
Journal of Engineering Science and Technology
Vol. 10, No.10 (2015) 1372 - 1393
© School of Engineering, Taylor’s University

1372

A QUANTITATIVE STUDY BASED ON DIRECT
MEASUREMENT ON EMBEDDED PROCESSORS LIMITING

CONTEXT SIWTCHES FOR ENERGY SAVING

ANJU S. PILLAI*, T. B. ISHA

Department of Electrical and Electronics Engineering,
Amrita Vishwa Vidyapeetham, Coimbatore, Tamilnadu, India

*Corresponding Author: s_anju@cb.amrita.edu

Abstract

Priority based preemptive schedulers are preferred over non-preemptive
schedulers due to their flexibility to accommodate real time tasks based on
criticality. The overhead associated with a preemptive scheduler is high and
with increased number of preemptions and the associated context switches, the
execution pattern of tasks become highly unpredictable at run time. In this
paper, an effort is made to provide an insight into the significance of controlling
context switches during real time application development. The system under
study consists of an ARM7 LPC2148 microcontroller, whose energy
consumption measurement is carried out with the help of MBED NXP 1768
controller. A study is done by analytical verification and a software simulation
using embedded C with Keil uVision IDE. The energy consumed by the
processor with and without context switches is verified experimentally by direct
measurement. The two factors considered for analysis are increased delay and
the augmented energy dissipation during a context switch. It is seen that a
substantial saving of time and energy is associated with every context switch.

Keywords: Context switch, Energy dissipation, Energy measurement, Simulation,
 Real time embedded application.

1. Introduction
Use of embedded systems is very prevalent in almost all application fields like
bio-medical, engineering, process control, industrial and many more. The
development of real time applications, especially real time embedded systems
need more care and attention as it has to cater to critical nature. Scheduler assigns
priorites to tasks based on their application nature and criticality to execute on the
processor. In addition, need of a preemptive scheduler is also vital for successful

A Quantitative Study Based on Direct Measurement on Embedded 1373

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

Nomenclatures
 ��� Execution time of task �� in µsec. ��_��� Effective load capacitance in µF �	� Deadline of task �� in µsec.
� Energy consumed by processor �� in mJ �� Clock frequency of processor �� in MHz. Hyper period �� Number of clock cycles taken by task �� to execute �� Operating point of processor �� , which consists of supply voltage

and clock frequency ��� The power dissipated by the processor while executing the jth
instance of the task �� in Watts (W) ��� Time period of task �� in µsec. �� Supply voltage of processor �� in Volts (V)

Greek Symbols �� Task i ��� pth instance of task ��

Abbreviations

DFS
DVS

Deterministic Stretch-to-Fit
Dynamic Voltage Scaling

FPP
IDE

Fixed Preemption Point
Integrated Development Environment

ISR Interrupt Service Routine
LCM
PTS
PLL
RTOS

Least Common Multiple
Preemption Threshold Scheduling
Phase Locked Loop
Real Time Operating System

TCB Task Control Block
WCET Worst Case Execution Time

execution of various tasks in the system to guarantee functional and temporal
requirements. Thus, use of a priority based preemptive scheduler becomes highly
demanding for real time application development and scheduling of tasks. But,
the decision of permitting preemptions must be made judiciously, so that the
increased number of preemptions and the associated context switches are not
introducing additional overhead to the system to compromise the temporal
constraints or even losing schedulability of the system. When a preemption occurs
in the system by stopping the execution of a low priority task by a more critical
task, the context of the preempted task need to be saved into the memory and
then, to continue the task execution, the RTOS kernel need to bring in and set up
the environment of the new incoming task. This activity known as context switch
is one of the most costly operation of any RTOS. Thus, the context switches in
the system need to be controlled to retain only the necessary ones, to facilitate the
successful execution of both critical and non-critical tasks.

Plenty of research works are carried out in the field of real time systems
pertaining to control of context switches, still there are avenues for further

1374 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

exploration. Finding an optimal solution for overheads associated with context
switches and analysing its effects are challenging. There are many adverse effects of
context switches which include: increased delay for task execution, increased
memory requirements, cache associated delays and unpredictable task execution
patterns, manipulating task queues and many more [1-3]. Cache related preemptions
are costly and it is found that the worst case delay can go as high as 655µsec. These
delays when gets added up to the execution time of the task, it is found that an
increase of around 33% of execution time was observed in a MPC7410 Power PC
with a two way set associative L2 cache [1]. Thus, to use a preemptive scheduler in
an optimal manner, the overhead associated with context switches has to be
bounded. Otherwise the advantage of having more flexibility and better processor
utilization can be taken away by the non-preemptive scheduler.

In the present work, an analysis is made to present the severity of context switch
overheads viz. increased context switch delay and added energy dissipation of the
processor. In this work, a prototype model consisting of ARM7 LPC2148 and
MBED NXP 1768 controller is considered and the energy consumed by LPC2148
controller while executing tasks with and without context switches is measured by
actual measurement. This is a small step made in the direction of actual
measurement of the core level performance of an embedded processor.

The rest of the paper is organized as follows: section 2 contains a brief
description about the related work done in the field and sections 3 emphasises on
the system model. In section 4, methodology and solution are presented followed
by results and discussion in section 5. Finally section 6 concludes the paper.

2. Related Work
The process of context switch is very essential in any application field especially
in real time scheduling. Context switches help to incorporate tasks with more
critical and stringent temporal requirements to the processor for successful
execution. There is a wide spread acceptance for the need for controlling context
switches in the literature. The major overheads which are mentioned earlier
includes the increased time delay, energy consumption, memory requirements,
cache related overheads, unpredictable task execution patterns, and it may even
lead to infeasibility to schedule the tasks [4]. There are many different approaches
which are suggested by researchers in the field to overcome the various costs.
DVS is a key technique for energy consumption reduction by switching the
voltage and frequency of the processor at runtime to slowdown/increase the speed
of the task execution. DVS can be used to control context switches by regulating
the speed of task execution [5, 6]. In [7], algorithmic power management schemes
are presented to limit the power dissipation of the embedded processor which in
turn is beneficial in controlling the context switching overheads. Another well-
known technique which is widely used in the field is PTS [8]. In PTS technique,
every task poses a threshold value in addition to the task priorities. In this system,
a task can preempt another task only when its priority is greater than the threshold
level of the other task. Another class of method uses slack reclamation technique,
wherein the unused processor time is utilized to slow down task instances to
conserve energy and reduce preemptions. In [9], Baruah investigated the
possibilities of preemption limiting and made an attempt to find the longest
possible non-preemptive execution time for sporadic tasks in a system. In [10],

A Quantitative Study Based on Direct Measurement on Embedded 1375

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

the authors proposed methods to fix preemption points in task execution,
assuming a fixed preemption cost. Bhatti et al. [11] proposes DSF method to
control preemptions and inter task and intra task mechanism by Koedam are some
techniques for effective context reduction [12]. Kim and Jim introduced
accelerated completion based technique and delayed preemption based control
technique for limiting preemptions [13] and a job phasing aware preemption
deferral was proposed by Marinho [14]. The preemption control was also
attempted by varying the tasks parameters in [15]. In [16], a detailed analysis of
limited preemptive scheduling algorithms is presented and has showed that FPP
algorithm is one of the algorithms that produce less number of preemptions with
increased schedulability ratio. But it demands inclusion of explicit preemption
points in the program code. In [17] fixed priority scheduling with deferred
preemption is proposed which guarantees the performance and defines a
compromise between the response time bound and processor utilization.

Energy saving could be done by compiler optimization techniques by
appropriately selecting power aware instructions. In this case, there is no need of a
hardware modification. When compared to hardware based techniques, simulation
approach is less complex, but there is a drawback of not possible to account for
factors which affect the power consumption viz. heat loss, external atmospheric
conditions and many more [18]. In the literature, there are a few research works
which support for power consumption estimation through hardware based methods.
The amount of power consumed can be measured by measuring the voltage and
current flowing through a resistor with the aid of milli-ampere meter. This method
tries to eliminate the costly off-chip memory accesses by storing the future data for
computations by saving into registers [19, 20]. In [21] power consumption
measurement of Intel PXA255 computing module is carried out by measuring the
voltage drop across the resistor which is connected to the external power supply and
by calculating the instantaneous current through the circuit. The DVS technique is
implemented on ARM clusters using the available monitoring systems and an
average of 20% saving was observed [22]. Further by incorporating more power
saving techniques like extended sleep mode, an extra 15% more saving can be
obtained [23, 24]. A comprehensive review of distinct methods which can be
employed for controlling context switches can be found in [25].

This paper proposes a prototype model which can be employed for
measurement of power consumption in a processor core level. The actual current
and voltage measurement of the embedded processor while executing a task code
can be measured by this prototype model. At present, the focus of measurement is
time delay and energy consumption associated with a context switch.

3. System Model
This section describes the system model. The task model, execution time model,
scheduling model and energy model are presented in the subsequent subsection.

3.1. Task model
A set of periodic tasks Г = � ���, ��, … . ��� are considered for the analysis. Each
periodic task is depicted by the following attributes: execution time���, time period �� and deadline 	� . The execution time of each task is assumed as equal to its
WCET. The WCET of the task is computed when tasks are run on the processor

1376 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

operated at rated conditions, i.e., at rated voltage ����� and rated clock frequency ����� . In the current model tasks which are independent in nature are considered,
which means that tasks do not share any common resources. Also, task execution is
considered not to suspend any task till the execution is completed.

3.2. Execution time model
The focus of the current work is to investigate the impact of context switch on
energy consumption. Theoretical concepts are developed to analyze the variation
in energy consumption per context switch when the processor operating points are
changed. Operating point of the processor is defined by a set of voltage and
frequency values. Investigations are carried out to find preferable operating points
of embedded processor to reduce the energy dissipation per context switch,
ensuring both functional and temporal constraints. For every processor, there is a
range of possible operating conditions, which are defined between
(OP#$%�to�OP()*(), where: OP#$% defines the lower possible voltage and clock
frequency which is required by the processor to execute and deliver the normal
functionalities, and OP()*(defines the maximum supply voltage and clock
frequency at which the processor could be operated.

3.3. Processor model
The processor model described consists of an embedded processor which operates at
discrete points. The discrete operating points � = � +,�, ,�, … . ,�-, are couple of
voltage and frequency values defined within the permissible ranges, i.e., ,. =���. , �.�.� Each �. value belong to the class of voltage ranges defined within the
minimum and maximum voltage, i.e., �. � ∈ ��.�� �0,���.�1� and �. � ∈��.�� �0,���.�1� . Thus, a DVS enabled processor is required for switching the
operating point of the embedded processor/controller. Operating the processor at a
lower operating point is always desirable to conserve energy and switching to a lower
operating point is permitted only after ensuring temporal requirement of the system.

In the current work, an ARM7 LPC2148 microcontroller is considered. The
LPC2148 works with a supply voltage of 2.9-3.3V and frequencies in the range of
12 MHz-60 MHz. The different operating points of LPC2148 are shown in Table 1.

Table 1. Operating points supported by ARM7 LPC2148 microcontroller.

Operating Points Frequency (MHz.) Voltage (V)
O1 12 2.9
O2 24 3.0
O3 36 3.1
O4 48 3.2
O5 60 3.3

3.4. Energy model
The energy model defines the different parameters on which the energy
consumption of an embedded processor depends. When the processor speed is

A Quantitative Study Based on Direct Measurement on Embedded 1377

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

varied by varying the supply voltage � = ���, ��, …… �� and clock frequency�� =���, ��, … …�� , there is a change in the execution pattern of the tasks. This
variation may sometimes be desirable as it ensures temporal requirements with a
slight increase in energy, or compromises the performance with the reward of
decreased energy consumption. The total energy consumed by the energy aware
embedded processor for the hyper period length is computed as [26]:

�2��3 �= �44����
567
�8�

�
�8� ∗ ���� ���(1)

where is the LCM of task time periods. In the above expression, ��� represent
the power dissipated by the processor while executing the jth instance of the task �� and ��� is the time required by the task code to execute on the processor, i.e.,
task execution time. Thus, energy consumption is the rate of change of power
dissipation. The power dissipation of the processor is estimated by Eq. (2).

��� =���_���4=>?
>@4���A�

567
�8� ∗ ����B>C

>D���(2)�
�8�

where ��� is the supply voltage at which the processor is operated and ��� is the
clock frequency of the processor while executing the jth instance of task �� . ��_���
is the effective load capacitance of the processor.

4. Methodology
In the current work, an attempt to quantify the overheads of context switch viz.
time delay and energy consumption by actual measurement is carried out. The
methodology consists of three different approaches for evaluating the energy
dissipation associated with a context switch:

• Analytical computation of energy dissipation associated with a context switch
• A direct measurement to experimentally quantify the time delay associated
with a context switch, current and voltage consumed by the ARM controller
while executing real time tasks to compute the energy consumption with and
without context switches for task execution when run on an ARM7 controller

• Simulation approach to measure the time delay and energy wastage
associated with context switch

Details of these three approaches are elucidated in the following subsections and
the complete methodology steps are described in the flowchart shown in Fig. 1.

4.1. Analytical evaluation

Execution of two task instances τ)G and τHI, can be done either in a non-preemptive
manner in which task with high priority is executed and completed followed by the

1378 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

low priority task, or in preemptive scheduler where in the release of a critical task will
always preempt the currently executing low priority task.

Fig. 1. Steps involved in proposed work.

4.1.1. Calculation of energy consumption when tasks are executed on
a non-preemptive scheduler
Under a non-preemptive scheduler, the overheads associated with context switch
are not present for the task execution. By knowing the operating points of the
embedded processor, the energy dissipated for executing the task instances on a
processor can be estimated. Let the processor under consideration be��� , operated

A Quantitative Study Based on Direct Measurement on Embedded 1379

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

with a supply voltage of ����� and clock frequency of ������ . Also, by knowing
the processor on which the tasks are executed (in the present model, an ARM7
LPC2148 microcontroller); the time required to execute an instruction can be
computed. This is done by knowing the number of clock cycles required to run an
instruction. Thus, for the written real time task code, cumulatively adding the
number of clock cycles for each instruction will give the total number of clock
cycles taken by that processor to execute the given real time task. The execution
pattern for the tasks in a non-preemptive scheduler is described in Fig.2.

HP Task

 LP Task

 Time

Fig. 2. Task execution on priority based non-preemptive scheduler.

Lemma 4.1.1.1 The energy consumption of an embedded processor while
executing two task instances JKL and JMN on a non-preemptive scheduler can be
computed as:

�2��3_O2 =����_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S���(3)�

Proof. Let the number of clock cycles is represented as UK_VW for executing the
real time task JK on a processor XK. Where UK_VW is given as:
��_O2 = �4�Q3

Q8�

where, UY�is the number of clock cycles required to run an instruction of task JK.��Similarly, the number of clock cycles required to run the high priority real
time task is given by:

��_Z[= �4�Q.
Q8� �

Thus, the energy consumed by processor �� with a non-preemptive scheduler
(
�_O2) can be calculated as in equation 4.
�_O2 = �,\]^�_`aa`bc0`,d ∗ �`e]��0cf]d�0,�]g]hi0]�0ℎ]�0caf�������������������(4)
�����������= � +��_��� ∗ ������ � ∗ ������ - ∗ l�,. ,��hm,hf�hnhm]a ∗ � 1����� o �����������= ���_��� ∗ ������ � ∗ ���_O2�

1380 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

�����������= ���_��� ∗ ������ � ∗ �4�Q3
Q8� ���(5)

Similarly, �

�_Z[=����_��� ∗ ������ � ∗ �4�Q.

Q8� ��(6)
The above expression implies that as the code length increases with increase

in clock cycles, the energy consumption also increases. The operating voltage also
has an impact on energy consumption, which is quadratic in nature.

The total energy consumption of the embedded processor to execute two task
instances JKL and JMN on a non-preemptive scheduler is:
�2��3_O2 = �
�_Z[+�
�_Z[�� (7)

�2��3_O2 = ����_��� ∗ ������ � ∗ � P4�Q3

Q8� +�4�Q.
Q8� S��(8)

4.1.2. Calculation of energy consumption when tasks are executed on
 a preemptive scheduler

When tasks ��� and ��sare executed on a priority based preemptive scheduler, tasks
are assigned to the processor for execution based on their priority. Such
schedulers allow task preemptions to facilitate a quick response for critical tasks.
Any real time application implementation could be done with or without using
RTOS. Anyway, there are some overheads associated in both cases.

a) Task Implementation with RTOS

When tasks are implemented using RTOS, RTOS assign a specific memory space
to the task and bring the code to be executed by the task into that specific
memory. The RTOS then instantiate a data structure called TCB. The RTOS use
TCB block to store all information pertaining to the task in order to handle and
schedule the task. The information contained in the TCB include the task ID, task
state, starting address of the task code, temporary register contents, program
counter, status register etc. The context of a task thus refers to different data and
register contents that define the condition of a task. When tasks are implemented
on RTOS kernel with a priority based preemptive scheduler, the RTOS need to
perform a set of activities for every context switch. The scheduler need to find:

1. Whether the task under execution should continue to run on the processor
2. The next immediate task to be executed
3. Saving context of the preempted task
4. Set up the surroundings for the next task to run, and
5. Allow the new task to run

The above actions will happen simultaneously at the time of a context switch.
While responding to task preemption, every RTOS need a definite time to handle

A Quantitative Study Based on Direct Measurement on Embedded 1381

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

it. At the time of context switching, the RTOS need to save the context of the
preempted task and all register values into the memory, and take up the context of
the new incoming task. After completion of execution of the high priority task,
the RTOS again need to bring in the saved context of the preempted task into the
memory for resuming task execution. There is a time delay associated with this.
This delay is the time required by the RTOS to handle an interrupt. In the analysis
these two latencies are considered separately. When context switch occurs, an ISR
is called to run the high priority task (t��)and at the completion of ISR, the RTOS
kernel is activated to switch to the low priority task execution (t��) . This
execution scenario is shown in Fig. 3.

 Context switch

 HP Task

 LP Task

 RTOS kernel Time

 uvw uvx

 ����
 Context switch invoking time Latency for resuming preempted task

Fig. 3. Task execution on a priority based preemptive scheduler.

As the number of context switches increases for a task, these additional
context switch latencies will get added up to its execution time, which may some
time lead to task deadline miss.

Theorem 4.1.2.1 The amount of energy consumption when tasks are implemented
on a priority based preemptive scheduler with RTOS is greater than that of a non-
preemptive scheduler.

Proof. The different attributes of the low priority task JKL are: (yK, zK, {K) and the
respective values of the high priority task JMN� areyM, zM, {M . When tasks are
implemented on a preemptive scheduler with RTOS, the execution time of the
task is modified due to the associated preemption and context switch overheads.
The new execution time of the low priority task is: ��_��O = ��� +��|��(9)
where �|�� is the latency for resuming preempted task execution. The overhead of
context switch namely: writing the context of the preempted task into the memory
and retrieving the content back from the stack is split and added into both
preempting task and preempted task respectively. Thus, the new execution time of
the high priority task is: ��_��O = ��� +��|��(10)

1382 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

where yuvw is the latency associated with context switch invoking time.
Therefore, the number of clock cycles of low priority and high priority task code
now becomes:

��_O_��2� =� 4 �Q3�|��
Q8� ����and��������_O_��2� = � 4 �Q.�|��

Q8�

Thus, the energy consumed to implement the task instance ��� is:
�_O_��2� = �,\]^�_`aa`bc0`,d ∗ �`e]�0cf]d�0,�]g]hi0]�0caf����� ����������������= � +��_��� ∗ ������ � ∗ ������ -���,. ,��hm,hf�hnhm]a ∗ � ��������
 = �+��_��� ∗ ������ � ∗ ������ -����_O_��2� ∗ � ��������
����������������= +��_��� ∗ ������ � -�� 4 �Q3�|��

Q8� ��(11)
And that of task ��sis:

�_O_��2� = � +��_��� ∗ ������ � -�� 4 �Q.�|��
Q8� ��(12)

The total energy consumed while executing the above two tasks are obtained
by adding the individual task consumption.

�2��3_O_��2� =�
�_O_��2� +�
�_O_��2��(13)
����������������������= ���_��� ∗ ������ � �� 4 �Q3�|��

Q8� +� 4 �Q.�|��
Q8� �

���������������������= ���_��� ∗ ������ �
∗ �P4�Q3

Q8� +4�Q.
Q8� S + �4�Q��|��

Q8� +�4�Q��|��
Q8� ���������������(14)���

By using Lemma 4.1.1.1, the energy consumption of an embedded processor
while executing two task instances in a non-preemptive scheduler is found as:

�2��3_O2 = ����_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S����
Therefore,
�2��3_O_��2� can be written as:

A Quantitative Study Based on Direct Measurement on Embedded 1383

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

�2��3_O_��2� =�
�2��3_O2 +���_��� ∗ ������ � ∗ �4�Q��|��
Q8� +�4�Q��|��

Q8� ����������������(15)
Thus, it is proved that the amount of energy consumption when tasks are

implemented on a priority based preemptive scheduler with RTOS is greater than
that of a non-preemptive scheduler.

b) Task Implementation without RTOS

For small application development, there is no need to use an RTOS, as the
programmer can manage the task interactions by skillful coding. Under such
cases, the coded program should be capable of checking the task priorities at the
release of every new task into the system, and the scheduler needs to take a
decision of whether the current task under execution or the newly released task
should run. Therefore, the scheduling decisions are made at the release of every
task instances. Thus, the coded program must include these decision making
instructions and additional instructions to resume the task execution of preempted
task on completion of the preempting task. In case of multiple preemptions, the
program should be written well to handle and keep track of nested preemptions
suffered by a task. Thus, additional instructions must be written in the program so
as to handle these context switch overheads. The task execution without RTOS is
presented in Fig. 4.

Additional clock cycles to implement context switch by coding

Fig. 4. Task execution without RTOS.

Theorem 4.1.2.2 The amount of energy consumption when tasks are implemented
on a priority based preemptive scheduler is greater than that of a non-preemptive
scheduler.

The new execution time of low priority task instance ��� and high priority task
instance ��s can be written by including an additional time �∆�_� required to run the
extra instructions given in equation 16. ��_��O = ��� +��∆�_� ��(16) ��_��O = ��� +��∆�_� ��(17)

 Context switch response time

 Context switch

 HP Task

 LP Task

 Time

Additional clock cycles to implement context switch by coding

1384 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

And the corresponding number of clock cycles required to run the tasks ���
and ��s are:
��_O = � 4 �Q3�∆�_�

Q8�

��_O = � 4 �Q.�∆�_�
Q8�

The energy consumption of the processor while executing the tasks can be
written as:

�_O = � +��_��� ∗ ������ � ∗ ������ -�l��_O ∗ � 1����� o���
���������= � +��_��� ∗ ������ � - ∗ � 4 �Q3�∆�7

Q8� ���(18)
And that of task ��sis:

�_O = � +��_��� ∗ ������ � - ∗ � 4 �Q.�∆�_�
Q8� ��(19)

The total energy consumption of the embedded processor while executing two
task instances on a priority based preemptive scheduler without RTOS is given by:

�2��3_O = �
�_O +�
�_O
���������������= ���_��� ∗ ������ � �� 4 �Q.�∆�_�

Q8� +� 4 �Q3�∆�_�
Q8� �

��������������= ���_��� ∗ ������ � ∗ �P4�Q3
Q8� +4�Q.

Q8� S + �4�Q��∆�_�
Q8� +�4�Q��∆�_�

Q8� ���(20)�
By using Lemma 4.1.1.1, the energy consumption of an embedded processor

while executing two task instances in a non-preemptive scheduler is found as:

�2��3_O2 = �� ��_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S��(21)
Therefore,
�2��3_O can be written as:

A Quantitative Study Based on Direct Measurement on Embedded 1385

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

�2��3_O =�
�2��3_O2 +���_��� ∗ ������ � ∗ �4�Q��∆�_�
Q8� +�4�Q��∆�_�

Q8� �������������������������(22)
Thus, it is proved that the amount of energy consumption when tasks are

implemented on a priority based preemptive scheduler is greater than that of a
non-preemptive scheduler, with the support of RTOS and without RTOS.

4.2. Study by direct measurement
This section details the experimental rig for measurement and the procedure
used to assess the time required to perform a context switch during two task
execution and the voltage and current consumed by the embedded
processor/controller while implementing task execution and context switch. The
measurement system shown in Fig. 5 consists of an ARM7 TDMI based
LPC2148 microcontroller where the execution of real time task is performed.
The real time tasks which are considered for evaluation are an UART
transmission task and Multiply Accumulate (MAC) code. The measuring setup
consists of the test processor (LPC2148 microcontroller) on which the task
execution and context switches are implemented, and an MBED NXP1768
mbed microcontroller to compute the instantaneous power dissipation of LPC
2148 controller. The analog voltage and current values of LPC 2148 controller
are digitized and fed to MBED NXP1768 to compute the instantaneous power
dissipation of LPC2148 when the tasks are executed with and without context
switches. The current transducer used is an AE make (0-100mA) range meter
which gives an equivalent output voltage in the range of (0-3.2V). A Moving
Coil (M.C.) voltmeter (0-5V) is used for voltage measurement.

Fig. 5. Measuring setup.

4.2.1. Measuring the time required for a context switch
The time required to perform a context switch by LPC2148 microcontroller, when
operated at the rated conditions of 3.3V and 60 MHz crystal frequency are

1386 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

obtained experimentally. For this, a task code to implement UART transmission
is written and the number of clock cycles required to complete the code was
computed by using Timer 1 module of LPC2148. Upon the completion of UART
transmission code, the value of the Timer 1 module is displayed to the hyper
terminal. The second task which is considered is a MAC program to multiply
numbers and add the products to find the result. The MAC code is run for
different number of iterations to verify the changes in number of clock cycles
required during execution. Both task codes are written in Embedded C and the
code after successful compilation and building are flashed into LPC
microcontroller using Keil- uVision IDE.

Two separate programs are written one without context switch, i.e., sequential
execution of UART transmission program followed by the MAC computation.
Another program is written to implement context switch by executing the UART
transmission task first and preempting its execution by the MAC task and upon its
completion, the UART task resumes its execution for culmination. Timer 1 is
configured and initialized during the starting of program execution without
context switches and Timer 2 for program with context switches. The difference
of values of Timer 2 and Timer 1 gives the number of clock cycles required to
carry out context switch.

4.2.2. Measuring the energy consumption for a context switch
The supply voltage and current consumed by LPC2148 microcontroller, while
executing the program without context switch and with context switch are
measured. By knowing the time taken for execution of both the programs, the
energy consumed in each case is estimated as below:

• Measure the time taken by the LPC to execute the two identified tasks UART
and MAC operation in non-preemptive manner and with preemptions as
explained in section 4.2.1 and let the time measured be 0O������� and 0O���2������.

• The supply voltage of LPC microcontroller is fixed at the rated value of 3.3V
and clock frequency of 60 MHz.

• Thus the energy consumed by the LPC microcontroller while running the
tasks with and without preemptions is calculated as in Eq. 23 and 24.

�
O���2������ =���_��� ∗ ��� ∗ � ∗ 0O���2�� (23)
O������� =���_��� ∗ ��� ∗ � ∗ 0O�� (24)
The energy dissipated by the controller when a context switch is

implemented is the difference between the energy consumption with and
without preemption as below:
�2����O���� = �
O������� −�
O���2��� (25)

Figure 6 shows a snapshot of the output of MBED NXP1768 controller while
computing the instantaneous energy consumption of LPC2148 microcontroller
while implementing context switch.

A Quantitative Study Based on Direct Measurement on Embedded 1387

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

Fig. 6. MBED NXP1768 controller to compute energy consumption.

4.3. Simulation using Keil uVision IDE
The context switch implementation using software is carried out using Keil-
uVision IDE. Here, the two programs written for task execution with and without
context switches using embedded C language are compiled using Keil IDE.
ARM7 LPC2148 microcontroller is programmed through Flash Magic tool. In
Flash Magic tool appropriate settings of COM port selection, baud rate, device
selection and clock frequency is to be done to set the appropriate values as in the
experiment. Using the start/stop debug session, get the disassembly listing and
then single stepping operation is performed. By taking the execution profile and
enabling the show time option, the time taken to execute each instruction of the
code is displayed. By adding up individual instruction execution time, the time
taken to complete the entire task code is calculated. The difference of the time
obtained by running the program with context switch and without context switch
is a measure of the time consumed to implement the context switch.

5. Results and Discussion
In this work, the time delay and the associated energy wastage of an embedded
processor while implementing context switches are quantified by actual
measurement. In ARM7 LPC2148 microcontroller, the real time tasks namely,
UART transmission and MAC functional programs are implemented with and
without context switches. The voltage input and current consumed by LPC
microcontroller are measured with the help of a M.C. voltmeter and current
transducer. These analog values are digitized and input to MBED NXP1768
controller, which computes the instantaneous energy dissipation of LPC
controller while executing tasks. The experimental setup used for time delay
measurement and energy consumption is shown in Fig. 7 and a close view of
the components in Fig. 8.

1388 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

Fig.7. Experimental setup for measurement

of time delay and energy consumption.

Fig. 8. A close view of components.

When the UART transmission task and MAC program with different number
of iterations are executed with and without context switches, the number of clock
cycles taken by the LPC2148 microcontroller is tabulated in Table 2. These
readings are taken when LPC2148 is operated at rated voltage of 3.3V and
frequency of 60 MHz.

Figure 9 shows a graph between the context switching time for the LPC2148
microcontroller when operated at rated voltage of 3.3V and at varying frequencies
of 12 MHz, 24 MHz, 36 MHz, 48 MHz and 60 MHz. The oscillator is intended
for calibration in multiples of the base frequency and this fixes the selection of
frequency switches as 12, 24, 36, 48 and 60 MHz. The variations in clock
frequency are achieved by configuring PLL and the change in voltage is
accomplished with a digital potentiometer connected across the power supply and
the test system. MCP4021 is used which has 64 step changes. Here, the MAC
program is executed with 4 iterations.

A Quantitative Study Based on Direct Measurement on Embedded 1389

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

Table 2. Number of clock cycles and time measurement of
ARM7 LPC2148 microcontroller to implement context switch.

 MAC with 4
operations(No. of

clock cycles)

MAC with 16
operations(No. of

clock cycles)

MAC with 32
Operations (No.
of clock cycles)

 With
Context
Switch

Without
Context
Switch

With
Context
Switch

Without
Context
Switch

With
Context
Switch

Without
Context
Switch

UART
Transmission

186565

186302

193757

193244

214515

213642

No. of clock
cycles for
context switch

263 513 873

Time taken
for a context
switch (µsec.)

4.38 8.55 14.55

Fig. 9. Time required for context switching with varying frequencies.

For the measurement of energy consumption per context switch, the supply
voltage and current consumption of LPC2148 microcontroller is measured while
executing the UART and MAC task codes with and without context switch. Fig.
10 shows the variation in energy consumption with varying number of MAC
operations at varying operating points. The different operating points used are as
given in Table 1.

By simulation, when UART and MAC code are run with different number of
operations, the values obtained are tabulated in Table 3. The LPC2148 is run at
rated operating conditions of 3.3V and 60 MHz clock frequency.

Upon computing the time delay associated per context switch while executing
two tasks: UART transmission and MAC operation, by direct measurement and
by simulation, the results obtained are presented in Fig. 11, when the controller is
run at rated operating point of 3.3V and 60 MHz. Also, Fig. 12 presents the
comparison of energy consumption by the above two approaches.

0

20

40

60

80

12 24 36 48 60

Variation in Context Switch
Time with Varying Frequency

Clock Frequency (MHz)C
o

n
te

x
 s

iw
tc

h
 t

im
e

 (
µ

se
c.

)

1390 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

Fig. 10. Variation in energy consumption with change in operating points.

Table 3. Number of clock cycles and time measurement of
ARM7 LPC2148 microcontroller using software simulation.

 UART & MAC
with 4 operations

UART & MAC
with 16 operations

UART & MAC
with 32 operations

Time taken
for a context
switch (µsec.)

4.16

8.43

14.28

Fig. 11. Comparison of time delay by simulation and actual measurement.

Fig. 12. Comparison of energy consumption per context

switch by simulation and actual measurement.

A Quantitative Study Based on Direct Measurement on Embedded 1391

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

An important observation made is that the time for context switching and
energy consumption is not the same while running different tasks, i.e., with
change in application tasks, there is a change in time required for context
switching, thereby changing the energy consumption. Also, another consideration
is, the context switching time and energy dissipation changes with change in
context switching point. Based on the application nature, the preferable operating
points can be selected. Running the processor at lower voltage and frequency are
always preferable to reduce energy consumption if temporal requirements of the
application tasks are not violated.

6. Conclusion
For any real time application development consisting of many concurrent tasks,
the use of a priority based preemptive scheduler becomes inevitable for every task
to meet their respective functional and temporal requirements. Under such
scenario, when developing big and complex real time applications, it becomes
necessary to have large number of context switches in the system. But, if not
controlled, the unnecessary context switches may incur lot of overheads including
increased delay, increased memory, cache pollution and sometimes even
infeasibility of the system. This paper attempts to provide insight into the
significance of context switches in real time embedded application development
and render the impact of context switch in application development. The main
focus of the work is to quantify the amount of delay and energy wastage
associated with context switches while different application tasks are executed.
The main two factors which are investigated is the time delay associated with a
context switch and the energy consumption per context switch. In this paper,
analytical proofs are presented to verify the fact of increase in time delay and
energy consumption during a context switch by comparing the task execution
with and without context switches. Experiments are conducted to quantify these
factors on ARM7 LPC2148 microcontroller and MBED NXP1768 controller. The
experimental results show a substantial amount of time delay and energy wastage
associated with context switches while running simple real time tasks. The energy
consumption in the order of few milli Joules cannot be neglected as the
cumulative value for a large number of context switches will be in the order of
Joules. Thus, the number of context switches in a system need to be limited for
energy saving. Also, the context switch behaviour and the associated overhead for
branch instructions are not simple and straight forward as with simple instructions
presented in the current work. The associated overhead prediction and analysis
need to be investigated in the future work.

References
1. B. D. Bui, M. Caccamo, L. Sha, and J. Martinez (2008). Impact of cache

partitioning on multi-tasking real time embedded systems, in The IEEE
International Conference on Embedded and Real-Time Computing Systems
and Applications.101-110.

2. H. Ramaprasad and F. Mueller (2008). Tightening the bounds on feasible
preemptions, in The ACM Transactions on Embedded Computing Systems.
212-224.

1392 A. S. Pillai and T. B. Isha

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

3. C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M.
Lee, and C. S. Kim (1998). Analysis of cache-related preemption delay in
fixed-priority preemptive scheduling, The IEEE Transactions on Computers.
47(6), 700-713.

4. G. Yao, G. Buttazzo, and M. Bertogna (2010). Comparative evaluation of
limited preemptive methods, in The International Conference on Emerging
Technologies and Factory Automation.1-8.

5. A. Thekkilakattil, A. S. Pillai, R. Dobrin, and S. Punnekkat (2010). Reducing
the number of preemptions in real-time systems scheduling by CPU
frequency scaling, in The International Conference on Real-Time and
Network Systems.

6. Jejurikar and R. K. Gupta (2004). Integrating processor slowdown and
preemption threshold scheduling for energy efficiency in real time embedded
systems, in The IEEE Real-Time Computing Systems and Applications.

7. Macro E.T.Gerards (2014). Algorithmic power management: Energy
minimization under real-time constraints, Ph.D.Thesis Series No. 14-314,
Centre for Telematics and Information Technology, University of Twenty,
The Netherlands.

8. Y. Wang and M. Saksena, (1999). Scheduling fixed-priority tasks with
preemption threshold, in The International Conference on Real-Time
Computing Systems and Applications. 328-335.

9. S. Baruah, (2005). The limited-preemption uniprocessor scheduling of
sporadic task systems, in The Euromicro Conference on Real-Time Systems,
137-144.

10. M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M.
Caccamo (2010). Preemption points placement for sporadic task sets, in The
Euromicro Conference on Real-Time Systems.251-260.

11. Bhatti, M.K.; Belleudy, C.; Auguin, M. (2010). An inter-task real time DVFS
scheme for multiprocessor embedded systems, Design and Architectures for
Signal and Image Processing (DASIP), Conference on, 136-143, 26-28 Oct.

12. Koedam, M, Stuijk, S, Corporaal, H. (2011). Exploiting Inter and Intra
Application Dynamism to Save Energy, Digital System Design (DSD), 14th
Euromicro Conference on, 708-715.

13. Woonseok Kim; Jihong Kim; Sang Lyul Min (2004). Preemption-Aware
Dynamic Voltage Scaling in Hard Real-Time Systems, Low Power
Electronics and Design, ISLPED '04. Proceedings of the 2004 International
Symposium on, 393-398.

14. J. Marinho, S. Petters (2011). Job phasing aware preemption deferral, 9th
International Conference on Embedded and Ubiquitous Computing (EUC),
IFIP, 128–135. doi:10.1109/EUC.2011.46.

15. R. Dobrin, G. Fohler (2004). Reducing the number of preemptions in fixed
priority scheduling, Proceedings 16th Euromicro Conference on Real-Time
Systems, ECRTS, 144 – 152. doi:10.1109/EMRTS.2004.1311016.

16. Buttazzo, G.C.; Bertogna, M.; Gang Yao (2013). Limited Preemptive
Scheduling for Real-Time Systems. A Survey, Industrial Informatics, IEEE
Transactions on, 9(1), 3-15.

A Quantitative Study Based on Direct Measurement on Embedded 1393

Journal of Engineering Science and Technology October 2015, Vol. 10(10)

17. T. H. C. Nguyen, N. S. Tran, V. H. Le, and Pascal Richard (2013).
Approximation scheme for real-time tasks under fixed-priority scheduling
with deferred preemption. In Proceedings of the 21st International
conference on Real-Time Networks and Systems (RTNS '13). ACM, New
York, NY, USA, 265-274.

18. Tajana Simuni c, Luca Benini, Giovanni De Micheli, Mat Hans (2000).
Source Code Optimization and Profiling for Energy Consumption in
Embedded Systems, IEEE Symposium on System Synthesis, 193 –198.

19. Jeffry T. Russell, Margarida F Jacome (1999). Software Power Estimation
and Optimization for High Performance 32-bit Embedded Processors, IEEE
Proceedings of ICCD’98,328-333, 5-7 Oct.

20. Theodore Laopoulos, Periklis Neofotistos, C. A. Kosmatopoulos, and
Spiridon Nikolaidis (2003). Measurement of Current Variations for
the Estimation of Software Related Power Consumption, IEEE Transactions
on Instrumentation and Measurement, 52(4), 1206-1212.

21. Lin, Jian, Cheng, Albert, Song, Wei (2014). A Practical Framework to Study
Low-Power Scheduling Algorithms on Real-Time and Embedded Systems, J.
Low Power Electron. Appl. 2014, 4(2), 90-109.

22. Zhonghong Ou, Bo Pang, Yang Deng, Jukka K. Nurminen, Antti Yla- Jaaski,
Pan Hui (2012). Energy and Cost-Efficiency Analysis of ARM-Based
Clusters, 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 115-123.

23. Ravindra Jejurikar, Rajesh Gupta (2004). Dynamic Voltage Scaling for
System-wide Energy Minimization in Real-Time Embedded Systems,
Proceedings of the 2004 International Symposium on Low Power
Electronics and Design, 78 – 81.

24. P. Pillai, K. G. Shin (2001). Real-time dynamic voltage scaling for low
power embedded operating systems, IEEE Symposium on Operating
Systems Principles,89–102.

25. G. Buttazzo, M. Bertogna, and G. Yao (2012). Limited preemptive
scheduling for real-time systems: A survey, The IEEE Transactions on
Industrial Informatics, 9(1), 3-15.

26. Neil H.E. Weste, K. Eshraghian, Principles of CMOS VLSI Design, A
Systems Persoectives, (2nd ed.). Person Education, India.

