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Abstract 

This paper proposed a new prediction method for flood vulnerability during the 
wet season in Indonesia. This method called Multiple Autoregressive Integrated 
Moving Average Subsequences Aggregate Long-Term Time Series model or 
MSARIMASA model. The long-term time series data and divided into data 
actual-sampling for experiment and data fits-sampling for evaluating. 
MSARIMASA model built from the aggregate data actual-sampling and 
subdivided into training long-term time-series data as well as authorizing long-
term time-series data to reduce the effect in the rainfall prediction based on time 
series employing the aggregate method by its period. A fixed number of 
subsequence patterns generated and fitting well using SARIMA models. It is also 
verified by the mean absolute percentage error (MAPE) and mean forecast error 
(MFE) to identify the best-fitted model of MSARIMASA. The step of predicting 
future rainfall in the aggregate grouped employing the MSARIMASA models 
needs to determine the subsequence with the best fitted SARIMA model. The 
disaggregates process to spread this group value to the future rainfall using a ratio 
from the previous rainfall data. The MSARIMASA model was compared using 
MAPE and MFE with the SARIMA model and the ARIMA model. The results 
for the proposed model indicated better MAPE and MFE than the SARIMA and 
ARIMA models. 

Keywords: Aggregation step, ARIMA, A subsequence of long-term time series, 
Forecast, Multiple SARIMA. 
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1.  Introduction 
Indonesia is a country located on the equator. Therefore, Indonesia has a tropical 
climate and two seasons, dry and rainy season. Some areas in Indonesia 
experienced a flood during the rainy season. Rainfall is an important component in 
the climate system because it plays a critical role in agricultural and flood in 
Indonesia. Besides, rainfall is a major area of concern within the field of forecasting 
data. The data forecasting of rainfall may become a crucial factor that affects the 
process of decision making in many fields [1]. The sectors include transportation 
such as air transportation, agricultural sectors, as well as fishery sectors [1, 2].  

The accuracy of the rainfall forecasting in early gives the stakeholders such as 
farmers, governments more time to determine the decision regarding the water 
supply for their field for the farmer and prevention warning of flood for the 
government, in this case, is Bureau of Meteorology, Climatology, and Geophysics 
in Indonesia. During the wet season, in Bandung Regency. 

During the wet season, in Bandung Regency often occurred by a flood. Bandung 
Regency is a part of West Java province in Indonesia. The flood [3], which occurred 
in Bandung Regency, was related to the existence of several changes in 
climatological elements. These elements include the influence of La Nina in the 
Ocean Pacific, an increase in the surface temperature in the sea level in the Java 
Sea, wind encounters, and bending of the wind direction over the Bandung area, 
also the tropical cyclones in the Indian Ocean [4]. 

Many researchers studied the rainfall forecast employing different models and 
applied them in a certain area. Nita et al studied rainfall forecasting using the 
Moving Average algorithm and obtain the accuracy MAPE 15.66% [5]. Wang et al 
studied the ARIMA model to predict the precipitation in Lanzhou, China, and 
accounting data, both the internal and inter-monthly variations. The result obtained 
the forecast accuracy of 21% of error [6]. The ARIMA model [7-10] also used by 
many researchers to analyse the hydrological process unconsidering the influence 
of seasonal factor [11-13]. The other study of the ARIMA model did the stationary 
test for monthly rainfall forecasting and the effects from the inter-monthly variant 
within a year [14-17]. In addition, some researchers studied seasonal ARIMA 
(SARIMA) model to forecast the monthly rainfall [18-23]. 

This study aims to forecast the future seasonal rainfall employing the proposed 
model of time series, namely multiple seasonal auto repression moving average 
subsequence aggregate time series or MSARIMASA model. The proposed model 
applies in Bandung Regency, West Java Province in Indonesia, and the rainfall time 
series in January 2009 to December 2013 dataset comes from [24]. The forecasted 
rainfall can be useful to predict the next flood event in Bandung Regency. The 
effective flood forecasting models could be helpful for early warning and disaster 
prevention. The part of this research described Non-seasonal ARIMA models that 
mainly written as ARIMA (p, d, q), representing the time series 𝑧𝑧𝑡𝑡 denoted as:  

𝜑𝜑𝑝𝑝(𝐵𝐵)𝛻𝛻𝑑𝑑𝑧𝑧𝑡𝑡 = 𝜃𝜃𝑞𝑞(𝐵𝐵)𝛼𝛼𝑡𝑡                 (1) 

where 𝑝𝑝  is the autoregressive non-seasonal order, 𝑑𝑑  is the differencing non-
seasonal degree, 𝑞𝑞 is the moving-average non-seasonal order, and 𝛼𝛼𝑡𝑡 denotes as the 
random error terms at time 𝑡𝑡. 

The lag operator 𝐵𝐵 defined by 
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Bz_t=z_(t - 1)                   (2) 

The differencing ∇ denoted as 
∇ = (1 - B)                                (3) 

Equation (3) computed as 
∇z_t = z_t-z_(t - 1)                               (1) 

The differencing order of ARIMA model denoted as 
∇^d=(1-B)^d                  (5) 

φ_p (B) and θ_q(B) are AR and MA operators and respectively. φ_p (B) and θ_q(B) 
defined in Eqs. (6) and (7), respectively. 

                (6) 
                (7) 

The autoregressive coefficients denote as 𝜑𝜑1, 𝜑𝜑2, … ,𝜑𝜑𝑝𝑝 , and the moving-
average coefficient denote as 𝜃𝜃1, 𝜃𝜃2, … , 𝜃𝜃𝑞𝑞. 

Seasonal ARIMA [1-3] models denoted as SARIMA(p,d,q)x(P,D,Q)_s 
representing the time series Y_t denoted as 

               (8) 

Ψ_P (B^s )=1-Ψ_1 (B^1)-…-Ψ_P (B^sP)                             (9) 

Θ_Q (B^s )=1-Θ_1 (B^1 )-…-Θ_Q (B^s)                           (10) 

∇_s^D=(1-B^s )^D               (11) 

where P is the autoregressive seasonal order, D is the differencing seasonal degree, 
Q is the moving-average seasonal order, and s is for seasonal time series (i.e., 
monthly time series S = 12).  

The various parameters of ARIMA and SARIMA models can be identified 
employing a methodology of the Box-Jenkins model [2, 4, 5]. 

Steps of the Box-Jenkins model: 
i. Verification of the stationery of the time series data by the Box-Jenkins 

model to define the proper differencing  
ii. Auto-correlation function (ACF) and partial autocorrelation function 

(PACF) used for the parameters appraisal of AR and MA. 
iii. The maximum likelihood procedure forecast all of the ARIMA and 

SARIMA model coefficients [6] .  

In this study, the SARIMA model is simulated by Minitab programming, and it is 
used to determine the basic method for the proposed model (MSARIMASA model). 

2.  Method 
This section describes the algorithm for generating the proposed model and 
predicting future values. The time-series data consisted of actual-sampling and fits-
sampling. The actual sampling data was employed to create the proposed model 
and predict the aggregate future values. The fits-sample data used to evaluate the 
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accuracy using MFE and MAPE. In this study, 95% of the time series data were 
employed to actual-sample data, and the remainder was applied to fits-sample data. 
The structure of the algorithm consisted of two parts. The first part was to create 
the proposed model and the second one was to predict future values. 

The actual-sample denotes as 

〖Z_i=Z〗_1,Z_2,Z_3,…,Z_n              (12) 

The fits-sample was written as 

Z_(n+i)=Z_(n+1),Z_(n+2),Z_(n+3),…,Z_m             (13) 

The forecast for the future values presents as 

Z ̌_(n+i)=Z ̌_(n+1),Z ̌_(n+2),Z ̌_(n+3),…,Z ̌_m              (14) 

2.1. Proposed model 
The proposed model consisted of four steps aggregate the actual-sample, aggregate 
actual-sample data were subdivided into training and validating time series data, 
generating the arithmetic subsequences, and the last was fit the SARIMA model 
based on Box-Jenkins method as well as obtaining the MFE and MAPE for 
authorizing portion. The detail explanation is shown below. 

The first step of the proposed model was to aggregate the actual-sample, and it 
denotes as: 
X_i=X_1,X_2,X_3,…,X_R                       (15) 

The aggregation time series data denotes in Eq. (16) 

              (16) 

The period of the time series data is 𝑏𝑏 and the number of aggregate groups on 
the actual-sample data is R. For a = 1, 2, 3, …, R and n = Rb 

The second step is to subdivided the aggregate actual-sample data into training 
and validating time series data. Training time series data comes from 95% of the 
actual-sample data and the remainder employed to the validating time series. 

The training time series data determined as: 

X_1,X_2,X_3,…,X_R  ̅               (17) 

where 𝑅𝑅� is the number of training time series data and must be less than 𝑅𝑅. The 
validating time series data can be written as: 

X_(R ̅+1 ),X_(R ̅+2 ),X_(R ̅+3 ),…,X_R               (18) 

The third steps described as follow: The starting of various initial values are 
generating with the arithmetic subsequence. The beginning is determining the 
maximum common difference as c and we obtain the number of the arithmetic 
subsequence patterns as 

                             (19) 
where A_S is the arithmetic subsequence. The aggregate actual-sample data for 
each subsequence is generated in Eqs. (20-22).  
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For the common difference f = 1, we can write 

〖X_(i )〗_(i=1,2,3,…,r)^(r≤R)              (20) 

For the common difference, f = 2, it generate the arithmetic subsequence in two 
times and denotes as: 

X_(2i-1  )〗_(i=1,2,3,…,r)^(2r-1≤R)=〖X_2i〗_( i=1,2,3,…,r)^( 2r≤R)             (21) 

For the maximum common difference 𝑓𝑓 = 𝑐𝑐 , it generates the arithmetic 
subsequence in 𝑐𝑐 time and can be written in the equation as below: 

X_(ci-j)  〗_(i=1,2,3,…,r)^( cr-j≤R)=〖X_ci   〗_(i=1,2,3,…,r)^(cr≤R)               (22) 

For j = 0, 1, 2,…, (c – 1), respectively 

The subsequence of the training time series data generating by determining the 
start of the index at i = 1 to R  ̅and the index for the validating time series data start 
at i = R ̅ + 1 to R.  

The last step is to fit the SARIMA models based on the Box-Jenkins method 
which comes from the training time series data. The validating portion calculates 
using MFE and MAPE. The subsequence of the aggregate actual-sample denotes 
as O_((h,f)), where h is the starting index and f is a common difference. Let 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(ℎ,𝑓𝑓), 〖MFE〗_((h,f)), and M A P E hf be the best fitted SARIMA model of 
𝑂𝑂(ℎ,𝑓𝑓)  and MFE as well as MAPE of O_((h,f)) respectively. The future values 
forecasting by the 〖SARIMA〗_((h,f)) and explained in the next section. 

2.2. Forecasting proposed model 
This section describes how to forecast future value employing the proposed model. 
First, we have to determine the aggregate for the forecasted values. The formula of 
the aggregate forecasted values shown in Eq. (23) below. 

𝑋𝑋�𝑅𝑅+1, 𝑋𝑋�𝑅𝑅+2, , … , 𝑋𝑋�𝑅𝑅�               (2) 

𝑅𝑅� is the number of the aggregate group on time series data. 

From Eq. (16) where n = Rb, we can determine the forecasting for the future 
values by using the equation: 

𝑍̌𝑍𝑅𝑅𝑅𝑅+1, 𝑍̌𝑍𝑅𝑅𝑅𝑅+2, 𝑍̌𝑍𝑅𝑅𝑅𝑅+3, … , 𝑍𝑍�(𝑅𝑅+1)𝑏𝑏, 𝑍𝑍�(𝑅𝑅+1)𝑏𝑏+1, 𝑍𝑍�(𝑅𝑅+1)𝑏𝑏+2   … , 𝑍̌𝑍𝑚𝑚           (3) 

where m is a number of forecasts for the future values and denotes as m=R ̿b 

To obtain the forecast for future values requires three major steps: identify the 
aggregate forecasted, select the subsequence, and disaggregate method to obtain 
the future values of rainfall. 

By determining in each order from the Eq. (23) to identify the aggregate forecast 
values of each future value, we can get 

𝑋𝑋�𝑅𝑅+1 = 𝑍̌𝑍𝑅𝑅𝑅𝑅+1, 𝑍̌𝑍𝑅𝑅𝑅𝑅+2, 𝑍̌𝑍𝑅𝑅𝑅𝑅+3, … , 𝑍𝑍�(𝑅𝑅+1)𝑏𝑏             (4) 

𝑍̌𝑍𝑚𝑚 = 𝑍𝑍��𝑅𝑅�+1�𝑏𝑏+1, 𝑍𝑍��𝑅𝑅�+1�𝑏𝑏+2, … , 𝑍𝑍�𝑅𝑅�𝑏𝑏              (5) 

By substituting Eqs. (25) and (26) into Eq. (24), we obtain a new formula for 
aggregate forecasted values in Eq. (27) 
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�𝑍̌𝑍𝑅𝑅𝑅𝑅+1, 𝑍̌𝑍𝑅𝑅𝑅𝑅+2, 𝑍̌𝑍𝑅𝑅𝑅𝑅+3, … , 𝑍𝑍�(𝑅𝑅+1)𝑏𝑏� , … , (𝑍𝑍��𝑅𝑅�+1�𝑏𝑏+1, 𝑍𝑍��𝑅𝑅�+1�𝑏𝑏+2, … , 𝑍𝑍�𝑅𝑅�𝑏𝑏          (6) 

The subsequence of the aggregate actual-sample data O(h,f) are identified by 
𝑋𝑋�𝑅𝑅+1, 𝑋𝑋�𝑅𝑅+2, 𝑋𝑋�𝑅𝑅+3, … , 𝑋𝑋�𝑅𝑅� . Considering to Eqs. (20-22), we can determine the 
subsequence of the aggregate actual sample data for each value of starting index h 
and common difference f. 

For h = 1 and f = 1 

𝑂𝑂(1,1) = 𝑋𝑋�𝑖𝑖+𝑅𝑅 𝑖𝑖=1,2,3,…,𝑟𝑟
𝑟𝑟+𝑅𝑅≤𝑅𝑅�                (7) 

For h = m and f = m 

𝑂𝑂(𝑚𝑚,𝑚𝑚) = 𝑋𝑋�𝑚𝑚𝑚𝑚+𝑅𝑅 𝑖𝑖=1,2,3,…,𝑟𝑟
𝑚𝑚𝑚𝑚+𝑅𝑅≤𝑅𝑅�                (8) 

The next steps for forecasting the proposed method determine the subsequence 
which includes the aggregate forecasted value index. This step also extracts the 
corresponding SARIMA models, MFEs, and MAPEs. The minimum MFEs and 
MAPEs among all SARIMA models of this index are to be selected to predict 
𝑋𝑋�𝑅𝑅+1, 𝑋𝑋�𝑅𝑅+2, , … , 𝑋𝑋�𝑅𝑅�. 

The last steps were the disaggregating procedure to obtain the predicted of  future 
values. To obtain disaggregate predicted values𝑍̌𝑍𝑛𝑛+1, 𝑍̌𝑍𝑛𝑛+2, 𝑍̌𝑍𝑛𝑛+3, … , 𝑍̌𝑍𝑚𝑚 become the 
aggregate forecasted values 𝑋𝑋�𝑅𝑅+1, 𝑋𝑋�𝑅𝑅+2, , … , 𝑋𝑋�𝑅𝑅� doing by the following procedure. 

The disaggregate start from 𝑋𝑋�𝑒𝑒 where 𝑒𝑒 ∈ �(𝑅𝑅 + 1), (𝑅𝑅 + 2), (𝑅𝑅 + 3), … , 𝑅𝑅� � and 
for the forecasted by some of the subsequence O(h,f) can be expressed by 

𝑂𝑂(ℎ,𝑓𝑓) = 𝑍𝑍(𝛼𝛼𝑖𝑖−𝛽𝛽) 𝑖𝑖=1,2,3,…,𝑟𝑟
𝛼𝛼𝛼𝛼−𝛽𝛽≤𝑅𝑅                (9) 

The value of the number aggregate α has membership from 0, 1, 2, … , (𝑟𝑟 − 1) 
and 𝛽𝛽 have membership from 1, 2, 3, … , 𝑟𝑟. 
The disaggregate of 𝑂𝑂(ℎ,𝑓𝑓) for ℎ = 1, ℎ = 𝑟𝑟 and 𝑓𝑓 = 1, 2, 3, … , 𝑟𝑟 are denoted as 
the below formulas: 

𝑂𝑂(1,1) = 𝑋𝑋(𝛼𝛼−𝛽𝛽) = 𝑍𝑍(𝛼𝛼−𝛽𝛽−1)𝑏𝑏+1, 𝑍𝑍(𝛼𝛼−𝛽𝛽−1)𝑏𝑏+2, 𝑍𝑍(𝛼𝛼−𝛽𝛽−1)𝑏𝑏+3, … , 𝑍𝑍(𝛼𝛼−𝛽𝛽)𝑏𝑏          (10) 

𝑂𝑂(𝑟𝑟,𝑟𝑟) = 𝑋𝑋(𝑖𝑖𝑖𝑖−𝛽𝛽) = 𝑍𝑍(𝛼𝛼𝛼𝛼−𝛽𝛽−1)𝑏𝑏+1, 𝑍𝑍(𝛼𝛼𝛼𝛼−𝛽𝛽−1)𝑏𝑏+2, 𝑍𝑍(𝛼𝛼𝛼𝛼−𝛽𝛽−1)𝑏𝑏+3, … , 𝑍𝑍(𝑖𝑖𝑖𝑖−𝛽𝛽)𝑏𝑏           (11) 

The disaggregate of 𝑂𝑂(ℎ,𝑓𝑓) also can be written in Eq. (33) 

𝑂𝑂(ℎ,𝑓𝑓) = 𝑂𝑂(1,1), 𝑂𝑂(1,2), … , 𝑂𝑂(𝑟𝑟,𝑟𝑟)              (12) 

From the last step, we can obtain the average value of order 𝑢𝑢 and denotes as 𝛻𝛻𝑢𝑢 

𝛻𝛻𝑢𝑢 =
∑ 𝑍𝑍(𝑖𝑖𝑖𝑖−𝛽𝛽−1)𝑏𝑏+𝑢𝑢
�𝑅𝑅+𝛽𝛽𝛼𝛼 �
𝑖𝑖=1

�𝑅𝑅+𝛽𝛽𝛼𝛼 �
               (13) 

where 𝑢𝑢 = 1, 2, 3, … , 𝑏𝑏;  𝛼𝛼 ∈ {0, 1, 2,3, … , (𝑟𝑟 − 1)};  𝛽𝛽 ∈ {1, 2, 3, … , 𝑟𝑟}. 

The disaggregate procedure can be activated by employing the weighted 
average (𝛻𝛻�𝑢𝑢) of the value in 𝑢𝑢 order. 

𝛻𝛻�𝑢𝑢 = 𝛻𝛻𝑢𝑢
∑ 𝛻𝛻𝑖𝑖𝑏𝑏
𝑖𝑖=1

,   𝑢𝑢 = 1, 2, 3, … , 𝑏𝑏              (14) 
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Accordingly, 𝑋𝑋�𝑒𝑒 is able to be disaggregated  

𝑋𝑋�𝑒𝑒 = 𝑍̌𝑍(𝑒𝑒−1)𝑏𝑏+1 , 𝑍̌𝑍(𝑒𝑒−1)𝑏𝑏+2, 𝑍̌𝑍(𝑒𝑒−1)𝑏𝑏+3, … , 𝑍̌𝑍(𝑒𝑒−1)𝑏𝑏+𝑏𝑏            (15) 

𝑍̌𝑍(𝑒𝑒−1)𝑏𝑏+𝑢𝑢 = ∇�𝑢𝑢𝑋𝑋�𝑒𝑒                (16) 

where   𝑢𝑢 = 1, 2, 3, … , 𝑏𝑏;  𝑒𝑒 ∈ �(𝑅𝑅 + 1), (𝑅𝑅 + 2), (𝑅𝑅 + 3), … , 𝑅𝑅� �. 

3.  Performance Model Measurement 

In each of the forthcoming definitions, Zt is the fits-sample values and 𝒁𝒁�𝒕𝒕is the 
predicted values. The differencing of the real value and the predicted value denoted 
as dt and the formula of dt written as bellow: 
𝒅𝒅𝒕𝒕 = 𝒁𝒁𝒕𝒕 − 𝒁𝒁�𝒕𝒕                (17) 

Performance model measurement for this study consists of two models: Mean 
Forecast Error (MFE) [5] and Mean Absolute Percentage Error (MAPE) adapted 
from references [3] and [5]. For the formulas described below: 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ 𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡=1                          (18) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ �𝑑𝑑𝑡𝑡

𝑧𝑧𝑡𝑡
�𝑛𝑛

𝑡𝑡=1 𝑥𝑥 100%              (19) 

where n is the number of both real value and predicted value.  

4.  Results and Discussion 
The proposed model was tested employing data from the Statistics of Jawa Barat 
[24]. The data consisted of six-time series data with the monthly and yearly data 
period. The implementation of the proposed model employing minitab2018 
programming. The time-series data started in January 2009 and ends on December 
2013. The number of experiments was 72. The time series plot of rainfall in the 
Bureau of Meteorological, Climatology, and Geophysics for Bandung Regency 
shown in Fig. 1. 

 
Fig. 1. Rainfall time series from January 2009 to December 2013. 

The period of the aggregate SARIMA arranged to 12 in monthly of a year, the 
highest of common difference c arranged in 1 to 5. The performance of the proposed 
algorithm in MFEs and MAPE employing the parameters of SARIMA shown in 
Table 1. The subsequence column in Table 1, according to the original subsequence 
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in Xi in Eq. (20) referred to the SARIMA parameter of the best SARIMA model to 
adjust the correlate with the subsequence and third, fourth columns showed the MFE 
and MAPE of the best SARIMA model on the data validation. 

The best-fitted model for the proposed model, which obtained two lowest 
MFE and MAPE came from the subsequence fourth and eighth respectively 
(see Fig. 2.). 

 
Fig. 2. The proposed model (MSARIMASA  

model) forecasted 12 months ahead. 

Figures 2 and 3 show the proposed model with the fits-sample data. It showed 
the proposed model could forecast the next rainfall in 12 months ahead and 60 
months ahead with the best subsequence aggregate of the SARIMA model in 
subsequence 8th. The forecasted data from the proposed model similar to the fits-
sample data and the MFE, MAPE of the proposed model are 1.17 and 0.67 %, 
respectively (shown in Table 2). Figure 4 shows the model to compare rainfall time 
series data in Bandung Regency. The MFE and MAPE for the proposed model, 
ARIMA and SARIMA shown in Table 2. 

 
Fig. 3. The proposed model forecasted for 60 months ahead. 

The proposed model (MSARIMASA model) provided reliable rainfall 
predicting comparing with the other algorithms presented in previous work 
employing another dataset. In literature [11], 1-month rainfall forecasting obtained 
the accuracy of MAPE reached 15.66%, and in reference  [12] the MAPE reached 
24.803% for univariate time series model of precipitation forecast. The MAPE 
obtained with the proposed model (MSARIMASA model) varies from 1.67 to 
0.00% for forecasting of 60 months ahead. This is in a good agreement with 
literature [25]. 
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Table 1. Performance of the proposed model (MSARIMASA model). 

No. Subsequence (𝒄𝒄 𝒕𝒕𝒕𝒕 𝟓𝟓) SARIMA orders 
(𝒑𝒑, 𝒅𝒅, 𝒒𝒒)𝒙𝒙(𝑷𝑷,𝑫𝑫, 𝑸𝑸)𝒔𝒔 

MFE MAPE (%) 

1 𝑋𝑋1, 𝑋𝑋2, 𝑋𝑋3, 𝑋𝑋4, 𝑋𝑋5, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 1  (0,0,0)𝑥𝑥(1,0,0)12 1.677 0.83 
2 𝑋𝑋1, 𝑋𝑋3, 𝑋𝑋5, 𝑋𝑋7, 𝑋𝑋9, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 2  (0,0,0)𝑥𝑥(1,0,1)12 1.425 0.55 
3 𝑋𝑋2, 𝑋𝑋4, 𝑋𝑋6, 𝑋𝑋8, 𝑋𝑋10, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 2  (1,0,0)𝑥𝑥(1,0,0)12 1.897 0.92 
4 𝑿𝑿𝟏𝟏, 𝑿𝑿𝟒𝟒, 𝑿𝑿𝟕𝟕, 𝑿𝑿𝟏𝟏𝟏𝟏, 𝑿𝑿𝟏𝟏𝟏𝟏, … , 𝒇𝒇𝒇𝒇𝒇𝒇 𝒄𝒄 = 𝟑𝟑  (𝟏𝟏, 𝟎𝟎, 𝟎𝟎)𝒙𝒙(𝟏𝟏, 𝟎𝟎, 𝟏𝟏)𝟏𝟏𝟏𝟏 0.23 0.16 
5 𝑋𝑋2, 𝑋𝑋5, 𝑋𝑋8, 𝑋𝑋11, 𝑋𝑋14, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 3  (0,0,0)𝑥𝑥(1,1,0)12 1.777 0.87 
6 𝑋𝑋3, 𝑋𝑋6, 𝑋𝑋9, 𝑋𝑋12, 𝑋𝑋15, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 3  (0,0,0)𝑥𝑥(1,1,1)12 1.967 1.25 
7 𝑋𝑋1, 𝑋𝑋5, 𝑋𝑋9, 𝑋𝑋13, 𝑋𝑋17, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 4  (0,0,0)𝑥𝑥(1,0,0)12 1.997 1.43 
8 𝑿𝑿𝟐𝟐, 𝑿𝑿𝟔𝟔, 𝑿𝑿𝟏𝟏𝟏𝟏, 𝑿𝑿𝟏𝟏𝟏𝟏, 𝑿𝑿𝟏𝟏𝟏𝟏  … , 𝒇𝒇𝒇𝒇𝒇𝒇 𝒄𝒄 = 𝟒𝟒  (𝟎𝟎, 𝟎𝟎, 𝟎𝟎)𝒙𝒙(𝟏𝟏, 𝟎𝟎, 𝟏𝟏)𝟏𝟏𝟏𝟏 0.00 0.00 
9 𝑋𝑋3, 𝑋𝑋7, 𝑋𝑋11, 𝑋𝑋15, 𝑋𝑋19, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 4  (1,0,0)𝑥𝑥(1,0,0)12 2.432 1.67 

10 𝑋𝑋4, 𝑋𝑋8, 𝑋𝑋12, 𝑋𝑋16, 𝑋𝑋20, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 4  (1,0,0)𝑥𝑥(1,0,1)12 0.237 0.18 
11 𝑋𝑋1, 𝑋𝑋6, 𝑋𝑋11, 𝑋𝑋16, 𝑋𝑋21, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 5  (0,0,0)𝑥𝑥(1,1,0)12 0.536 0.20 
12 𝑋𝑋2, 𝑋𝑋7, 𝑋𝑋12, 𝑋𝑋17, 𝑋𝑋22, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 5  (0,0,0)𝑥𝑥(1,1,1)12 0. 679 0.17 
13 𝑋𝑋3, 𝑋𝑋8, 𝑋𝑋13, 𝑋𝑋18, 𝑋𝑋23, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 5  (0,0,0)𝑥𝑥(1,0,0)12 0.723 1.02 
14 𝑿𝑿𝟒𝟒, 𝑿𝑿𝟗𝟗, 𝑿𝑿𝟏𝟏𝟏𝟏, 𝑿𝑿𝟏𝟏𝟏𝟏, 𝑿𝑿𝟐𝟐𝟐𝟐, … , 𝒇𝒇𝒇𝒇𝒇𝒇 𝒄𝒄 = 𝟓𝟓  (𝟎𝟎, 𝟎𝟎, 𝟎𝟎)𝒙𝒙(𝟏𝟏, 𝟎𝟎, 𝟏𝟏)𝟏𝟏𝟏𝟏 0.198 0.13 
15 𝑋𝑋5, 𝑋𝑋10, 𝑋𝑋15, 𝑋𝑋20, 𝑋𝑋25, … , 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐 = 5  (1,0,0)𝑥𝑥(1,0,0)12 1.786 0.79 

Table 2. Comparative results of rainfall prediction. 
 Proposed Model SARIMA model ARIMA model 

Parameters Table 1 
𝑝𝑝 = 1; 𝑑𝑑 = 1; 𝑞𝑞 = 0 
𝑃𝑃 = 1;𝐷𝐷 = 1;𝑄𝑄 = 1 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 12 

𝑝𝑝 = 1; 𝑑𝑑 = 1; 𝑞𝑞
= 0 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 12 
Average MFE 1.17 3.23 5.89 

Average MAPE (%) 0.67 2.15 5.60 

 
Fig. 4. Comparative performance results with 60 time series  
monthly data (parameters proposed a model in subsequence  

4th in Table 1, ARIMA and SARIMA in Table 2 respectively). 

5. Conclusion  
The finding of the research indicated that the proposed model (MSARIMASA) was 
the best model to predict the rainfall with average MFE and MAPE respectively 
1.17 and 0.67%. However, these results might not apply to all types of data; 
different parameters of each model also affected the value of the forecasted data. 
Besides, the results of the rainfall forecast for the next flood forecasted can be 
useful for early warning and disaster prevention. 
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