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Abstract 

Priority based preemptive schedulers are preferred over non-preemptive 
schedulers due to their flexibility to accommodate real time tasks based on 
criticality. The overhead associated with a preemptive scheduler is high and 
with increased number of preemptions and the associated context switches, the 
execution pattern of tasks become highly unpredictable at run time. In this 
paper, an effort is made to provide an insight into the significance of controlling 
context switches during real time application development. The system under 
study consists of an ARM7 LPC2148 microcontroller, whose energy 
consumption measurement is carried out with the help of MBED NXP 1768 
controller. A study is done by analytical verification and a software simulation 
using embedded C with Keil uVision IDE. The energy consumed by the 
processor with and without context switches is verified experimentally by direct 
measurement. The two factors considered for analysis are increased delay and 
the augmented energy dissipation during a context switch. It is seen that a 
substantial saving of time and energy is associated with every context switch. 

Keywords: Context switch, Energy dissipation, Energy measurement, Simulation, 
                   Real time embedded application. 

 
 

1. Introduction 
Use of embedded systems is very prevalent in almost all application fields like 
bio-medical, engineering, process control, industrial and many more. The 
development of real time applications, especially real time embedded systems 
need more care and attention as it has to cater to critical nature. Scheduler assigns 
priorites to tasks based on their application nature and criticality to execute on the 
processor. In addition, need of a preemptive scheduler is also vital for successful 
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Nomenclatures 
 ��� Execution time of task �� in µsec. ��_��� Effective load capacitance in µF �	�  Deadline of task ��  in µsec. 
� Energy consumed by processor ��  in mJ �� Clock frequency of processor ��  in MHz.  Hyper period ��  Number of clock cycles taken by task �� to execute ��  Operating point of processor �� , which consists of supply voltage 

and clock frequency  ��� The power dissipated by the processor while executing the jth 
instance of the task �� in Watts (W) ���  Time period of task �� in µsec. ��  Supply voltage of processor ��  in Volts (V) 

 

Greek Symbols ��  Task i ��� pth instance of task �� 
 

Abbreviations 

DFS 
DVS 

Deterministic Stretch-to-Fit 
Dynamic Voltage Scaling 

FPP 
IDE 

Fixed Preemption Point  
Integrated Development Environment 

ISR Interrupt Service Routine 
LCM 
PTS 
PLL 
RTOS 

Least Common Multiple 
Preemption Threshold Scheduling 
Phase Locked Loop 
Real Time Operating System 

TCB Task Control Block 
WCET Worst Case Execution Time 

execution of various tasks in the system to guarantee functional and temporal 
requirements. Thus, use of a priority based preemptive scheduler becomes highly 
demanding for real time application development and scheduling of tasks. But, 
the decision of permitting preemptions must be made judiciously, so that the 
increased number of preemptions and the associated context switches are not 
introducing additional overhead to the system to compromise the temporal 
constraints or even losing schedulability of the system. When a preemption occurs 
in the system by stopping the execution of a low priority task by a more critical 
task, the context of the preempted task need to be saved into the memory and 
then, to continue the task execution, the RTOS kernel need to bring in and set up 
the environment of the new incoming task. This activity known as context switch 
is one of the most costly operation of any RTOS. Thus, the context switches in 
the system need to be controlled to retain only the necessary ones, to facilitate the 
successful execution of both critical and non-critical tasks. 

Plenty of research works are carried out in the field of real time systems 
pertaining to control of context switches, still there are avenues for further 
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exploration. Finding an optimal solution for overheads associated with context 
switches and analysing its effects are challenging. There are many adverse effects of 
context switches which include: increased delay for task execution, increased 
memory requirements, cache associated delays and unpredictable task execution 
patterns, manipulating task queues and many more [1-3]. Cache related preemptions 
are costly and it is found that the worst case delay can go as high as 655µsec. These 
delays when gets added up to the execution time of the task, it is found that an 
increase of around 33% of execution time was observed in a MPC7410 Power PC 
with a two way set associative L2 cache [1]. Thus, to use a preemptive scheduler in 
an optimal manner, the overhead associated with context switches has to be 
bounded. Otherwise the advantage of having more flexibility and better processor 
utilization can be taken away by the non-preemptive scheduler.  

In the present work, an analysis is made to present the severity of context switch 
overheads viz. increased context switch delay and added energy dissipation of the 
processor. In this work, a prototype model consisting of ARM7 LPC2148 and 
MBED NXP 1768 controller is considered and the energy consumed by LPC2148 
controller while executing tasks with and without context switches is measured by 
actual measurement. This is a small step made in the direction of actual 
measurement of the core level performance of an embedded processor.  

The rest of the paper is organized as follows: section 2 contains a brief 
description about the related work done in the field and sections 3 emphasises on 
the system model. In section 4, methodology and solution are presented followed 
by results and discussion in section 5. Finally section 6 concludes the paper.  
 

2.  Related Work  
The process of context switch is very essential in any application field especially 
in real time scheduling. Context switches help to incorporate tasks with more 
critical and stringent temporal requirements to the processor for successful 
execution. There is a wide spread acceptance for the need for controlling context 
switches in the literature. The major overheads which are mentioned earlier 
includes the increased time delay, energy consumption, memory requirements, 
cache related overheads, unpredictable task execution patterns, and it may even 
lead to infeasibility to schedule the tasks [4]. There are many different approaches 
which are suggested by researchers in the field to overcome the various costs. 
DVS is a key technique for energy consumption reduction by switching the 
voltage and frequency of the processor at runtime to slowdown/increase the speed 
of the task execution. DVS can be used to control context switches by regulating 
the speed of task execution [5, 6]. In [7], algorithmic power management schemes 
are presented to limit the power dissipation of the embedded processor which in 
turn is beneficial in controlling the context switching overheads. Another well-
known technique which is widely used in the field is PTS [8]. In PTS technique, 
every task poses a threshold value in addition to the task priorities. In this system, 
a task can preempt another task only when its priority is greater than the threshold 
level of the other task. Another class of method uses slack reclamation technique, 
wherein the unused processor time is utilized to slow down task instances to 
conserve energy and reduce preemptions. In [9], Baruah investigated the 
possibilities of preemption limiting and made an attempt to find the longest 
possible non-preemptive execution time for sporadic tasks in a system. In [10], 
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the authors proposed methods to fix preemption points in task execution, 
assuming a fixed preemption cost. Bhatti et al. [11] proposes DSF method to 
control preemptions and inter task and intra task mechanism by Koedam are some 
techniques for effective context reduction [12].  Kim and Jim introduced 
accelerated completion based technique and delayed preemption based control 
technique for limiting preemptions [13] and a job phasing aware preemption 
deferral was proposed by Marinho [14]. The preemption control was also 
attempted by varying the tasks parameters in [15]. In [16], a detailed analysis of 
limited preemptive scheduling algorithms is presented and has showed that FPP 
algorithm is one of the algorithms that produce less number of preemptions with 
increased schedulability ratio. But it demands inclusion of explicit preemption 
points in the program code. In [17] fixed priority scheduling with deferred 
preemption is proposed which guarantees the performance and defines a 
compromise between the response time bound and processor utilization. 

Energy saving could be done by compiler optimization techniques by 
appropriately selecting power aware instructions. In this case, there is no need of a 
hardware modification. When compared to hardware based techniques, simulation 
approach is less complex, but there is a drawback of not possible to account for 
factors which affect the power consumption viz. heat loss, external atmospheric 
conditions and many more [18]. In the literature, there are a few research works 
which support for power consumption estimation through hardware based methods. 
The amount of power consumed can be measured by measuring the voltage and 
current flowing through a resistor with the aid of milli-ampere meter. This method 
tries to eliminate the costly off-chip memory accesses by storing the future data for 
computations by saving into registers [19, 20]. In [21] power consumption 
measurement of Intel PXA255 computing module is carried out by measuring the 
voltage drop across the resistor which is connected to the external power supply and 
by calculating the instantaneous current through the circuit. The DVS technique is 
implemented on ARM clusters using the available monitoring systems and an 
average of 20% saving was observed [22]. Further by incorporating more power 
saving techniques like extended sleep mode, an extra 15% more saving can be 
obtained [23, 24]. A comprehensive review of distinct methods which can be 
employed for controlling context switches can be found in [25]. 

This paper proposes a prototype model which can be employed for 
measurement of power consumption in a processor core level. The actual current 
and voltage measurement of the embedded processor while executing a task code 
can be measured by this prototype model. At present, the focus of measurement is 
time delay and energy consumption associated with a context switch.  

3.  System Model   
This section describes the system model. The task model, execution time model, 
scheduling model and energy model are presented in the subsequent subsection. 

3.1. Task model  
A set of periodic tasks Г = � ���, ��, … . ��� are considered for the analysis. Each 
periodic task is depicted by the following attributes: execution time���, time period ��  and deadline 	� . The execution time of each task is assumed as equal to its 
WCET. The WCET of the task is computed when tasks are run on the processor 
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operated at rated conditions, i.e., at rated voltage �����  and rated clock frequency ����� . In the current model tasks which are independent in nature are considered, 
which means that tasks do not share any common resources. Also, task execution is 
considered not to suspend any task till the execution is completed.  
 

3.2. Execution time model 
The focus of the current work is to investigate the impact of context switch on 
energy consumption. Theoretical concepts are developed to analyze the variation 
in energy consumption per context switch when the processor operating points are 
changed. Operating point of the processor is defined by a set of voltage and 
frequency values. Investigations are carried out to find preferable operating points 
of embedded processor to reduce the energy dissipation per context switch, 
ensuring both functional and temporal constraints.  For every processor, there is a 
range of possible operating conditions, which are defined between 
(OP#$%�to�OP()*( ), where: OP#$%  defines the lower possible voltage and clock 
frequency which is required by the processor to execute and deliver the normal 
functionalities, and OP()*(  defines the maximum supply voltage and clock 
frequency at which the processor could be operated. 
 

3.3. Processor model 
The processor model described consists of an embedded processor which operates at 
discrete points. The discrete operating points � = � +,�, ,�, … . ,�-,  are couple of 
voltage and frequency values defined within the permissible ranges, i.e.,  ,. =���. , �.�.� Each �.  value belong to the class of voltage ranges defined within the 
minimum and maximum voltage, i.e., �. � ∈ ��.�� �0,���.�1�  and �. � ∈��.�� �0,���.�1� . Thus, a DVS enabled processor is required for switching the 
operating point of the embedded processor/controller. Operating the processor at a 
lower operating point is always desirable to conserve energy and switching to a lower 
operating point is permitted only after ensuring temporal requirement of the system.  

In the current work, an ARM7 LPC2148 microcontroller is considered. The 
LPC2148 works with a supply voltage of 2.9-3.3V and frequencies in the range of 
12 MHz-60 MHz.  The different operating points of LPC2148 are shown in Table 1. 

 
Table 1. Operating points supported by ARM7 LPC2148 microcontroller.   

Operating Points Frequency (MHz.) Voltage (V) 
O1 12 2.9 
O2 24 3.0 
O3 36 3.1 
O4 48 3.2 
O5 60 3.3 

 

3.4. Energy model 
The energy model defines the different parameters on which the energy 
consumption of an embedded processor depends. When the processor speed is 



A Quantitative Study Based on Direct Measurement on Embedded . . . . 1377 

 
 
Journal of Engineering Science and Technology        October 2015, Vol. 10(10) 

 

varied by varying the supply voltage � = ���, ��, …… �� and clock frequency�� =���, ��, … …�� , there is a change in the execution pattern of the tasks. This 
variation may sometimes be desirable as it ensures temporal requirements with a 
slight increase in energy, or compromises the performance with the reward of 
decreased energy consumption. The total energy consumed by the energy aware 
embedded processor for the hyper period length is computed as [26]: 


�2��3 �= �44����
567
�8�

�
�8� ∗ ���� �������������������������������������������������������������������������������������������(1) 

where  is the LCM of task time periods. In the above expression, ��� represent 
the power dissipated by the processor while executing the jth instance of the task ��  and ��� is the time required by the task code to execute on the processor, i.e., 
task execution time. Thus, energy consumption is the rate of change of power 
dissipation. The power dissipation of the processor is estimated by Eq. (2). 

��� =���_���4=>?
>@4���A�

567
�8� ∗ ����B>C

>D�����������������������������������������������������������������������������(2)�
�8�  

where ��� is the supply voltage at which the processor is operated and ���  is the 
clock frequency of the processor while executing the jth instance of task �� . ��_��� 
is the effective load capacitance of the processor. 

 

4.  Methodology 
In the current work, an attempt to quantify the overheads of context switch viz. 
time delay and energy consumption by actual measurement is carried out. The 
methodology consists of three different approaches for evaluating the energy 
dissipation associated with a context switch: 

• Analytical computation of energy dissipation associated with a context switch  
• A direct measurement to experimentally quantify the time delay associated 
with a context switch, current and voltage consumed by the ARM controller 
while executing real time tasks to compute the energy consumption with and 
without context switches for task execution when run on an ARM7 controller  

• Simulation approach to measure the time delay and energy wastage 
associated with context switch  

Details of these three approaches are elucidated in the following subsections and 
the complete methodology steps are described in the flowchart shown in Fig. 1. 

 

4.1. Analytical evaluation  

Execution of two task instances τ)G and τHI, can be done either in a non-preemptive 
manner in which task with high priority is executed and completed followed by the 
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low priority task, or in preemptive scheduler where in the release of a critical task will 
always preempt the currently executing low priority task. 

 
Fig. 1. Steps involved in proposed work. 

 

4.1.1. Calculation of energy consumption when tasks are executed on 
a non-preemptive scheduler  
Under a non-preemptive scheduler, the overheads associated with context switch 
are not present for the task execution. By knowing the operating points of the 
embedded processor, the energy dissipated for executing the task instances on a 
processor can be estimated. Let the processor under consideration be��� , operated 
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with a supply voltage of �����  and clock frequency of ������ . Also, by knowing 
the processor on which the tasks are executed (in the present model, an ARM7 
LPC2148 microcontroller); the time required to execute an instruction can be 
computed. This is done by knowing the number of clock cycles required to run an 
instruction. Thus, for the written real time task code, cumulatively adding the 
number of clock cycles for each instruction will give the total number of clock 
cycles taken by that processor to execute the given real time task. The execution 
pattern for the tasks in a non-preemptive scheduler is described in Fig.2.  

 

HP Task 

       LP Task 

 Time  

Fig. 2. Task execution on priority based non-preemptive scheduler. 

  

Lemma 4.1.1.1 The energy consumption of an embedded processor while 
executing two task instances  JKL and JMN on a non-preemptive scheduler can be 
computed as: 


�2��3_O2 =����_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S�������������������������������������������������(3)� 
 

Proof. Let the number of clock cycles is represented as UK_VW for executing the 
real time task JK on a processor XK. Where UK_VW is given as: 
��_O2 = �4�Q3

Q8�  

where, UY�is the number of clock cycles required to run an instruction of task JK.��Similarly, the number of clock cycles required to run the high priority real 
time task is given by:  

��_Z[ = �4�Q.
Q8� � 

 

Thus, the energy consumed by processor ��  with a non-preemptive scheduler 
(
�_O2) can be calculated as in equation 4.   
�_O2 = �,\]^�_`aa`bc0`,d ∗ �`e]��0cf]d�0,�]g]hi0]�0ℎ]�0caf�������������������(4) 
�����������= � +��_��� ∗ ������ � ∗ ������ - ∗ l�,. ,��hm,hf�hnhm]a ∗ � 1����� o �����������= ���_��� ∗ ������ � ∗ ���_O2� 
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�����������= ���_��� ∗ ������ � ∗ �4�Q3
Q8� �������������������������������������������������������������������������������(5) 

Similarly,   �

�_Z[ =����_��� ∗ ������ � ∗ �4�Q.

Q8� ������������������������������������������������������������������������������(6) 
The above expression implies that as the code length increases with increase 

in clock cycles, the energy consumption also increases. The operating voltage also 
has an impact on energy consumption, which is quadratic in nature.  

The total energy consumption of the embedded processor to execute two task 
instances  JKL and JMN on a non-preemptive scheduler is: 
�2��3_O2 = �
�_Z[ +�
�_Z[��                                                                                   (7) 

�2��3_O2 = ����_��� ∗ ������ � ∗ � P4�Q3

Q8� +�4�Q.
Q8� S��������������������������������������������������(8) 

 

4.1.2. Calculation of energy consumption when tasks are executed on 
          a preemptive scheduler 

When tasks ��� and ��sare executed on a priority based preemptive scheduler, tasks 
are assigned to the processor for execution based on their priority. Such 
schedulers allow task preemptions to facilitate a quick response for critical tasks. 
Any real time application implementation could be done with or without using 
RTOS. Anyway, there are some overheads associated in both cases. 
 

a) Task Implementation with RTOS 

When tasks are implemented using RTOS, RTOS assign a specific memory space 
to the task and bring the code to be executed by the task into that specific 
memory. The RTOS then instantiate a data structure called TCB. The RTOS use 
TCB block to store all information pertaining to the task in order to handle and 
schedule the task. The information contained in the TCB include the task ID, task 
state, starting address of the task code, temporary register contents, program 
counter, status register etc. The context of a task thus refers to different data and 
register contents that define the condition of a task. When tasks are implemented 
on RTOS kernel with a priority based preemptive scheduler, the RTOS need to 
perform a set of activities for every context switch. The scheduler need to find: 

1. Whether the task under execution should continue to run on the processor 
2. The next immediate task to be executed 
3. Saving context of the preempted task 
4. Set up the surroundings for the next task to run, and 
5. Allow the new task to run 

The above actions will happen simultaneously at the time of a context switch. 
While responding to task preemption, every RTOS need a definite time to handle 
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it. At the time of context switching, the RTOS need to save the context of the 
preempted task and all register values into the memory, and take up the context of 
the new incoming task. After completion of execution of the high priority task, 
the RTOS again need to bring in the saved context of the preempted task into the 
memory for resuming task execution. There is a time delay associated with this. 
This delay is the time required by the RTOS to handle an interrupt. In the analysis 
these two latencies are considered separately. When context switch occurs, an ISR 
is called to run the high priority task (t��)and at the completion of ISR, the RTOS 
kernel is activated to switch to the low priority task execution (t��) . This 
execution scenario is shown in Fig. 3.  

                                   Context switch 

 
           HP Task 

           LP Task 

   RTOS kernel                                                                                        Time 

                                                   uvw                   uvx   

              ����
         Context switch invoking time               Latency for resuming preempted task
  

Fig. 3. Task execution on a priority based preemptive scheduler. 

 

As the number of context switches increases for a task, these additional 
context switch latencies will get added up to its execution time, which may some 
time lead to task deadline miss. 

 

Theorem 4.1.2.1 The amount of energy consumption when tasks are implemented 
on a priority based preemptive scheduler with RTOS is greater than that of a non-
preemptive scheduler. 

Proof. The different attributes of the low priority task JKL are: (yK, zK, {K) and the 
respective values of the high priority task JMN� areyM, zM, {M . When tasks are 
implemented on a preemptive scheduler with RTOS, the execution time of the 
task is modified due to the associated preemption and context switch overheads. 
The new execution time of the low priority task is: ��_��O = ��� +��|������������������������������������������������������������������������������������������������������������(9) 
where �|�� is the latency for resuming preempted task execution. The overhead of 
context switch namely: writing the context of the preempted task into the memory 
and retrieving the content back from the stack is split and added into both 
preempting task and preempted task respectively. Thus, the new execution time of 
the high priority task is: ��_��O = ��� +��|����������������������������������������������������������������������������������������������������������(10) 
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where yuvw  is the latency associated with context switch invoking time. 
Therefore, the number of clock cycles of low priority and high priority task code 
now becomes: 
 

��_O_��2� =� 4 �Q3�|��
Q8� ����and��������_O_��2� = � 4 �Q.�|��

Q8�  

 

Thus, the energy consumed to implement the task instance ��� is: 
�_O_��2� = �,\]^�_`aa`bc0`,d ∗ �`e]�0cf]d�0,�]g]hi0]�0caf����� ����������������= � +��_��� ∗ ������ � ∗ ������ -���,. ,��hm,hf�hnhm]a ∗ � ��������  
              = �+��_��� ∗ ������ � ∗ ������ -����_O_��2� ∗ � �������� 
����������������= +��_��� ∗ ������ � -�� 4 �Q3�|��

Q8� ������������������������������������������������������������������(11) 
And that of task ��sis: 


�_O_��2� = � +��_��� ∗ ������ � -�� 4 �Q.�|��
Q8� ��������������������������������������������������������������(12) 

The total energy consumed while executing the above two tasks are obtained 
by adding the individual task consumption.  
 
�2��3_O_��2� =�
�_O_��2� +�
�_O_��2��������������������������������������������������������������������������(13)  
����������������������= ���_��� ∗ ������ � �� 4 �Q3�|��

Q8� +� 4 �Q.�|��
Q8� � 

���������������������= ���_��� ∗ ������ �
∗ �P4�Q3

Q8� +4�Q.
Q8� S + �4�Q��|��

Q8� +�4�Q��|��
Q8� ���������������(14)��� 

 

By using Lemma 4.1.1.1, the energy consumption of an embedded processor 
while executing two task instances in a non-preemptive scheduler is found as: 


�2��3_O2 = ����_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S���� 
Therefore, 
�2��3_O_��2� can be written as: 
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�2��3_O_��2� =�
�2��3_O2 +���_��� ∗ ������ � ∗ �4�Q��|��
Q8� +�4�Q��|��

Q8� ����������������(15) 
Thus, it is proved that the amount of energy consumption when tasks are 

implemented on a priority based preemptive scheduler with RTOS is greater than 
that of a non-preemptive scheduler. 
 

b) Task Implementation without RTOS 

For small application development, there is no need to use an RTOS, as the 
programmer can manage the task interactions by skillful coding. Under such 
cases, the coded program should be capable of checking the task priorities at the 
release of every new task into the system, and the scheduler needs to take a 
decision of whether the current task under execution or the newly released task 
should run. Therefore, the scheduling decisions are made at the release of every 
task instances. Thus, the coded program must include these decision making 
instructions and additional instructions to resume the task execution of preempted 
task on completion of the preempting task. In case of multiple preemptions, the 
program should be written well to handle and keep track of nested preemptions 
suffered by a task. Thus, additional instructions must be written in the program so 
as to handle these context switch overheads. The task execution without RTOS is 
presented in Fig. 4. 

 
Additional clock cycles to implement context switch by coding  

Fig. 4. Task execution without RTOS. 

 

Theorem 4.1.2.2 The amount of energy consumption when tasks are implemented 
on a priority based preemptive scheduler is greater than that of a non-preemptive 
scheduler. 

The new execution time of low priority task instance ��� and high priority task 
instance ��s can be written by including an additional time �∆�_� required to run the 
extra instructions given in equation 16. ��_��O = ��� +��∆�_� ������������������������������������������������������������������������������������������������������(16) ��_��O = ��� +��∆�_� ������������������������������������������������������������������������������������������������������(17) 

                                                                          Context switch response time 

              Context switch 

     HP Task 

     LP Task 

                                                                                                            Time 

 

Additional clock cycles to implement context switch by coding  
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And the corresponding number of clock cycles required to run the tasks ��� 
and ��s are:  
��_O = � 4 �Q3�∆�_�

Q8�  

��_O = � 4 �Q.�∆�_�
Q8�  

The energy consumption of the processor while executing the tasks can be 
written as: 


�_O = � +��_��� ∗ ������ � ∗ ������ -�l��_O ∗ � 1����� o����������������������������������������� 
���������= � +��_��� ∗ ������ � - ∗ � 4 �Q3�∆�7

Q8� �������������������������������������������������������������������������(18) 
And that of task ��sis: 


�_O = � +��_��� ∗ ������ � - ∗ � 4 �Q.�∆�_�
Q8� ����������������������������������������������������������������������(19) 

The total energy consumption of the embedded processor while executing two 
task instances on a priority based preemptive scheduler without RTOS is given by: 


�2��3_O = �
�_O +�
�_O 
���������������= ���_��� ∗ ������ � �� 4 �Q.�∆�_�

Q8� +� 4 �Q3�∆�_�
Q8� � 

��������������= ���_��� ∗ ������ � ∗ �P4�Q3
Q8� +4�Q.

Q8� S + �4�Q��∆�_�
Q8� +�4�Q��∆�_�

Q8� ���(20)� 
By using Lemma 4.1.1.1, the energy consumption of an embedded processor 

while executing two task instances in a non-preemptive scheduler is found as: 


�2��3_O2 = �� ��_��� ∗ ������ � ∗ � P4�Q3
Q8� +�4�Q.

Q8� S������������������������������������������������(21) 
Therefore, 
�2��3_O can be written as: 



A Quantitative Study Based on Direct Measurement on Embedded . . . . 1385 

 
 
Journal of Engineering Science and Technology        October 2015, Vol. 10(10) 

 


�2��3_O =�
�2��3_O2 +���_��� ∗ ������ � ∗ �4�Q��∆�_�
Q8� +�4�Q��∆�_�

Q8� �������������������������(22) 
Thus, it is proved that the amount of energy consumption when tasks are 

implemented on a priority based preemptive scheduler is greater than that of a 
non-preemptive scheduler, with the support of RTOS and without RTOS. 
 

4.2.  Study by direct measurement  
This section details the experimental rig for measurement and the procedure 
used to assess the time required to perform a context switch during two task 
execution and the voltage and current consumed by the embedded 
processor/controller while implementing task execution and context switch. The 
measurement system shown in Fig. 5 consists of an ARM7 TDMI based 
LPC2148 microcontroller where the execution of real time task is performed. 
The real time tasks which are considered for evaluation are an UART 
transmission task and Multiply Accumulate (MAC) code. The measuring setup 
consists of the test processor (LPC2148 microcontroller) on which the task 
execution and context switches are implemented, and an MBED NXP1768 
mbed microcontroller to compute the instantaneous power dissipation of LPC 
2148 controller. The analog voltage and current values of LPC 2148 controller 
are digitized and fed to MBED NXP1768 to compute the instantaneous power 
dissipation of LPC2148 when the tasks are executed with and without context 
switches. The current transducer used is an AE make (0-100mA) range meter 
which gives an equivalent output voltage in the range of (0-3.2V). A Moving 
Coil (M.C.) voltmeter (0-5V) is used for voltage measurement. 

 
Fig. 5. Measuring setup. 

                                     

4.2.1. Measuring the time required for a context switch 
The time required to perform a context switch by LPC2148 microcontroller, when 
operated at the rated conditions of 3.3V and 60 MHz crystal frequency are 
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obtained experimentally.  For this, a task code to implement UART transmission 
is written and the number of clock cycles required to complete the code was 
computed by using Timer 1 module of LPC2148. Upon the completion of UART 
transmission code, the value of the Timer 1 module is displayed to the hyper 
terminal. The second task which is considered is a MAC program to multiply 
numbers and add the products to find the result. The MAC code is run for 
different number of iterations to verify the changes in number of clock cycles 
required during execution. Both task codes are written in Embedded C and the 
code after successful compilation and building are flashed into LPC 
microcontroller using Keil- uVision IDE. 

Two separate programs are written one without context switch, i.e., sequential 
execution of UART transmission program followed by the MAC computation. 
Another program is written to implement context switch by executing the UART 
transmission task first and preempting its execution by the MAC task and upon its 
completion, the UART task resumes its execution for culmination. Timer 1 is 
configured and initialized during the starting of program execution without 
context switches and Timer 2 for program with context switches. The difference 
of values of Timer 2 and Timer 1 gives the number of clock cycles required to 
carry out context switch.  
 

4.2.2. Measuring the energy consumption for a context switch 
The supply voltage and current consumed by LPC2148 microcontroller, while 
executing the program without context switch and with context switch are 
measured. By knowing the time taken for execution of both the programs, the 
energy consumed in each case is estimated as below: 

• Measure the time taken by the LPC to execute the two identified tasks UART 
and MAC operation in non-preemptive manner and with preemptions as 
explained in section 4.2.1 and let the time measured be 0O������� and 0O���2������. 

• The supply voltage of LPC microcontroller is fixed at the rated value of 3.3V 
and clock frequency of 60 MHz. 

• Thus the energy consumed by the LPC microcontroller while running the 
tasks with and without preemptions is calculated as in Eq. 23 and 24. 

�
O���2������ =���_��� ∗ ��� ∗ � ∗ 0O���2����������������������������������������������������������������            (23) 
O������� =���_��� ∗ ��� ∗ � ∗ 0O����������������������������������������������������������������������������������            (24)  
The energy dissipated by the controller when a context switch is 

implemented is the difference between the energy consumption with and 
without preemption as below: 
�2����O���� = �
O������� −�
O���2�����������������������������������������������������              (25) 

Figure 6 shows a snapshot of the output of MBED NXP1768 controller while 
computing the instantaneous energy consumption of LPC2148 microcontroller 
while implementing context switch.  
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Fig. 6. MBED NXP1768 controller to compute energy consumption. 

4.3. Simulation using Keil uVision IDE 
The context switch implementation using software is carried out using Keil- 
uVision IDE.  Here, the two programs written for task execution with and without 
context switches using embedded C language are compiled using Keil IDE. 
ARM7 LPC2148 microcontroller is programmed through Flash Magic tool. In 
Flash Magic tool appropriate settings of COM port selection, baud rate, device 
selection and clock frequency is to be done to set the appropriate values as in the 
experiment. Using the start/stop debug session, get the disassembly listing and 
then single stepping operation is performed. By taking the execution profile and 
enabling the show time option, the time taken to execute each instruction of the 
code is displayed. By adding up individual instruction execution time, the time 
taken to complete the entire task code is calculated. The difference of the time 
obtained by running the program with context switch and without context switch 
is a measure of the time consumed to implement the context switch.  
 

5.  Results and Discussion 
In this work, the time delay and the associated energy wastage of an embedded 
processor while implementing context switches are quantified by actual 
measurement. In ARM7 LPC2148 microcontroller, the real time tasks namely, 
UART transmission and MAC functional programs are implemented with and 
without context switches. The voltage input and current consumed by LPC 
microcontroller are measured with the help of a M.C. voltmeter and current 
transducer. These analog values are digitized and input to MBED NXP1768 
controller, which computes the instantaneous energy dissipation of LPC 
controller while executing tasks. The experimental setup used for time delay 
measurement and energy consumption is shown in Fig. 7 and a close view of 
the components in Fig. 8. 
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Fig.7. Experimental setup for measurement                                                                    

of time delay and energy consumption. 

 

 
Fig. 8. A close view of components. 

When the UART transmission task and MAC program with different number 
of iterations are executed with and without context switches, the number of clock 
cycles taken by the LPC2148 microcontroller is tabulated in Table 2. These 
readings are taken when LPC2148 is operated at rated voltage of 3.3V and 
frequency of 60 MHz. 

Figure 9 shows a graph between the context switching time for the LPC2148 
microcontroller when operated at rated voltage of 3.3V and at varying frequencies 
of 12 MHz, 24 MHz, 36 MHz, 48 MHz and 60 MHz. The oscillator is intended 
for calibration in multiples of the base frequency and this fixes the selection of 
frequency switches as 12, 24, 36, 48 and 60 MHz. The variations in clock 
frequency are achieved by configuring PLL and the change in voltage is 
accomplished with a digital potentiometer connected across the power supply and 
the test system. MCP4021 is used which has 64 step changes. Here, the MAC 
program is executed with 4 iterations.  
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Table 2. Number of clock cycles and time measurement of                                      
ARM7 LPC2148 microcontroller to implement context switch. 

 MAC with 4 
operations(No. of 

clock cycles) 

MAC with 16 
operations(No. of 

clock cycles) 

MAC with 32 
Operations (No. 
of clock cycles) 

 With 
Context 
Switch 

Without 
Context 
Switch 

With 
Context 
Switch 

Without 
Context 
Switch 

With 
Context 
Switch 

Without 
Context 
Switch 

UART 
Transmission 

 
186565 

 
186302 

 
193757 

 
193244 

 
214515 

 
213642 

No. of clock 
cycles for 
context switch 

263 513 873 

Time taken 
for a context 
switch (µsec.) 

4.38 8.55 14.55 

 

 
Fig. 9. Time required for context switching with varying frequencies. 

 

For the measurement of energy consumption per context switch, the supply 
voltage and current consumption of LPC2148 microcontroller is measured while 
executing the UART and MAC task codes with and without context switch. Fig. 
10 shows the variation in energy consumption with varying number of MAC 
operations at varying operating points.  The different operating points used are as 
given in Table 1. 

By simulation, when UART and MAC code are run with different number of 
operations, the values obtained are tabulated in Table 3. The LPC2148 is run at 
rated operating conditions of 3.3V and 60 MHz clock frequency. 

Upon computing the time delay associated per context switch while executing 
two tasks: UART transmission and MAC operation, by direct measurement and 
by simulation, the results obtained are presented in Fig. 11, when the controller is 
run at rated operating point of 3.3V and 60 MHz. Also, Fig. 12 presents the 
comparison of energy consumption by the above two approaches. 
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Fig. 10. Variation in energy consumption with change in operating points. 

Table 3. Number of clock cycles and time measurement of                                  
ARM7 LPC2148 microcontroller using software simulation. 

 UART & MAC 
with 4 operations  

UART & MAC 
with 16 operations  

UART & MAC 
with 32 operations  

Time taken 
for a context 
switch (µsec.) 

 
4.16 

 
8.43 

 
14.28 

 

 
Fig. 11. Comparison of time delay by simulation and actual measurement. 

 
Fig. 12. Comparison of energy consumption per context                                   

switch by simulation and actual measurement. 
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An important observation made is that the time for context switching and 
energy consumption is not the same while running different tasks, i.e., with 
change in application tasks, there is a change in time required for context 
switching, thereby changing the energy consumption. Also, another consideration 
is, the context switching time and energy dissipation changes with change in 
context switching point. Based on the application nature, the preferable operating 
points can be selected. Running the processor at lower voltage and frequency are 
always preferable to reduce energy consumption if temporal requirements of the 
application tasks are not violated.  
 

6.  Conclusion 
For any real time application development consisting of many concurrent tasks, 
the use of a priority based preemptive scheduler becomes inevitable for every task 
to meet their respective functional and temporal requirements. Under such 
scenario, when developing big and complex real time applications, it becomes 
necessary to have large number of context switches in the system. But, if not 
controlled, the unnecessary context switches may incur lot of overheads including 
increased delay, increased memory, cache pollution and sometimes even 
infeasibility of the system. This paper attempts to provide insight into the 
significance of context switches in real time embedded application development 
and render the impact of context switch in application development. The main 
focus of the work is to quantify the amount of delay and energy wastage 
associated with context switches while different application tasks are executed. 
The main two factors which are investigated is the time delay associated with a 
context switch and the energy consumption per context switch. In this paper, 
analytical proofs are presented to verify the fact of increase in time delay and 
energy consumption during a context switch by comparing the task execution 
with and without context switches. Experiments are conducted to quantify these 
factors on ARM7 LPC2148 microcontroller and MBED NXP1768 controller. The 
experimental results show a substantial amount of time delay and energy wastage 
associated with context switches while running simple real time tasks. The energy 
consumption in the order of few milli Joules cannot be neglected as the 
cumulative value for a large number of context switches will be in the order of 
Joules. Thus, the number of context switches in a system need to be limited for 
energy saving. Also, the context switch behaviour and the associated overhead for 
branch instructions are not simple and straight forward as with simple instructions 
presented in the current work. The associated overhead prediction and analysis 
need to be investigated in the future work. 
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