
Journal of Engineering Science and Technology 
Vol. 10, No. 1 (2015) 12 - 24 
© School of Engineering, Taylor’s University 
 
 

12 

A RISK STRATIFICATION SYSTEM TO DISCRIMINATE 
CONGESTIVE HEART FAILURE PATIENTS USING MULTI-
VALUED COARSE-GRAINING LEMPEL-ZIV COMPLEXITY  

CHANDRAKAR KAMATH 

Electronics and Communication Department, Manipal Institute of Technology,                
Manipal, 576104, India 

E-mail: chandrakar.kamath@gmail.com 
 
 
 
 
 
 
 
 
 
 

Abstract 

A risk stratification system to discriminate congestive heart failure (CHF) 
subjects from healthy subjects is proposed. All the previous research to detect 
CHF patients using Lempel-Ziv complexity measure had used binary coarse-
graining (BLZC). In this work, we show that employing multi-valued coarse-
graining Lempel-Ziv complexity (MLZC) improves the performance of 
classification. This finding is confirmed using receiver operating characteristic 
(ROC) plots. Compared to BLZC, MLZC with six partitions showed higher 
diagnostic parameters. The risk stratification system proposed in this paper will 
be a valuable asset to the clinician in the separation of CHF patients from the 
healthy group. 

Keywords: Congestive heart failure, Multi-valued Lempel-Ziv complexity. 
 
 

1.  Introduction 

Congestive heart failure (CHF) remains to be one of the major cardiovascular 
disorders in the world [1]. Despite recent advances in the understanding of the 
pathophysiology and management of CHF, the mortality rate has remained high 
[2]. Heart rate (HR) is the reciprocal of the time interval between two consecutive 
R peaks in the ECG signal. The fluctuation of the HR from its mean value 
constitutes heart rate variability (HRV). Several studies have shown that the 
disturbed HRV is a marker for the presence of cardiac diseases, including heart 
failure, and the degree of HRV impairment is associated with the severity of the 
disease [3-5]. Hence HRV has become a popular noninvasive tool in the 
estimation of cardiac health. As an implication, the development of new methods 
and measures of mortality risk in CHF, including sudden cardiac death, using HRV 
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Nomenclatures 
 
C(N) Normalized LZC 
c(N) Number of subsequences 
d Number of partitions 
i, j Indices 
Si Symbolic sequence 
xi         

 Discrete time series, V 

xmax Maximum value of the series xi, V 
xmean     Average of the series xi, V 
xmin Minimum value of the series xi, V 
yi          Set of unique symbols 

is still a major challenge in contemporary cardiology. Conventional linear HRV 
analyses, including time and frequency domain analyses, have been used as 
prognostic factors for CHF [6,7]. However, ever since HRV has been found to 
exhibit complex behavior originating from nonlinear processes and usually with 
nonstationary properties, the paradigm has shifted to nonlinear dynamics, fractals 
and chaos theory [8,9].  

Quantifying the complexity of HRV series in health and disease has been the 
focus of considerable attention. Such quantifiers have the potential to assess the 
dynamical models of biologic control systems as well as bedside diagnostics. A 
wide class of disease states degrades the physiologic information content thereby 
bringing down the adaptive capability of the subject. Loss of complexity, 
therefore, has been proposed as a generic feature of pathologic dynamics [10].  
Further, the HR time series has been found to be more complex in healthy 
subjects than in CHF patients [11]. Several measures of complexity are available 
for analysis in practice, like approximate entropy, sample entropy, Lempel-Ziv 
complexity (LZC), correlation dimension and Lyapunov exponent. 

In this study we examine the complexity of HRV series in normal and CHF 
subjects using two variants of LZC and use them in risk stratification of CHF 
patients. LZC is a non-parametric measure of complexity in a one-dimensional 
signal related to the number of distinct substrings and the rate of their recurrence. 
The prime advantages of LZC are: (1) it does not require any parameters for 
computation; (2) it is easy to implement and computationally very fast to measure 
the complexity of a signal; (3) it does not require long data segments for its 
computation; (4) normalized LZC is almost invariant with sequence length; (5) it 
can capture temporal structure of a sequence; (6) it is model-independent, i.e., 
only those differences between activity patterns that make a difference to the 
underlying system itself are accounted, no matter whether the system is 
dominated by deterministic chaos or stochastic processes [12].  

For these reasons LZC may be a better nonlinear method to estimate the 
complexity of biomedical signals. In the literature the LZC measure and its 
variants [13] have been extensively used to recognize and quantify irregularity 
and deterministic complexity in signals [12], [14,15]. In specific, this nonlinear 
method has been applied to detect lethal cardiac arrhythmias [16], to detect the 
onset of the epileptic seizures [17-20], to assess EEG background activity in 
Alzheimer’s and schizophrenia patients [21,22], and in estimating the depth of 
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anaesthesia [12]. LZC is based on a coarse-graining measure of the 
measurements. That is the range of original measurements is partitioned into a 
finite number of regions and each region is associated with a specific symbolic 
value so that each measurement is uniquely mapped to a particular symbol 
depending on the region into which it falls. A general rule of thumb is that the 
partitions must be such that the individual occurrence of each symbol is 
equiprobable with all other symbols or the measurement range covered by each 
region is equal. This is done to bring out ready differences between random and 
non-random symbol sequences.  

The transformations into symbols have to be chosen context dependent. For 
this reason, we use complexity measures on the basis of such context-dependent 
transformations, which have a close connection to physiological phenomena and 
are relatively easy to interpret. This way the study of dynamics simplifies to the 
description of symbol sequences. Some detailed information is lost in the process 
but the coarse and robust properties of the dynamic behavior are preserved and 
can be analysed [23]. Unfortunately, most of the previous studies on application 
of LZC have assumed that a binary conversion (L=2) is enough to study the 
dynamic complexity of a system and accordingly the signal is transformed into a 
pattern of only two symbols (0 and 1) [21]. The corresponding LZC is designated 
binary LZC (BLZC). The usage of BLZC, in general, has the following drawback: 
the low amplitude intervals present in the signal will influence the number of 
distinct patterns severely, even though irrelevant to the actual information in the 
signal. To reduce the ill-effects of low amplitude intervals, we recommend a 
multi-level symbolizing procedure. Hypothesizing that other conversions with 
more symbols could keep more information from the signal leading to better 
results, we investigated the effect of multi-valued coarse-graining LZC (MLZC) 
on the risk stratification of CHF subjects in this study (with L=4 and L=6). 
Comparing the performance of BLZC and MLZCs we find that MLZCs 
outperform BLZC. 

 

2.  Methods and Materials  

2.1.  HR database 

The interbeat (R-R) interval or HR database used in this study is obtained from 
normal sinus rhythm (NSR database-nsrdb) and congestive heart failure (CHF 
database-chf2db) database available at htpp://www.physionet.org [24]. The work 
involved beat annotation files of long term ECG records of 52 subjects including 
24 women (aged 56–73 years) and 28 men (aged 28.5–76 years) from NSR 
database and beat annotation files of long term ECG records of 29 subjects (aged 
34–79 years) from CHF database (NYHA classes I, II, and III). The sampling 
frequency for both normal sinus rhythm and CHF data is Fs=128 Hz. The beat 
annotations have been obtained by automated analysis with careful manual review 
and correction by the experts.  

A rhythmic pattern of the heart rate may be destroyed by the presence of non-
sinus beats and artifacts which usually appear very early or very late. We 
preprocess the R-R interval time series of both the normal and CHF I, II, and III 
groups to remove such potential artifacts, trends, ectopic beats and post-ectopic 
compensatory pauses. We use annotation filter combined with square filter and a 
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filter to remove haemo-dynamics for certain types of beats [25-27]. For HRV 
analysis we use normal beats only as annotated in the PhysioNet database 
resource. On an average about 10-12% of the R-R intervals are eliminated during 
R-R interval rejection operation. 

 

2.2.  Multi-valued coarse-graining Lempel-Ziv complexity 

The Lempel-Ziv complexity (LZC) algorithm was proposed by Lempel and Ziv to 
evaluate the randomness of finite sequences [13]. It is rather a simple-to-compute 
nonparametric measure of complexity suitable for finite length one-dimensional 
signals related to the number of distinct substrings and the rate of their recurrence 
along the given sequence. Larger values of LZC imply higher complexity data. 
Since LZC analyses finite symbol-sequences it is essential that the given signal 
must first be coarse-grained, i.e. the signal to be analysed is transformed into a 
sequence whose elements are only a few symbols. The most commonly used 
computation of LZC is based on binary sequence. We hypothesize that the binary 
sequence cannot well characterize HRV signal and may lose some important 
information in the signal. As an implication we present in this study, a multi-
valued coarse-graining LZC. Since there is a need to compare the performance of 
LZC based on coarse-graining used, in the following sections we discuss both 
binary and multi-valued methods. 

 

2.2.1. Binary coarse-graining method 

This is the simplest possible coarse-graining involving the division of data range 
into two partitions (binary partition with L=2, L being the number of partitions) 
[28]. Those data which are above a cut-off value (usually, either mean or median) 
are assigned a symbolic value of ‘1’, while those below the cut-off value are 
assigned a symbolic value of ‘0’. In case the cut-off value is chosen to be equal to 
the mean of the data, xmean, the time series xi is transformed into the symbolic 
sequence Si , where Si є {0, 1}, as given below. 

meani

meani

i
xx

xx
S

  if           

 if            

0

1

<

≥





=                                                                                  (1) 

The Lempel-Ziv algorithm is then applied on the symbolic sequence, Si. This 
binary string is scanned from left to right and a complexity counter c(N) is 
incremented by one unit every time a new subsequence pattern is encountered in the 
scanning process, and the immediate next symbol is regarded as the beginning of the 
next subsequence pattern. The corresponding LZC is called binary LZC (BLZC). 

 

2.2.2. Multi-valued coarse-graining method 

As hypothesized above the binary coarse-graining method may miss significant 
information on dynamical systems and hence we employ multi-valued coarse-
graining method which is explained below [28]. 

Let xi represent the discrete time series with xmax and xmin as maximum and 
minimum values, respectively. Then with L (L>2) representing the number of 
partitions for multi-valued coarse-graining we have, 
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d = (xmax - xmin)/L                                                                                                   (2) 

Let yj (j=1, 2, …, L) represent the set of unique symbols with each yj 
corresponding to a particular partition. The time series xi is then transformed into 
the symbolic sequence Si , where Si є {y1, y2, …, yL}, as given below. 





=

=+≤−+
=

max

minmin ),......,2,1( ,)1(for              

xy

Ljjdxdjxy
S

L

j

i                          (3) 

The Lempel-Ziv algorithm is then applied on the symbolic sequence, Si. This 
multi-valued string is scanned from left to right and a complexity counter c(N)  is 
incremented by one unit every time a new subsequence pattern is encountered in 
the scanning process, and the immediate next symbol is regarded as the beginning 
of the next subsequence pattern. The resulting LZC is designated as multi-valued 
LZC (MLZC). 

 

2.2.3. Lempel-Ziv complexity 

Once the symbolic string is ready the LZC can be estimated using the following 
algorithm [13]: 

1) Let P denote the original string sequence, i.e., P= {s1, s2, s3,,…}, with si 

defined as in Eq. (1). This sequence can be parsed to arrive at distinct 
patterns. Let the string P be divided into substrings P(i, j) which start at 
location i (initialized to 1), end at the location j (initialized to 2); that is to 
say, for i ≤ j, P(i, j) = s(i) ... s(j) and for i > j, P(i, j) = Ф, a null set. Let 
V(P) represent the set of substrings (i.e., the set of distinct patterns) in the 
sequence P, including the null set.  

2) The parsing procedure involves a left-to-right scan of the sequence P. A 
substring P(i, j) is compared with V(P(1, j-1)). 

a. If P(i, j) happens to be a member of V(P(1, j-1)) or in other words, P(i, 

j) Є V(P(1, j-1)), then P(i, j) and V(P(1, j-1)) are updated to P(i, j+1) 
and V(P(1, j)), respectively. 

b. b. If the substring is not present, then s(j) is marked to point to the end 
of a new distinct pattern. P(i, j) and V(P(1, j-1))  are updated to P(i+1, 

j+1) and V(P(1, j)) = V(P(1, j-1)) U P(i, j), respectively, where U 
represents union of left and right strings of the operator. 

3) The procedure continues until j = N, where N is the length of the 
binary/multi-valued coarse-grained sequence, P. 

Let c(N) denotes the number of distinct patterns after parsing the coarse-
grained sequence, which obviously corresponds to measure of complexity. For 
example, consider a binary coarse-grained sequence, P = {1, 0, 1, 1, 1, 0, 1, 0} 
will be parsed as a sequence = {1.0.11.10.10}, where the ‘.’ is employed to 
separate the distinct patterns. In this example, c(N) = 4. Figure 1 illustrates the 
parsing procedure for the binary/multi-valued coarse-grained sequence of the R-R 
interval time series. 
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To arrive at a measure of complexity independent of sequence length, c(N) 
must be normalized. If the length of the sequence is n and the number of different 
symbols is α, it has been shown that the upper bound of c(N) is [29] 

c(N) < N / ((1-єN)logα(N))                                                                                      (4) 

where �N is a small quantity and �N →0 (N→∞). In general, N/logα(N) is the 
upper limit of c(N), i.e., 

limN→∞ c(N) = b(N) = N / logα(N)                                                                          (5) 

For a binary conversion α=2, b(N)=N/log2(N) and the resulting LZC is BLZC. 
For a multi-valued conversion α=L, b(N)=N/logL(N) and the resulting LZC gives 
MLZC. 

c(N) can be normalized by b(N) as 

C(N) = c(N) / b(N)                                                                                                 (6) 

C(N), the normalized LZC, reflects the arising rate of new patterns  along with 
the sequence and thus captures the temporal structure of the sequence. A larger 
value of LZC means that the chance of generating a new pattern is greater, so the 
sequence is more complex, and vice versa [21]. In this work we evaluate the 
evolution of new patterns in HR time series in healthy subjects and in CHF 
patients of I, II, and III groups. 

 

Fig. 1. Flow chart to show the computation of parsed Binary/ Multi-              

valued coarse-grained sequence (U denotes the union of two strings). 
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2.3.  Statistical analysis 

Student’s t-tests are used to evaluate the statistical significance of the BLZC and 
MLZC values (with L=4 and L=6) of HR time series in healthy subjects and in CHF 
patients. Parameters are regarded as statistically significant if p < 0.01. If significant 
differences between groups are found, then the diagnostic ability of the nonlinear 
analysis method to discriminate between HR time series in healthy group and CHF I, 
II, and III groups is evaluated using receiver operating characteristic (ROC) plots in 
terms of area under ROC (AROC). ROC plots are used to gauge the predictive ability 
of a classifier over a wide range of values [30]. A threshold value is applied such that 
a feature value below this threshold will be assigned one category while a feature 
value above the threshold will be assigned other category. ROC curves are obtained 
by plotting sensitivity values (that represent the proportion of the features of category-
1 and test positive) along the y axis against the corresponding (1-specificity) values 
(which represent the proportion of the correctly identified features of the category-2) 
for all the available cut-off points along the x axis. Accuracy is a related parameter 
that quantifies the total number of features (both categories 1 and 2) precisely 
classified. The AROC measures this discrimination, that is, the ability of the test to 
correctly classify into categories 1 and 2, and is regarded as an index of diagnostic 
accuracy. The optimum threshold is the cut-off point in which the highest accuracy 
(minimal false negative and false positive results) is obtained. This can be determined 
from the ROC curve as the closet value to the left top point (corresponding to 100% 
sensitivity and 100% specificity). An AROC value of 0.5 indicates that the test results 
are better than those obtained by chance, where as a value of 1.0 indicates a perfectly 
sensitive and specific test. A rough guide to classify the precision of a diagnostic test 
based on AROC is as follows: If the AROC is between 0.9 and 1.0, then the results 
are treated to be excellent; If the AROC is between 0.8 and 0.89, then the results are 
treated to be good; the results are fair for values between 0.7 and 0.79; the results are 
poor for values between 0.6 and 0.69; If the AROC is between 0.5 and 0.59, then the 
outcome is treated to be bad. 

 

3. Results and Discussion 

We evaluated the ability of the LZC to discriminate healthy and CHF I, II, and III 
groups with binary coarse-graining (L=2) and multi-valued coarse-graining (L=4 
and L=6) methods. We averaged the respective LZC values for each method in all 
the groups. The results of statistical analysis for healthy and CHF I, II, and III 
groups with binary and multi-valued coarse-graining methods are tabulated in Table 
1. All the values are expressed as mean ± standard deviation. The results of the 
Kruskal-Wallis test for healthy and CHF I, II, and III groups for different values of 
L are tabulated in Table 2. A result is significant if the corresponding p-value is less 
than 0.05. It is found that the binary coarse-graining (L=2) method is statistically 
not significant while the multi-valued coarse-graining (L=4 and L=6) methods are 
statistically significant. This implies that for some applications binary coarse-
graining may not be sufficient to determine the complexity of a signal. Moreover, 
the results form Table 1 show that for L > 2, CHF patients have significantly lower 
LZC values compared to normal subjects, irrespective of the method of coarse-
graining. This implies that the HRV of CHF patients is more regular and less 
complex than those of normal subjects. Of course, these findings are in agreement 
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with the earlier studies [19,20]. In other words, the chance of generating new 
patterns is greater in the healthy subjects compared to CHF patients.  

 
Table 1. Average BLZC and MLZC values of the HRV time series for 

healthy and CHF groups. All values are expressed as mean ± SD. 

L Healthy CHF-I CHF-II CHF-III 

2 0.4426±0.0675 0.4907±0.1147 0.5109±0.0998 0.3821±0.0876 
4 0.3938±0.0548 0.2318±1177 0.2081±0.0933 0.1858±0.0673 
6 0.4295±0.0392 0.2496±0.1019 0.2242±0.0774 0.199±0.0653 
 

Table 2. Descriptive results of the Kruskal-Wallis test of the HRV                    

time series for healthy and CHF groups for different values of L.  

L Chi-sq p-value 

2 0.84 0.8409 
4 27.54 4.53x10-06 
6 34.63 1.46x10-07 

The box plots for LZC values in healthy and CHF groups with multi-valued 
coarse-graining method (MLZC) with L = 4, and L = 6, are shown in Figs. 2(a) 
and 3(a), respectively. The box plots provide a graphical visual summary of the 
data analysed. From the plots in Fig. 2(a) it is clear that the boxes for healthy and 
CHF III groups do not overlap, while the boxes for healthy and CHF I, II groups 
overlap. This indicates that L = 4 can readily separate healthy and CHF III 
subjects, but not lower severity CHF subjects. But, from the plots in Fig. 3(a) it is 
clear that the boxes for healthy and none of the CHF groups overlap. In other 
words, L = 6 can readily separate healthy and CHF subjects, irrespective of the 
severity of the disease. It is to be noted that in either method the variability/spread 
of LZC values in CHF group is decreased compared to the corresponding 
variability of LZC values in healthy group. 

Finally, we compared the diagnostic performance of MLZC methods with L = 4 
and L = 6 using ROC plots. The respective ROC curves are shown in Figs. 2(b) and 
3(b). The AROCs at the cut-off points in the respective cases are shown in Table 3. 
It is evident that in each case of risk stratification MLZC with L = 6, outperforms 
that with L = 4. For example, in MZLC approach with L = 4, the AROC = 0.7265 
for separation between healthy and CHF I group. This indicates that a randomly 
selected subject from the healthy group has a LZC value larger than that of a 
randomly chosen subject from the CHF I group in 72.65% of the time. On the other 
hand, for MZLC approach with L = 6, the AROC = 0.8177 which means that a 
randomly selected subject from the healthy group has a LZC value larger than that 
of a randomly chosen subject from the CHF I group in 81.77% of the time. Thus 
MLZC method with L = 6 greatly enhances the performance parameters of the 
diagnosis test and are tabulated in Table 4. This clearly demonstrates the potential 
of MLZC in discriminating the CHF patients from the normal subjects. 
 

Table 3. Effect of L on AROC in risk stratification of CHF subjects. 

Parameter, 

L 

Normal 

vs. CHF I 

Normal 

vs. CHF II 

Normal 

vs. CHF III 

4 0.7265 0.8556 0.9101 
6 0.8177 0.8797 0.9420 
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Table  4. Performance parameters of MLZC (L=6) analysis in risk stratification. 

Parameter, L 
Normal 

vs. CHF I 

Normal 

vs. CHF II 

Normal 

vs. CHF III 

Threshold 0.3839 0.3563 0.3394 
AROC 0.8177 0.8797 0.9420 
Sensitivity% 90.0 81.8 88.9 
Specificity% 73.5 79.4 82.4 
Predictivity of Positive test% 50.0 56.3 72.7 
Predictivity of Negative test% 96.2 93.1 93.3 
Accuracy% 77.3 80.0 84.6 

 

 

 

Fig. 2. (a) The distribution of MLZC values using Box-whiskers plots (with 

outliers) for healthy group and CHF groups with MLZC (L = 4) method and 

(b) corresponding ROC curves for healthy group and CHF groups. 
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Fig. 3. (a) The distribution of MLZC values using Box-whiskers plots (with 

outliers) for healthy group and CHF groups with MLZC (L = 6) method and 

(b) corresponding ROC curves for healthy group and CHF groups. 

 

4. Limitations 

The foremost limitation of this study is the small sample size. Although we have 
reported MLZC to yield a very sensitive measure based on the p-value generated 
from the t-statistics, factors like high variance, age differences, and slightly 
differing male-to-female ratios between groups will have an impact on the results 
when statistical analyses are carried out on small sample sizes. Nevertheless, the 
results of this study provide sufficient evidence to warrant the execution of larger 
studies that can provide more statistically robust confirmation of the application 
of MLZC as a sensitive measure of cardiac health. 
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5. Conclusion 

Since there is no general rule for fixing the number of partitions and the 
transformation is context dependent, there is a need to experiment to arrive at 
an optimum number of partitions. In this study it is found that to very well 
distinguish the healthy from CHF I, II, and III subjects BLZC is not sufficient. 
Instead, MLZC (with L = 6) is necessary. We have found that MLZC greatly 
enhances sensitivity, specificity, precision, and accuracy of the diagnosis test. 
This study represents the first step in demonstrating the feasibility of using 
MLZC for risk stratification in CHF subjects. This risk stratification system will 
be a valuable tool to the clinician in the discrimination of CHF patients from the 
healthy group. 
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