve (AUC) is 

found to be 0.4897.  For the case of α1 (shown by solid curved line), the area 

under the curve (AUC) is found to be 0.85083 with sensitivity = 71.5%, 

specificity = 87.8%, positive predictivity = 86.7%, and accuracy = 79.2%. These 

results substantiate the finding of this study that the short-term fractal scaling 

exponent α1 alone is sufficient to distinguish between normal and CHF subjects. 

The decrease in accuracy and other measures, on Group-II can be attributed to age 

differences, and differing male-to-female ratios between groups I and II. 

 

 
Fig. 6. ROC curve for α1 (solid line) and α2 (dashed line).                              

The diagonal line (dotted line) from 0,0 to 1,1 represents ROC curve                    

that cannot discriminate between normal and CHF from Group-II. 
 

4.  Limitations 

The foremost limitation of this study is the small sample size. Although this study 

reports DFA to yield a very sensitive measure based on the p-value generated 

from the t-statistics, factors like high variance, age differences, and slightly 

differing male-to-female ratios between groups will have an impact on the results 

when statistical analyses are carried out on small sample sizes. Nevertheless, the 

results of this study provide sufficient evidence to warrant the execution of larger 

studies that can provide more statistically robust confirmation of the application 

of DFA as a sensitive measure of cardiac health. 

 

5.  Conclusion 

In this study, DFA was applied to nonstationary raw ECG time series from 

normal and CHF subjects. It is found that this approach can identify the scaling 

behavior of the fluctuation function on small and intermediate time scales and 

separate out short-term and intermediate-term fractal correlations in the ECG 

signals. The quantified short-term scaling exponent is found to have potential in 
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discriminating normal and CHF subjects and thus can significantly add to the 

prognostic value of traditional cardiac analysis. 

The short-term scaling exponent can easily be analyzed from ambulatory ECG 

recordings without time consuming preprocessing and hence, may have practical 

implications for risk stratification. In real time applications the value for 

specificity is more important than the value for sensitivity and with this approach 

average specificity is about the same order of sensitivity (98%). 

The DFA method applied to HRV series usually demands long term series, at 

times of 24 hours length. Acquiring 24 hour record just for screening purpose is 

not amenable. Although, the ECG data used contains both 30 minutes and 20 

hours duration records, this method uses short-term segments, of the order of 20 

seconds duration. Hence the method is suitable for screening large populations in 

a short time. 
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