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Abstract 

Line-to-line-to-line unsymmetrical faults either involving or not involving ground 
are in the classical fault analysis approach difficult to analyse. This is because the 
classical solution requires use of the knowledge of connection of symmetrical 
component sequence networks for various common faults. In this approach, the 
phase fault constraints are converted into symmetrical sequence constraints and 
the sequence networks connected in a way that satisfies the constraints. The 
symmetrical component constraints for an unsymmetrical three-phase fault not 
involving ground do not lend themselves easy to the connection of the sequence 
networks. The exception is that, because the phase currents at the fault summate to 
zero, the zero sequence current is zero and therefore the zero sequence network is 
not connected. The connection of the positive and negative sequence networks is 
difficult to deduce when the fault is unsymmetrical. A classical solution is 
therefore difficult to find. In contrast, a solution by the general method of fault 
admittance matrix does not require prior knowledge of how the sequence 
networks are connected. It is therefore more versatile than the classical methods. 
The paper presents a procedure for solving a three-phase unsymmetrical fault, 
with different fault impedances, hence fault admittances in each phase. A 
computer program based on the general fault admittance method is developed and 
used to analyse an unsymmetrical three-phase fault on a simple power system 
with a delta-earthed-star connected transformer. 

Keywords: Unbalanced faults analysis, Line-to-line-to-line unsymmetrical fault, 
                  Fault admittance matrix, Delta-earthed-star transformer. 

 
 

1.  Introduction 

The paper presents a method for solving an unsymmetrical line-to-line-to-line 
fault using the general fault impedance method. The general fault admittance 
method differs from the classical approaches based on symmetrical components  
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Nomenclatures 
 
Ifpj Phase current in the faulted bus bar j 
Ifsj Symmetrical component current at the faulted bus bar j 
Vfs1 Symmetrical component voltage at the faulted bus bar 1 
Yaf Phase a fault admittance 
Ybf Phase b fault admittance 
Ycf Phase c fault admittance 
Yfs Symmetrical fault admittance 
Ygf Ground fault admittance 
 

Greek Symbols 

α Complex operator 1∠120°  

since it does not require prior knowledge of how the sequence components of 
currents and voltages are related [1-7]. In the classical approach, knowledge of 
how the sequence components are related is required because the sequence 
networks must be connected in a prescribed way for a particular fault. Then the 
sequence currents and voltages at the fault are determined, after which 
symmetrical component currents and voltages in the rest of the network are 
calculated. Phase currents and voltages are found by transforming the respective 
symmetrical component values [8-11]. 

The fault admittance method is general in the sense that any fault impedances 
can be represented, provided the special case of a zero impedance fault is catered 
for. This paper discusses a procedure for simulating and solving an 
unsymmetrical line-to-line-to-line fault. 

 

2.  Background 

A line-to-line-to-line fault presents low value impedances, with zero values for 
direct short circuits or metallic faults, between the three phases at the point of a 
fault in the network. In general, a fault may be represented as shown in Fig. 1. 

In Fig. 1, a fault at a bus bar is represented by fault admittances in each phase, 
i.e., the inverse of the fault impedance in the phase, and the admittance in the 
ground path. Note that the fault admittance for a short-circuited phase is 
represented by an infinite value, while that for an open-circuited phase is a zero 
value. In a line-to-line-to-line fault the fault is between all the three phases; a, b 
and c. Thus for a line-to-line-to-line fault the admittance Ygf is zero while the 
admittances Yaf, Ybf and Ycf are the inverses of the fault impedances in the 
respective phases. 

A systematic approach for using a fault admittance matrix in the general fault 
admittance method is given by Sakala and Daka [1-7]. The method is based on the 
work by Elgerd [8] details of which are summarized in Appendix A. 

 

3.  Line-to-Line-to-Line Unsymmetrical Fault Simulation 

The symmetrical component fault admittance matrix for a general fault 
admittance matrix when the ground is not involved, i.e., Ygf is zero, reduces to 
(Appendix A): 
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The values Yaf, Ybf and Ycf are the fault admittances in the faulted phases. The 
impedances required to simulate the line-to-line-to-line unsymmetrical fault in 
general terms are the impedances in the faulted phases. In the current work, the 
fault impedances are as follows: in the a phase zero, in the b phase j0.1 and j0.2 in 
the c phase. Furthermore, since Yaf is infinite the symmetrical component fault 
admittance matrix becomes: 
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The symmetrical component fault admittance matrix may be substituted in Eq. 
(A-4) in Appendix A to obtain a simplified value of Ifsj as: 
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The simplified expression is useful for validating the results from the 
computer program. 

 

Fig. 1. General fault representation. 

 

4.  Computation of the Line-to-Line-to-Line Unsymmetrical Fault 

Equations (1) to (3) form the basis of a computer simulation program to solve 
unbalanced faults for a general power system using the fault admittance matrix 
method. The program is applied on a power system comprising of three bus bars 
to solve for a line-to-line-to-line unsymmetrical fault. 

Figure 2 shows a simple three bus bar power system with one generator, one 
transformer and one transmission line. The system is configured based on the 
simple power system that Saadat uses [9]. 
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Fig. 2. Sample three bus bar system [9]. 

The power system per unit data is given in Table 1, where the subscripts 1, 2, 
and 0 refer to the positive, negative and zero sequence values respectively. The 
neutral point of the generator is grounded through zero impedance. 

Table 1. Power system data. 

Item 
Sbase 

(MVA) 
Vbase 
(kV) 

X1 

(pu) 
X2 

(pu) 
X0 

(pu) 
G1 100 20 0.15 0.15 0.05 
T1 100 20/220 0.10 0.10 0.10 
L1 100 220 0.25 0.25 0.71 

The transformer windings are delta connected on the low voltage side and 
earthed-star connected on the high voltage side, with the neutral solidly grounded. 
The phase shift of the transformer is 30˚, i.e., from the generator side to the line 
side. Figure 3 shows the transformer voltages for a Yd11 connection which has a 
30˚ phase shift. 

 

Fig. 3. Delta-star transformer voltages for Yd11. 

The computer program incorporates an input program that calculates the 
sequence admittance and impedance matrices and then assembles the 
symmetrical component bus impedance matrix for the power system. The 
symmetrical component bus impedance incorporates all the sequences values 
and has 3n rows and 3n columns where n is the number of bus bars. In general, 
the mutual terms between sequence values are zero as a three-phase power 
system is, by design, balanced. 

The power system is assumed to be at no load before the occurrence of a fault. 
In practice, the pre-fault conditions, established by a load flow study may be used. 
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For developing a computer program the assumption of no load, and therefore 
voltages of 1.0 per unit at the bus bars and in the generator, is adequate. 

The line-to-line-to-line unsymmetrical fault is at bus bar 1, the load bus bar. 
The line-to-line-to-line unsymmetrical fault is described by the impedances in the 
respective phases, i.e., 0 Ω, j0.1 Ω and j0.2 Ω in the a, b and c phases respectively. 

The presence of the delta earthed-star transformer poses a challenge in terms 
of its modelling. In the computer program, the transformer is modelled in one of 
two ways; as a normal star-star connection, for the positive and negative sequence 
networks or as a delta-star transformer with a phase shift. In the former model, the 
phase shifts are incorporated when assembling the sequence currents to obtain the 
phase values. 

In particular, on the delta-connected side of the transformer the positive 
sequence currents’ angles are increased by the phase shift while the angle of the 
negative sequence currents are reduced by the same value. The zero sequence 
currents, if any, are not affected by the phase shifts. 

Both models for the delta star transformer give same results. The √3 line current 
factor is used to find the line currents on the delta side of the delta star transformer. 

 

5.  Results and Discussions 

A summary of results obtained from a computer simulation of the power system 
as given in Section 4 are presented in this section. Further results details are 
provided Appendix B. 

 

5.1.  Symmetrical component impedances at the faulted bus bar 

The Thevenin’s self-sequence impedances of the network seen from the faulted 
bus bar are: 


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The connection of the sequence networks for the line-to-line-to-line 
unsymmetrical fault is not required to perform the study by the general fault 
admittance method. The phase and symmetrical component fault matrices are 
found in the course of the study and the latter is part of the output results shown 
in Appendix B, Table B.1. 

 

5.2.  Symmetrical fault admittance matrix 

The symmetrical component fault admittance matrix obtained from the program 
for the line-to-line-to-line unsymmetrical fault shown in Eq. (5) is in agreement 
with the theoretical value, obtained using Eq. (2).  
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5.3.  Sequence fault currents 

The symmetrical component fault currents (Positive, negative and zero 
sequences) at the fault points are equal to the values obtained using Eq. (3): 
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Note that the zero sequence current in Eq. (6) is zero, which is consistent with theory. 

5.4.  Phase fault currents 

The phase currents in the fault are given by:  
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Note that the currents in Eq. (7) summate to zero as there is no current flowing 
into the ground from the fault. 

The phase fault currents are highest in the phase a, the phase with the least fault 
impedance. The next largest current is phase b, which had the second lowest fault 
impedance. Phase c, with the largest fault impedance has the least fault current. 

Figure 4 shows the transformer and transmission line phase currents. The 
phase currents in the transmission line are equal to the currents in the fault. Note 
that the current at the receiving end of the line is by convention considered as 
flowing into the line, rather than out of it. 

The currents on the line side are equal to the currents in the line, after 
allowing for the sign change due to convention. The currents in the transformer 
windings satisfy the ampere-turn balance requirements of the transformer. The 
magnitudes of the currents at the sending end of the transformer, the delta 
connected side, are √3 times the magnitudes of the currents in the phase 
windings, although not a phase-to-phase correspondence. While the magnitude 
in phase a on the delta connected side is √3 times the current magnitude on the 
star connected side, the magnitude in the b phase on the delta connected side is 
√3 times the value of the current magnitude in the c phase.  

Similarly the magnitude of the current in the c phase on the delta connected 
side is √3 times the current magnitude in the b phase. The phase fault currents 
flowing from the generator are equal to the phase currents into the transformer. 

 

5.5. Fault voltages 

The symmetrical component voltages at the fault point are given in Eq. (8). They 
show that the zero sequence voltage is zero, which is consistent with theory. The 
positive and negative sequence voltages are not equal. 
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The phase voltages at the bus bars are given in Table 2. The voltages at bus 
bar 1 are the voltages at the fault point. The phase voltages at the fault are lowest 
in phase a, which has the lowest fault impedance, followed by that in phase b, 
with the next lowest fault impedance. 

 

Fig. 4. Transformer currents for a line-to-line-to-line unsymmetrical fault. 

Table 2. Phase voltages at the bus bars. 

Bus Bar 

Number 

Phase a Phase b Phase c 

Magnitude/Angle 

[°] 
Magnitude/Angle [°] Magnitude/Angle [°] 

1  0.0976/-24.5°  0.1783 / 267.0°  0.2325 / 110.0° 

2  0.5448/-2.1°  0.5809 / 244.0°  0.6148 / 118.1° 

3  0.7267/ 31.0°  0.7688 / 89.1°  0.7481 / 148.1° 

The phase voltages at bus bar 2 are nearly equal being 54.5%, 58.1% and 
61.5% of the pre-fault values in the a, b and c phases respectively. 

The phase voltages at bus bar 3are nearly balanced with magnitudes of 72.7%, 
76.8% and 74.6% of the pre-fault values in the a, b and c phases respectively. The 
phase voltages at bus bar 3 lead the phase voltages at bus bar 2 by 33.1˚, 26.9˚ 
and 30.0˚ in the a, b and c phases respectively. 

5.6.  Future work 

The work presented in this paper has shown that a line-to-line-to-line 
unsymmetrical fault can be solved using the general fault admittance method 
provided a small enough impedance is used to simulate a zero impedance fault. In 
future work the unsymmetrical fault will be rotated around the phases to 
demonstrate the versatility of the method. That is the fault impedances of 0 Ω, 

j0.1 Ω and j0.2 Ω will be in phases b, c and a respectively for one study and in 
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phases c, a and b respectively for another study. The method will also be applied 
to solve various faults on a practical system. 

 

6. Conclusions 

A line-to-line-to-line unsymmetrical fault has been solved using the general fault 
admittance method. This type of fault is difficult to solve using the classical 
symmetrical components approach based on the connection of the sequence 
component networks at the fault point. The difficulty arises because the phase and 
symmetrical component constraints do not lead to suggest a simple connection of 
the sequence component networks. 

The results show that the phase voltages on the delta side of a delta earthed 
star connected transformer, with the fault on the star side, are nearly balanced. 
This effect is consistent with the effect that a delta star connected transformer has 
on unbalanced loads on the star side. 

The line-to-line-to-line unsymmetrical fault is interesting for studying the delta 
earthed star transformer arrangement. The currents and voltages are nearly balanced 
on both sides of the transformer. Phase shifts of nearly 30˚ between the voltages on 
the delta side to those on the star connected side are shown, which is consistent with 
theory. The results give an insight in the effect that a delta earthed star transformer 
has on a power system during line-to-line-to-line unsymmetrical faults. 

The main advantage of the general fault admittance method is that the user is 
not required to know beforehand how the sequence networks should be connected 
at the fault point in order to obtain the sequence currents and voltages. The user 
can deduce the various relationships from the results. The method is therefore 
easier to use and teach than the classical approach in which each network is 
solved in isolation and then the results combined to obtain the phase quantities. 
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Appendix A 

General Fault Admittance Matrix Method for Line-                                         

to-line-to-Line Unsymmetrical Fault 

The general fault admittance matrix is given by: 
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Equation (A-1) is transformed using the symmetrical component 
transformation matrix be T, and its inverse be T-1, where 
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in which α = 1∠120° is a complex operator. 

The symmetrical component fault admittance matrix is given by the product 

TYTY ffs

1−=  

The general expression [1-8] for Yfs is given by: 
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The above expressions simplify considerably depending on the type of fault.  

 

A.1. Currents in the fault 

At the faulted bus bar, say bus bar j, the symmetrical component currents in the 
fault are given by: 
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where U is the unit matrix: 
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and Zsjj is the jjth component of the symmetrical component bus impedance matrix 
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The element Zsjj+ is the Thevenin’s positive sequence impedance at the faulted 
bus bar, Zsjj- is the Thevenin’s negative sequence impedance at the faulted bus bar, 
and Zsjj0 is the Thevenin’s zero sequence impedance at the faulted bus bar. Note 
that as the network is balanced the mutual terms are all zero. 

In Eq. (4) Vsj
0 is the pre-fault symmetrical component voltage at bus bar j the 

faulted bus bar: 
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where V+ is the positive sequence voltage before the fault. The negative and zero 
sequence voltages are zero because the system is balanced prior to the fault. 

The phase currents in the fault are then obtained by transformation: 
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A.2. Voltages at the bus bars 

The symmetrical component voltage at the faulted bus bar j is given by: 
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The symmetrical component voltage at a bus bar i for a fault at bus bar j is 
given by: 
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V
 gives the symmetrical component pre-fault voltages at bus bar i. 

The negative and zero sequence pre-fault voltages are zero. 

In Eq. (A-6), Zsij gives the ijth components of the symmetrical component bus 
impedance matrix, the mutual terms for row i and column j (corresponding to bus 
bars i and j) 
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The phase voltages in the fault, at bus bar j, and at bus bar i are then obtained 
by transformation: 
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A.3. Currents in lines, transformers and generators 

The symmetrical component currents in a line between bus bars i and j are given by: 

( )fsjfsifsijfsij VVYI −=  (A-8) 

where 
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
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= −

+

000

00

00

fsij

fsij

fsij

fsij

Y

Y

Y

Y
is the symmetrical component admittance of the 

branch between bus bars i and j. 

Equation (A-8) also applies to transformers, when there is no phase shift 
between the terminal quantities or when the phase shift is catered for when 
assembling the phase quantities. In the latter case, the positive sequence values 
are phase shifted forward and the negative sequence values are phase shifted 
backwards by the phase shift (usually ±30˚). The line currents on the delta-
connected side of a delta star transformer should have the appropriate phase to 
line conversion factor. 

Equation (A-8) also applies to a generator where the source voltage will be the 
pre-fault induced voltage and the receiving end bus bar voltage is the post-fault 
voltages at the bus bar. 
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The phase currents in the branch are found by transformation: 
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Equations (A-1) to (A-9) are used in a computer program to solve 
unbalanced faults. 

Appendix B 

Table B.1. Simulation results - Unbalanced fault study. 

General Fault Admittance Method – Delta-star Transformer Model 

Number of bus bars = 3 
Number of transmission lines = 1 
Number of transformers = 1 
Number of generators = 1 
Faulted bus bar = 1 
Fault type = 4 
 

General Line-to-Line-to-Line Fault 
Phase a resistance = 5.0000e-010 
Phase a reactance = 0.0000e+000 
Phase b resistance = 0.0000e+000 
Phase b reactance = 1.0000e-001 
Phase c resistance = 0.0000e+000 
Phase c reactance = 2.0000e-001 
 

Fault Admittance Matrix - Real and Imaginary Parts 
8.7500e-008 -j 1.5000e+001 -4.3301e+000 -j 7.5000e+000  0.0000e+000 +j 0.0000e+000 
4.3301e+000 -j 7.5000e+000 8.7500e-008 -j 1.5000e+001  0.0000e+000 +j 0.0000e+000 
0.0000e+000+j 0.0000e+000  0.0000e+000+j 0.0000e+000  0.0000e+000 +j 0.0000e+000 
 

Thevenin's Symmetrical Component Impedance Matrix of Faulted Bus bar – Real and Imaginary Parts 
0.0000 +j 0.5000 0.0000 +j 0.0000 0.0000 +j 0.0000 
0.0000 +j 0.0000 0.0000 +j 0.5000 0.0000 +j 0.0000 
0.0000 +j 0.0000 0.0000 +j 0.0000 0.0000 +j 0.8125 
 

Fault Current in Symmetrical Components - - Rectangular and Polar Coordinates 
 Real Imag Magn Angle(Deg) 
+ve 0.0000 -1.6822  1.6822 -90.0000 
-ve 0.0809 -0.1402  0.1619 -60.0000 
zero  0.0000 0.0000  0.0000 90.0000 
 

Fault Current in Phase Components - Rectangular and Polar Coordinates 
 Real Imag Magn Angle(Deg) 
Phase a 0.0809  -1.8224 1.8242 -87.4571 
Phase b -1.3759  0.9813 1.6900 144.5036 
Phase c 1.2950  0.8411 1.5442 33.0045 
Ground 0.0000  0.0000 0.0000 0.0000 
 
Symmetrical Component Voltages at Faulted Bus bar - Rectangular and Polar Coordinates 
 Real Imag Magn Angle(Deg) 
+ve 0.1589 -0.0000  0.1589 -0.0000 
-ve -0.0701 -0.0405  0.0809 210.0000 
zero  0.0000 0.0000  0.0000 0.0000 
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Postfault Voltages at Bus bar number = 1 
 Real Imag Magn Angle(Deg) 
Phase a 0.0888 -0.0405 0.0976 -24.5036 
Phase b -0.0093 -0.1781 0.1783 266.9955 
Phase c -0.0794 0.2185 0.2325 109.9771 
 
Postfault Voltages at Bus bar number = 2 
 Real Imag Magn Angle(Deg) 
Phase a 0.5444 -0.0202 0.5448 -2.1286 
Phase b -0.2547 -0.5220 0.5809 243.9951 
Phase c -0.2897 0.5423 0.6148 118.1140 
 
Postfault Voltages at Bus bar number = 3 
 Real Imag Magn Angle(Deg) 
Phase a 0.6232 0.3738 0.7267 30.9572 
Phase b 0.0121 -0.7687 0.7688 -89.0952 
Phase c -0.6354 0.3949 0.7481 148.1399 
 
Postfault Currents in Lines 
                           Phase a           Phase b        Phase c 
Line SE RE Current Current Current Current Current Current 
No. Bus Bus Magn Angle Magn Angle Magn Angle 
      Deg.                       Deg.                    Deg. 
1 2 1  1.8242 -87.4571 1.6900 144.5036 1.5442 33.0045 
1 1 2  1.8242 92.5429 1.6900 -35.4964 1.5442 213.0045 
 
Postfault Currents in Transformers 
           Phase a         Phase b        Phase c 
Transf  SE RE Current Current Current Current Current Current 
No. Bus Bus Magn Angle Magn Angle Magn Angle 
                          Deg.                         Deg.                   Deg. 
1 3 2  3.1597 -62.5429 2.6746 176.9955 2.9272 65.4964 
1 2 3  1.8242 92.5429 1.6900 -35.4964 1.5442 213.0045 
 
Neutral Current at Receiving End 
 Real Imag  Magn Angle(Deg) 
 0.0000 0.0000 0.0000 0.0000 
 
Link currents in Delta Connection at Sending End 
          Phase a      Phase b      Phase c 
No. Bus Bus Magn Angle Magn Angle Magn Angle 
                        Deg.                    Deg.    Deg. 
1 3 2  1.6900 144.5037 1.5442 33.0045 1.8242 -87.4571 
 
Postfault Currents in Generators 
            Phase a           Phase b           Phase c 
Gen SE RE Current Current Current Current Current Current 
No. Bus Bus Magn Angle Magn Angle Magn Angle 
                        Deg.                    Deg.   Deg. 
1 4 3 3.1597 -62.5429 2.6746 176.9955 2.9272 65.4964  
Generator Neutral Current 
 Real Imag         Magn    Angle(Deg) 
 0.0000 -0.0000 0.0000 230.1944 

 


